
Building Abstractions in Class Models: Formal
Concept Analysis in a Model-Driven Approach

Gabriela Arévalo, Jean-Rémi Falleri, Marianne Huchard and Clémentine Nebut

LIRMM, CNRS and Université de Montpellier 2,
161, rue Ada, 34392 Montpellier cedex 5, France
{arevalo, falleri, huchard, nebut}@lirmm.fr

Abstract. Designing class models is usually an iterative process to de-
tect how to express, for a speci�c domain, the adequate concepts and
their relationships. During those iterations, the abstraction of concepts
and relationships is an important step. In this paper, we propose to auto-
mate this abstraction process using techniques based on Formal Concept
Analysis in a model-driven context. Using UML2.0 class diagrams as
modeling language for class models, in this proposal we show how our
model-driven approach enables parameterization, tracing and generaliza-
tion to any metamodel to express class models.

1 Introduction
In model-driven development, modeling activities have as purpose (at least par-
tially) to replace the coding tasks. Unfortunately, the model engineer does not
have all the same facilities (such as versioning and refactoring tools) as in
mostly classical coding environments. With these kinds of tools, the model-driven
paradigm could be adopted in large software companies. Speci�cally, within the
context of refactoring object-oriented models, in this paper we focus on au-
tomating the detection and building of class hierarchies. Designing class models
is not a trivial task. It is an iterative process to detect how to express, for a
speci�c domain, the adequate concepts and their relationships. During this it-
erative process, the abstraction of concepts and relationships is a crucial task.
Indeed, abstraction provides better concept structuring and more reusable arti-
facts. In this paper, we propose to automate this abstraction process using an
adaptation of Formal Concept Analysis (FCA) techniques [1] in a model-driven
context. FCA has proved to be an e�cient technique to build or restructure class
hierarchies [2,3,4], but has not been yet applied in a model-driven approach.

The contribution of this paper is a FCA-based model-driven approach to ab-
stract concepts involved in a class model (classes, associations, attributes and
so on). Brie�y, this process uses the successive application of model transfor-
mations as a main building mechanism. We use two main tools: Kermeta [5]
and UML. Using Kermeta [5] (compatible with MOF and OCL) as our meta-
modeling language, we are able to (1) give an operational semantics to every
underlying metamodel and implement every model transformation, and (2) de-
scribe the FCA algorithms and check their performances. Using the UML as

a language, we describe class models. As a result, the transformations are de-
�ned based on a part of the UML 2.0 metamodel. However, the speci�cation
and implementation of our proposal using model transformations turns to be
easily tunable by parameters, and applicable to other metamodels which handle
adequate concepts to detect and build abstractions. Our approach shows that
formalizing FCA with model transformations gives interesting bene�ts, such as
tracing the di�erent steps of the process, or the parameterization. These charac-
teristics are also important if we compare our contribution to the one introduced
in [6]. In that approach the main limitation was that the authors consider the
model transformations as a black box, with no means of tracing or parameteriz-
ing.

The paper is structured as follows. Section 2 gives a brief overview of our
approach, recalls the main notions of FCA, and introduces the example used all
over the paper. Each main transformation is then detailed into Sections 3, 4 and
5 respectively. Section 6 discusses the bene�ts and limitations of this approach,
as well as related work.

2 Overview and background
Building class models is usually not a trivial task but rather an iterative process
aiming at �nding the simplest model with good properties such as, for exam-
ple, maintainability, adequate factorization and easy testing. While building a
class model, one task consists in generalizing concepts: �nding regularities in
already identi�ed concepts in order to detect new abstractions. When repre-
senting class models with UML class diagrams, several model elements can be
abstracted such as, obviously, classes, but also associations, attributes, and meth-
ods. As an example, starting from the class model shown in Fig. 1(a), the class
model of Fig. 1(b) can be obtained, where new classes have been introduced (for
example class BankClient that is an abstraction of the BasicAccountHolder
and the TeenagerClient classes), as well as new attributes (e.g. the attribute
accountList that abstracts the two attributes bAccountList and tAccount-
List). Our approach aims at automating this refactoring, i.e. at detecting and
building new abstractions in a class model, using Formal Concept Analysis
(FCA). Before going into the details, we provide in this section the minimal
notions of FCA, and then we give an overview of our approach, that will be
detailed in the next sections.

2.1 Background on FCA
FCA [1] is a mathematical technique, based on lattice theory, to discover ab-
stractions (known as concepts) from a set of entities (formal objects) described
by attributes (formal attributes) 1. Concept specialization draws a lattice struc-
ture. Basic FCA considers formal contexts K = (E,P, I) as shown in Figure 2
1 All over the text we use the term attributes to denote formal attributes, except in
case we must clarify the ambiguity between attributes of a class model and formal
attributes of a FCA context.

2

(a) A simple
class diagram

(b) Refactored class diagram

Fig. 1. The example of bank accounts

(left). E is the entity set (here UML classes), P the attribute set (here UML
attributes) and I associates an entity with its attributes: (e, p) ∈ I when entity e
owns attribute p. With any entity set X ⊆ E we associate the shared attributes
with the mapping α de�ned by α(X) = {p ∈ P | ∀e ∈ X, (e, p) ∈ I}. Symmet-
rically, with any attribute set Y ⊆ P we associate the entities owning all the
attributes of Y . To that end, we use the mapping ω de�ned by ω(Y) = {e ∈
E | ∀p ∈ Y, (e, p) ∈ I}. In the example, let Y = {balance}, we have ω(Y) =
{BasicAccount, TeenagerAccount}, while for X = {BasicAccount}, α(X) =
{balance, overdraft}. A concept is a pair (X, Y) where X ⊆ E, Y ⊆ P , α(X) =
Y and ω(Y) = X. In Figure 2, {{BasicAccount, TeenagerAccount}, {balance}}
is a concept. Graphically, this concept corresponds to the vertical block in the
column balance. More generally, a concept corresponds to a block of maximal
size in the context (the blocks are found in the context modulo the order of the
columns and rows). X (resp. Y) is usually called the extent (resp. intent) of the
concept.

The specialization order between concepts corresponds to extent inclusion (or
intent containment). The concept lattice L = (C,≤L) is the set of concepts pro-
vided with the inclusion partial order. In Figure 2, the concept {{BasicAccount},
{balance, overdraft}} specializes the concept {{BasicAccount, TeenagerAc−
count}, {balance}}.

The concept at the bottom has no interest as it represents the hypothetic set
of entities containing all attributes. The concepts at the �rst level correspond
to initial classes. The unique concept of the second level stems from the fac-
torization of property balance. In our example, it could generate a new UML
class factorizing balance and appearing as a superclass of BasicAccount and
TeenagerAccount (class BankAccount). The top concept gathers attributes com-
mon to all entities, in this speci�c case it is an empty set of attributes. This lattice
is very simple, but in general, systematic factorization in real software projects
generates too many concepts, which makes the analysis di�cult to grasp. The
main advantage of using FCA for UML class diagram reconstruction is that we

3

Concept

Concept specialization
Extent

Intent

BasicAccount,TeenagerAccount,BasicAccountHolder,TeenagerClient

BasicAccount,TeenagerAccount

balance

balance, overdraft

BasicAccount

balance, maxWithdrawal

TeenagerAccount

bAccountList

BasicAccountHolder

tAccountList

TeenagerClient

balance, overdraft, maxWithdrawal,bAccountList, tAccountList

ba
la

nc
e(

b)

ov
er

dr
af

t(
o)

m
ax

W
ith

dr
aw

al
(m

w
)

bA
cc

ou
nt

L
is

t(
bA

lis
t)

tA
cc

ou
nt

L
is

t(
tA

lis
t)

x

x

x

x

P
=

 a
ttr

ib
ut

es
E = entities

Level 0

Level 1

Level 2

Level 3

BasicAccountHolder(BAH)

TeenagerClient(TC)

TeenagerAccount(TA)

BasicAccount(BA) x

x

Fig. 2. A context K(left) and the lattice (right) describing bank accounts.

obtain a sort of normal form for class models. In this normal form, redundancy is
eliminated (total factorization is achieved) and the specialization order between
classes exactly matches the inclusion order between property set of the classes.
Besides that, maximal factorization is obtained with minimal number of classes.

However, even in this very simple example, relevant abstractions remain
undiscovered by this naive process. Let's see carefully at the two attributes
bAccountList and tAccountList. Their types, respectively BasicAccount and
TeenagerAccount, are evidently generalizable by a class such as BankAccount
factorizing balance. Thus, the idea is to continue the process and decide that
bAccountList and tAccountList share a common abstraction, namely list of
accounts. To discover that abstraction, we need to go further into the representa-
tion of the UML class diagram, giving the status of entities to UML properties.
As a result, UML classes and UML properties are described by characteristics
including property ownership and classes used as types for properties. In the
following section we explain how an extension to the theory of Formal Concept
Analysis, named Relational Concept Analysis (RCA), allows such information
to be treated.

2.2 Class hierarchy refactoring using FCA in a MDE context
Figure 3 shows an overview of our approach consisting of 3 model transforma-
tions2.
1. The �rst transformation, UML2Contexts, turns the original UML 2.0 class

diagram into a set of binary contexts and binary relations. It is a trans-
formation from a UML 2.0 metamodel [7] to a relational context family
metamodel.

2 All over this paper, we use an object terminology to refer to model conformance,
for example we talk about models that are instances of meta-models. It can be
seen as a terminological misuse, but since we are working with an object-oriented
language (Kermeta [5]) to de�ne the metamodels and the model transformations,
this terminology is the most adequate one to our work.

4

Fig. 3. Overview of our approach

2. The second transformation, InitialContexts2FinalLattices, aims at obtaining
a set of concept lattices of the �nal class diagram from the initial set of
contexts. It is a transformation from a relational context family metamodel
to a concept lattice family metamodel.

3. The third transformation, Lattices2UML consists in translating the obtained
concept lattices into a UML 2.0 class diagram using traceability information
from the previous transformations.

Using a model-driven approach based on Formal Concept Analysis in order to
refactor models is very fruitful. First, it allows to de�ne a simple sequence of
model transformations (in particular for the second transformation) without
using a complex algorithm. Second, the proposed approach can be applied to
classify any kind of concepts as soon as they are de�ned by a metamodel. Indeed,
the core of the approach is the second transformation, and adapting the approach
to another metamodel only requires to develop new transformations to replace
the �rst (UML2Contexts) and the third (Lattices2UML) ones. As we have said
in Section 1, every step of the approach is automated and every transformation
is implemented in Kermeta [5].

3 From UML to formal contexts

In this section, we detail the transformation from a UML model to formal con-
texts handled by Relational Concept Analysis.

3.1 Metamodels involved in the transformation

In our approach we use the small metamodel deduced from the UML 2.0 meta-
model (shown in Figure 4) to express class models. Working with such a reduced
metamodel is not restrictive, since applying work on model typing and model

5

type substitutability presented in [8], we can use a model conform to the whole
UML 2.0 metamodel as an entry model of our transformation. In the rest of
the paper, we will refer indi�erently to the UML 2.0 metamodel or its reduced
form. We focus only on classes, attributes and associations in the framework
of our example: attribute name, class Class, class Property, role type which
associates their type to properties and role ownedAttribute which associates
their attributes to classes. As a simpli�cation, we have restricted the end of role
type to be Class rather than Type, a superclass of Class. ownedAttribute
is in fact a derived role in the original UML 2.0 metamodel and we consider
only �attened models (without inheritance relationships, just for simpli�cation
reasons). ClassHierarchy is used as an entry point in the models, while the
derived role superclass and the role redefinedProperty are used only in the
third transformation.

Fig. 4. Adaptation of a restriction of the UML metamodel

Relational Concept Analysis [6] considers a family of contexts rather than a
single one, allowing to separate entities into several categories. In our example,
there are two categories: Class and Property (see the example of RCF in Fig-
ure 6). The contexts of a family include relations that link entities of one kind
to entities of another kind. Those relations come from the associations in the
underlying metamodel (here the UML 2.0 metamodel, see Fig. 4). In our exam-
ple, we deal with two relations: ownedAttribute and type. This set of contexts
together with the relations is called a Relational Context Family (RCF). The
associated metamodel is given in Figure 5. More formally, a relational context
family F is a pair (K,R) where:

� K is a set of contexts Kt = (Et, Pt, It) linking entities to attributes (Entity-
AttributeContext in Fig. 5). In our example K = {KClass,KProperty}.

� R is a set of contexts Rs expressing relations between entities coming from
di�erent contexts of K. Rs is such that ∃ Kt1, Kt2 ∈ K, Rs ⊆ Et1 × Et2. Rs

is represented by InterEntityContext in Fig. 5. In the following, those con-
texts will be denoted as relations. In our example,R = {RownedAttribute, Rtype}
where RownedAttribute ⊆ EClass×EProperty and Rtype ⊆ EProperty ×EClass.

6

Fig. 5. The Relational Context Family (RCF) metamodel

3.2 The transformation from UML to a family of contexts
We here explain how a UML model is automatically transformed into a relational
context family. To illustrate this transformation, the result of its application on
the UML class diagram of Figure 1(a) is shown in Figure 6. The Relational Con-

KClass na
m
e=

�B
as
ic
A
cc
ou

nt
�

na
m
e=

�T
ee
na

ge
rA

cc
ou

nt
�

na
m
e=

"B
as
ic
A
cc
ou

nt
H
ol
de
r"

na
m
e=

"T
ee
na

ge
rC

lie
nt
"

BA X

TA X

BAH X

TC X

KProperty na
m
e=

�b
al
an

ce
�

na
m
e=

�o
ve
rd
ra
ft
�

na
m
e=

�m
ax

W
it
hd

ra
w
al
"

na
m
e=

"b
A
cc
ou

nt
L
is
t�

na
m
e=

"t
A
cc
ou

nt
L
is
t�

bba X

bta X

o X

mw X

bAlist X

tAList X

Rtype BA TA BAH TC

bba

bta

o

mw

bAlist X

tAlist X

RownedAttribute bba bta o mw bAlist tAlist

BA X X

TA X X

BAH X

TC X

Fig. 6. The Relational Context Family obtained from the UML model of Figure 1(a)

text Family is automatically deduced from the UML 2.0 metamodel as follows
(we discuss only our restricted case but the principle is the same on the whole
UML 2.0 metamodel).

� Selected metaclasses of the source metamodel (here: UML) give rise to
contexts: in our example, K is composed of the two contexts, KClass and
KProperty (as shown in Figure 6). Pairs composed of selected meta-attributes
of these classes and their values on the studied model are transformed into
the formal attributes in the target contexts. In our example, pairs are formed
with the meta-attribute name.

7

� Relations of R come from selected roles in the associations of the source
metamodel. In our example, we obtain the two relations Rtype and RownedAttribute

shown in Figure 6. Values for all the relations are deduced from a view of
the studied model as an instantiation of the UML metamodel (see the object
diagram of Figure 8).

Fig. 7. Transformation from UML to context

Those two transformation rules are illustrated in Figure 7.

ownedAttribute

name="overdraft"

o:Property

name="balance"

bba:Property

name="balance"

bta:PropertyownedAttribute

name="bAccountList"

bAList:Property
ownedAttribute

name="tAccountList"

tAList:Property

name="BasicAccountHolder"

BAH:Class

name="TeenagerClient"

TC:Class

type

name="TeenagerAccount"

TA:Class

ownedAttribute ownedAttribute

name="maxWithdrawal"

mw:Property
ownedAttribute

name="BasicAccount"

BA:Class
type

Fig. 8. Our class model of Fig. 1(a) as an instantiation of the simpli�ed UML meta-
model

Part of the relevance of this transformation relies on the possibility to �ne-
tune it. Choosing UML metamodel classes, attributes and associations to be
encoded in the RCF is a delicate task. Some model elements provide quite tech-
nical information, such as multiplicity or visibility, while others expose the se-
mantics of the domain such as names in general. For example, we do not want to
generalize two classes or two associations because they are both abstract. As a
result, we do not take into account the meta-attribute isAbstract of the UML
metaclass Classifier during the generalization process.

4 Class hierarchy refactoring: Iterative Transformation
In this section, we describe the core transformation of our approach, named
InitialContext2FinalLattices, that aims at generating the lattice models from
the initial Relational Context Family (RCF). The metamodel for the lattices is
given in Figure 9.

8

Fig. 9. The metamodel for lattices

A family of lattices is composed of
concept lattices. The concepts of a
lattice are ordered by the special-
ization relation represented by the
association children/parents. A
concept is composed of an extent
and an intent that are two sets of
elements.

This transformation (summarized in the bottom of Figure 3, and applied on
our example in Figure 10) consists in iterating on the multiple application of two
smaller transformations, context2lattice and lattice2context. Indeed, processing
a RCF involves alternative construction of lattices (one per context) and enrich-
ment of the relations R of the RCF by knowledge coming from lattices. The
process stops when a �x point on lattice construction is reached, namely when
no new abstraction emerges.

More precisely, we de�ne a step of the transformation InitialContext2Final-
Lattices as a multiple application (one application per context) of the transfor-
mation context2lattice (part A of the step) followed by a multiple application
(one application per target relation) of the transformation lattice2context (part
B of the step). In the bottom of Fig. 3 and in Figure 10, a step corresponds
to a round-trip (A followed by B). The initial RCF is named RCF 1 and owns
contexts and relations also numbered 1. RCF 1 generates in step 1 (A) lattices
numbered 1 with concepts numbered 1, then those lattices generate in step 1 (B)
a new RCF numbered RCF 2 and so on. This iteration stops when no concept is
found during a step.

Part A of step i. The multiple application of the sub-transformation con-
text2lattice builds one lattice for each entity-attribute context of RCF i. The
source model of context2lattice is a context extended by all the relations with the
same entity set. More formally, the source model is a context Kp = (Ep, Pp, Ip)
extended by all relations Ri ∈ RCF i such that Ri ⊆ Ep × Y (Y is either an
entity set Eq at step 1, or the concept set of a lattice at step i, i > 1). The
rule of this transformation is illustrated in Figure 11. For example, the Kclass

context is extended by the relation Ri
OwnedAttribute, while the KProperty con-

text is extended by the relation Ri
type. The transformation consists in building

a lattice following classical Formal Concept Analysis. At this step i, the target
model (i.e. the lattice model) obtained from the extended context Kp is denoted
Li

p = (Xi
p,≤Li

p
) where Xi

p is the set of concepts and ≤Li
p
is the specialization

order.
Part B of step i. The multiple application of the sub-transformations lat-

tice2context builds a set of relations (initial contexts � in our example KClass

and KProperty � are not modi�ed during this transformation). During a lat-

9

Fig. 10. Iterative transformation applied to the accounts example

tice2context execution, a relation Ri+1 ⊆ Ep × Xi
q is generated. The principle

is to replace labels of columns in initial relations by concepts. The rules of this
transformation are shown in Figure 12. Let us consider the relation R1

j ⊆ Ep×Eq.
During part B of step i, R1

j is replaced by Ri+1
j ⊆ Ep ×Xi

q, with (e, Cf) ∈ Ri+1
j

if (e, f) ∈ R1
j and f ∈ Extent(Cf). For example, during part B of step 1,

the labels of the columns of R1
ownedAttribute are replaced by the concepts of

the lattice L1
Property (see Figure 10). We have (BA,C1

bbabta) ∈ R2
ownedAttribute

since (BA, bba) ∈ R1
ownedAttribute and bba ∈ Extent(C1

bbabta). An interpreta-
tion is that C1

bbabta is a generalization of bba, more precisely an abstraction of
properties named "balance". Moreover, class BA owns bba, then BA owns bba
generalizations, including C1

bbabta. At the end of this transformation, each lattice
is associated with a context (via traceability links) and by construction to a

10

Fig. 11. Transformation rule for context2lattice

Fig. 12. Transformation rules for lattice2context

class of the UML metamodel; in our example, lattices LClass and LProperty are
associated with metaclasses Class and Property.

5 E�ective refactoring : coming back to the UML

Our last transformation, FinalLattices2UML, parses lattices and generates UML
elements. This transformation was implemented using the Kermeta language
[5]. The transformation from a set of lattices to a UML class model is speci�ed
by three types of rules: non-relational, relational, and specialization. Figure 13
shows the rules used for the treatment of our example. At the LHS of the arrows
are the patterns of the lattices and at the RHS, two views on generated UML
static models are given: the model as an instance of the UML metamodel and
the equivalent model in the concrete UML syntax.

The non-relational rules are the following:

� Concepts of the lattice associated with metaclass M give rise to UML in-
stances of M; for example, concepts of lattice LClass are interpreted as classes
while concepts of lattice LProperty are interpreted as properties (more par-
ticularly attributes in the restricted metamodel we use). In rules R1 and R2
of Figure 13, concept Ci of the lattice LClass is transformed into a UML
class; while concept Cj of the lattice LProperty is transformed into a UML
attribute.

� Non-relational descriptors in the intension of a concept correspond to at-
tributes of metaclasses; for example name in the case of both classes and
properties. In Figure 13, the names of the class generated from the concept
Ci and of the attribute generated from the concept Cj come from values of
descriptor name in concept intensions.

The generic relational rule is as follows. When a concept Cv is the value of a
relation R in the intension of a concept C (i.e. when (C, Cv) ∈ R), then a link is

11

jj
ii

jj
L

Property

L
Class

L
Property

L
Property

L
Class

L
Class

L
Class

Ci
name=ii

........

name="ii"
 : Class

ii

kk

name="ii"
 : Class

name="kk"
 : Class

superclass

name=kk

........
Ck

name=ii

........
Ci

L
Property

jj

redefinedProperty

name=ll

........
Cl

name=jj

........
Cj

name="ii"
 : Property

name="ll"
 : Property

ll {redefined jj}

name="jj"

ownedAttribute

name="jj"name="ii"

 : Property

 : Class : Property

jj : kk

type

name="kk"name="jj"
 : Property : Class

Patterns in lattices
as an instance of the UML meta−model

the model written
in concrete UML syntax
the same model written

name=jjCj

name=ii
oa=Cj

Ci

Cj

name=jj
type=Ck

Cj

Ck

........

........

........

........

........

........

........

ii
R1

R2

R3

R4

R5

R6

Fig. 13. Rules for the transformation from lattices to UML

created between the model element corresponding to C and the model element
corresponding to Cv. The end of this link is named with the appropriate UML
name corresponding to R. As an illustration, in rule R3 of Fig. 13, the intension of
the concept Ci contains ownedAttribute = Cj (oa = Cj for short). This pattern
in the lattice LClass will be transformed into a link labelled ownedAttribute
between the class generated from Ci and the property generated from Cj . With
concrete UML syntax for class models, we obtain that class ii owns property jj.
The principle is the same for rule R4.

Specialization in the class lattice gives rise to generalization/specialization
links in the class diagram (R5 in Figure 13), and specialization in the property
lattice is interpreted as redefined constraints between attributes (R6 in Figure
13).

To illustrate this transformation, the �nal lattices of our example are shown
in Figure 14. As we stop at the �x point, concepts C4

x and C3
x can be considered

as equivalent for any x. The refactored class diagram proposed in Figure 1(b)
is obtained as follows. We �rst examine class lattice. Concept C4

BATA is trans-
formed into class BankAccount, while Concept C4

BAHTC is transformed into class
BankClient (new names are proposed by a designer after refactoring; so far arbi-
trary names are generated by the transformations). Concepts C4

BA, C4
TA, C4

BAH

and C4
TC are respectively transformed into classes BA, TA, BAH and TC. We can

say that initial classes are re-discovered. Now let's consider the property lat-
tice. Concept C4

bbabta is transformed into attribute balance, factorized in class
BankAccount. From concept C4

bAlist−tAlist attribute accountList is generated.

12

name=TA
oA= C3

bbabta,C3
mw

TA

oA= C3
bbabta

BA, TA

C4
BATA

C4
TA

name=TC
oA= C3

bAlist−tAlist

TC

,C3
tAlist

oA= C3
bAlist−tAlist

BAH, TC

name=BAH
oA= C3

bAlist−tAlist

BAH

,C3
bAlist

C4
BAHTC

C4
BAH C4

TC

name=BA
oA= C3

bbabta,C3
o

BA

C4
BA

BA, TA, BAH, TC

name=..., oA=....

C4
mw

C4
tAlist

C4
bAlist−tAlist

C4
bAlist

name=bAlist
type=C3BATA

bAlist
name=tAlist
type= C

TC

,C3
BA

,CBATA
3

TA
3

type=C
bAlist, tAlist

3
BATA

name=..., type=....

bba,bta,o,mw,bAlist,tAlist

name=b
bba,bta

C4
bbabta

C4
o

Final class lattice

mw

name=mw

o
name=o

Final property lattice

Fig. 14. The �nal lattices

Then we recognize initial attributes in the remaining concepts. Specialization
links and redefined constraints stem from lattice partial order.

6 Discussion: Advantages, Limitations, and Related Work

One of the main parameters in this approach is the discovery and choice of ap-
propriate UML elements and description of those elements to build signi�cant
abstractions. Technical description, e.g. visibility for attributes, is rather inade-
quate since it generates generalizations which have no semantics for the design.
Nevertheless this description has to be preserved and even sometimes general-
ized in �nal step. Multiplicities are a good example: they are not interesting in
the main transformation, but they should be re-injected in the last UML model
and even generalized.

One advantage is that the current speci�cation of the approach is easily
transposable to a large set of UML elements (associations, parameters, oper-
ations, etc.). We are currently working on specifying the entire process at a
higher level (M3) in the four-layered metamodeling hierarchy. This would allow
to better demonstrate that �rst and second transformations can be done for any
other modeling language, just by specifying which are entities, attributes and
relations.

Another feature of our approach is that the technique will be useful if the de-
signer can easily �ne-tune the selection of those entities, attributes and relations,
beyond traceability issues. The designer should be given the possibility to choose
the subset of UML elements he considers as relevant for a RCA application.

13

A last problem is determining a reasonable bound on the iteration number,
since at each iteration, abstractions are further and further from the model
elements which have triggered the generalization. Too abstract elements can be
less useful.

When specifying the metamodels and implementing the transformations, the
choice of the Kermeta language appeared as a good choice. Indeed, its com-
patibility with MOF made it possible to use a single language for the whole
implementation and its imperative syntax made the transformation implemen-
tation easy enough, whereas expressing them with a declarative syntax would
have been very di�cult. FCA has been used in various software engineering
tasks, as shown in surveys like [9,10]. Conceptual model construction has been
studied with the support of FCA, as database schema construction [11,12], class
hierarchy construction or restructuring using class features [2,3,13,14,15,16] or
based on feature usage [4]. Nevertheless, FCA usage has not yet been studied
in the context of Model Driven Engineering, even if several contributions were
proposed concerning model refactoring. A survey of software refactoring can be
found in [17], and a section is dedicated to model refactoring. The majority of the
contributions on refactoring addresses the code level, but the recent interest for
model-driven approaches led to several works on model refactoring, in particular
UML refactoring [18]. Most of the research focuses on small and atomic model
transformations (adding a class, adding an association), except the community
working on design pattern application by model refactoring (for example [19]).

7 Conclusion

This paper presents an approach to automatically detect and build relevant ab-
stractions in a UML class model. This method is founded on Relational Concept
Analysis, an extension of Formal Concept Analysis. It proceeds by successive
applications of model transformations, based on di�erent metamodels (UML
2.0, context, and lattice metamodels) and implemented with the model-oriented
language Kermeta. The application of our approach results in introducing ab-
stractions for classes (with specialization links), attributes, methods and so on,
in a class model. In fact, any kind of model element can be abstracted, but only
a few of them lead to relevant abstractions. Future work will consist in propos-
ing to the �nal users the way to parameterize the application by the metamodel
elements. We are also working on de�ning our model transformations totally
independently from the UML 2.0 metamodel, to be able to apply it on any en-
try metamodel. Finally, we are starting a collaboration with natural language
experts to improve the refactored class diagram with relevant names for the
abstractions, and to resolve problems due to synonymy, homonymy and hyper-
onymy.
Acknowledgements: Gabriela Arévalo gratefully acknowledges the �nancial support
of the Swiss National Foundation for the Project: �Advanced Object-Oriented Reverse
Engineering using Formal Concept Analysis� SNF Project No. PBBE2-111194. We also
acknowledge the useful comments from the anonymous reviewers of this paper.

14

References
1. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.

Springer, Berlin (1999)
2. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using

Galois lattices. In: Proc. of OOPSLA'93, Washington (DC), USA. (1993) 394�410
3. Dicky, H., Dony, C., Huchard, M., Libourel, T.: On Automatic Class Insertion

with Overloading. In: Special issue of Sigplan Notice, Proc. of OOPSLA'96. (1996)
251�267

4. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM
Transactions on Programming Languages and Systems 22(3) (2000) 540�582

5. Triskell project (IRISA): The Metamodeling Language Kermeta.
http://www.kermeta.org (2006)

6. Dao, M., Huchard, M., Hacène, M.R., Roume, C., Valtchev, P.: Improving Gen-
eralization Level in UML Models: Iterative Cross Generalization in Practice. In:
ICCS'04. Volume 3127 of Lecture Notes in Computer Science., Springer (2004)
346�360

7. OMG: UML version 2.0. http://www.omg.org/technology/documents/formal/-
uml.htm (2006)

8. Steel, J., Jézéquel, J.M.: Model typing for improving reuse in model-driven engi-
neering. In: Proceedings of MODELS/UML'2005. (2005) 84�96

9. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis
support for software engineering activities. In: Proc. of the First International
Conference on Formal Concept Analysis - ICFCA'03, Springer-Verlag (2003) 250�
271

10. Arévalo, G.: High-Level Views in Object-Oriented Systems using Formal Concept
Analysis. PhD thesis, Software Composition Group, University of Bern (2004)

11. Yahia, A., Lakhal, L., Cicchetti, R., Bordat, J.: iO2 - An Algorithmic Method
for Building Inheritance Graphs in Object Database Design. In: Proc. of the 15th
International Conf. on Conceptual Modeling ER'96. Volume 1157. (1996) 422�437

12. Andonno�, E., Sallaberry, C., Zur�uh, G.: Interactive design of object oriented
databases. In: Proc. of CAISE'92. Volume 593 of LNCS., Springer-Verlag (1992)
128�146

13. Cook, W.: Interfaces and Speci�cations for the Smalltalk-80 Collection Classes. In
Paepcke, A., ed.: Proceedings of the 10th OOPSLA, ACM Press (1992) 1�15

14. Moore, I.: Automatic Inheritance Hierarchy Restructuring and Method Refactor-
ing. In: Proceedings of OOPSLA'96, San Jose (CA), USA. (1996) 235�250

15. Chen, J.B., Lee, S.C.: Generation and reorganization of subtype hierarchies. Jour-
nal of Object Oriented Programming 8(8) (1996) 26�35

16. Si-Said Cher�, S., Lammari, N.: Towards and Assisted Reorganization of Is-A
Hierarchies. In: Proc. of Object-Oriented Information Systems, Springer-Verlag
(2002) 536�548

17. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30(2) (2004) 126�139

18. Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.M.: Refactoring UML models. In:
Proc. Uni�ed Modeling Language Conf. (2001) 134�148

19. Tokuda, L., Batory, D.: Automated software evolution via design pattern trans-
formations. In: Proc. of the Int'l Symp. on Applied Corporate Computing. (1995)

15

