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Abstract

In recent years, the use of public cloud platforms as
infrastructure has been gaining popularity in many
scientific areas and High Performance Computing
(HPC) is no exception. These kinds of platforms
can be used by system administrators as Test-Bed
systems for evaluating and detecting performance
inefficiencies in the I/O subsystem, and for taking
decisions about the configuration parameters that
have influence on the performance of an applica-
tion, without compromising the performance of
the production HPC system. In this paper, we
propose a methodology to evaluate parallel appli-
cations by using virtual clusters as a test system.
Our experimental validation indicates that virtual
clusters are a quick and easy solution for system
administrators, for analyzing the impact of the
I/O system on the I/O kernels of the parallel ap-
plications and for taking performance decisions in
a controlled environment.

Keywords: Cloud Computing, Parallel File Sys-
tem, PVFS2, MPI applications,

1 Introduction

Due to the complex interaction between the paral-
lel I/O subsystem and the parallel message-passing
applications, the I/O subsystem can turn into a
bottleneck in parallel systems, bringing about per-
formance inefficiencies in the parallel applications.

In order to use the system in an efficient way,
improving the performance, users and system ad-
ministrators have focused their efforts on tuning
the I/O subsystem with parallel applications.

Unfortunately, the high number of configuration
parameters, together with the fact that the right
combination of parameters is highly dependent
on the scientific application, results in making
it a complex task to modify any configuration
parameter in computation centers, where the HPC
system is in production 24/7.

Cloud computing is gaining popularity in many
areas, including HPC. Unlike on traditional HPC
platforms, on a virtual cluster, users are their own
administrators, making it easy to change the I/O
parameters, such as the choice of the number of
I/O nodes or the stripe size, in order to fit the I/O
requirements of the MPI application. Moreover,
as a main advantage, the changes carried out in
the I/O subsystem do not have any influence on
the production HPC system.

In this paper, we discuss how a virtual HPC sys-
tem, deployed in cloud platform, can be employed
as a Test-Bed system to detect performance inef-
ficiencies and to tune the MPI application with
the I/O subsystem, so as to achieve high perfor-
mance. In this way, system administrators can
replicate its HPC platform as virtual clusters, in
order to evaluate and take decisions about the
configuration parameters that have an influence
on the performance of an application, without
compromising overall system performance.

To guide users in this evaluation, we propose a
methodology that strives on using a bounded time
to evaluate the I/O subsystem. To achieve this
requirement, we have focused both on a reduced
analysis time and a bounded time to deploy the
virtual cluster. To achieve a reduced analysis time,
the I/O patterns are analyzed to extract an I/O
kernel of a parallel application, using a physical
HPC system. Once this kernel is obtained, it is
replicated in the virtual system using the IOR
benchmark or a synthetic program, to evaluate
the I/O execution time and the bandwidth of
the application as performance indexes. In this
way, users can evaluate the performance of the
application in the I/O subsystem in a quick and
efficient way, in order to tune the configuration
I/O system parameters.

On the other hand, to deploy the I/O virtual
subsystem, we have developed a plugin for the
StarCluster tool [1], which allows us to deploy the
PVFS2 [2] file system quickly and automatically.
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This paper is organized as follows. Section 2
presents the related work. Section 3 introduces our
proposed methodology. In Section 4 we present
the experimental evaluation, and in Section 5 the
experimental validation. Finally, in the Section 6,
we discuss the conclusions and future work.

2 Related work

Although traditionally the research efforts in vir-
tual HPC systems have been focused on evaluat-
ing computation and communication, in recent
years, there has been increase of work focused
on assessing the parallel I/O subsystems in cloud
environments.

Liu et al. [3] demonstrate that the unique con-
figurability advantage offered by public clouds
may bring opportunities for HPC applications to
achieve significant performance or cost improve-
ment. In particular, they illustrate the impact of
virtual cluster configurability by assessing the im-
pact of I/O system customization on the Amazon
EC2 system. There are other works which have
been focused on optimizing cloud platform con-
figurations on the Amazon EC2 system. Gideon
et al. [4] study the impact of different data shar-
ing options for scientific workflows on Amazon
EC2. Exposito et al. [5] evaluate the I/O storage
subsystem on the Amazon EC2 CC platform to
determine its suitability for scientific applications
with high I/O performance requirements . Vec-
chiola et al. [6] execute a fMRI brain imaging
workflow on Amazon EC2 using the Amazon Sim-
ple Storage Service (S3) for storage, and analyzed
the cost varying the number of nodes.

Moreover, there are some tools which are fo-
cused on configurating the I/O subsystem in vir-
tual clusters. Zhai et al. [7] propose ACIC (Au-
tomatic Cloud I/O Configurator), one of the first
tools to optimize the I/O system for parallel appli-
cations in the cloud. Given a parallel application
to run on a given cloud platform, ACIC automat-
ically searches for optimized I/O system configu-
rations from many candidate settings. Herodotou
et al. [8] propose Elastisizer, which can select the
proper cluster size and instance types for MapRe-
duce workloads running in the cloud.

Our proposal differs from these approaches, be-
cause our objective is to use the virtual cluster as
a Test-Bed platform, to take decisions about the
production HPC system.

3 Proposed Methodology

We propose a methodology that is composed of
a set of steps that allow us to extract the I/O
behavior of the parallel application and define
its I/O kernel, define different configurations of

the I/O system and evaluate them in a Cloud
environment.

3.1 Application Selection
Recent advances in different scientific and engi-
neering areas are generating large amounts of data
that need to be stored and analyzed efficiently.
These huge volumes of data must be processed
in a satisfactory time to enable decision-making
and new discoveries. So we have a group of ap-
plications with different types of requirements.
Applications where the main requirement is not
the need for processing, but managing the huge
amounts of data within a reasonable time. Stor-
ing, transfering and processing large volumes of
data become determining factors for systems that
handle these types of applications, and a challenge
for high performance computing.

Reconciling these needs with requests from tra-
ditional applications is a major challenge for ad-
ministrators of multi-user clusters. In this type of
environment it is necessary to consider the sources
of I/O contention when the cluster administrator
defines the job scheduling policy: CPU, Memory,
Storage I/O, Network I/O, System bus I/O and
Blade chassis I/O.

It is necessary to examine whether the appli-
cation triggers waiting times of I/O. When this
occurs, the make-span times tend to increase (mea-
sured time from sending the first work to cluster
until the end of last work released). The cluster
administrator needs to assess where the bottle-
neck is, if memory makes swap, if the I/O system
collapses or both of these things.

3.2 Analyzing the I/O properties
HPC applications perform I/O operations by us-
ing two common I/O strategies: serial and parallel.
The second I/O strategy should be used to take
advantage of the performance capacity of the mod-
ern HPC-I/O systems. Parallel I/O can be done
by using specialized I/O libraries or statements
provided by the different programming languages.
Understanding the behavior of the operation into
file is crucial for detecting I/O bottlenecks and for
proposing I/O tuning techniques.

In this section, we present the main I/O charac-
teristics of parallel applications that are portable
to different I/O systems. These are selected to
help the user to evaluate and understand the I/O
behavior.

Two main properties impact on the I/O perfor-
mance: the I/O concurrence degree and the data
amount transferred into the file system. To rep-
resent these two issues, we extract the following
information:

• At parallel application level
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– The number of files
– The number of MPI processes
– Storage capacity required
– Data to be transferred

• At file level

– Access Mode: for p MPI processes a file
can be accessed using a strided, sequen-
tial or random pattern.

– Access Type: Unique (a file per MPI
process) or Shared (a shared File for all
or a set of MPI processes).

– Data access type: File can be write only
(W ), read only(R) or write-read (W/R).

– Number of I/O processes
– The count of concurrent accesses into

the file system: the temporal pattern is
extracted considering the time stamp of
opens and data access operations within
the different files.

– Data access operation properties: re-
quest size and the frequency of the I/O
operations.

HPC tracing and profiling tools can be applied
to extract the I/O properties. However, unlike
the compute performance analysis, the I/O perfor-
mance at file level is not a typical characteristic
provided by the performance analysis tool. Due
to this, we select the Darshan [9] tool to extract
the I/O profiling and apply our experience on the
performance analysis to define the portable I/O
characteristics that represent the behavior of the
parallel application.

3.3 Replicating the I/O properties

Once the application I/O behavior has been ob-
tained, it is replicated by using a synthetic pro-
gram or a benchmark with flexibility to reproduce
the I/O kernel of the parallel applications.

An I/O benchmark that allows us to set up
different I/O properties is IOR [10],which is de-
veloped to be used in tests on parallel file systems
in high-performance cluster.

IOR can be used on any platform that provides
an MPI implementation. It also offers the ability
to test aggregate I/O rates through several typical
middle-ware libraries, including MPI-IO, HDF5,
NetCDF and POSIX libraries.

Input parameters allow us to vary the overall
size of the I/O operation, the individual size of
each transfer, the mode of access to the file and
if the data is accessed sequentially or randomly.
These inputs can be used to reproduce I/O pat-
terns of HPC applications.

Figure 1: HPC I/O System

3.4 Deploying the Test Environment
on Cloud

On Cloud, a HPC cluster can be created in similar
way to physical cluster because it offers individ-
ual HPC resources. The Cloud platforms provide
different types of instances that include a spe-
cific number of CPU, memory, storage and the
networking performance. Furthermore, a cloud
environment usually provides image with a stack
software to deployed Linux clusters.

An automatic tool to create Linux Clusters is
StarCluster [1], which helps users and system ad-
ministrators to create a virtual cluster using in-
stance of Amazon’s EC2 platform. We select this
tool to create a base HPC cluster.

Usually the HPC-I/O subsystem must be con-
figured by the user in a Cloud environment. The
HPC-I/O system is represented as is shown in
Figure 1. The I/O software stack comprises Sci-
entific Data Library (like HDF5 and NetCDF),
I/O Middle-ware (like MPI-IO) and Parallel File
System (like GPFS, Lustre and PVFS2) [11].

In this point, we create an image on AWS EC2
that implements the I/O software stack and this
is used to deploy a cluster using Starcluster tool.
The user can select the type of instance and select
our image to have a fully functional HPC-I/O
system.

3.5 Configuring a Parallel Filesystem

Parallel applications need a global file system to
share the input and output data. Depending on
the application I/O pattern, the type of file sys-
tem can have a negative impact on the I/O per-
formance. The most common global file systems
in HPC cluster are NFS and parallel file systems
like Lustre, GPFS, PVFS2[12].
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(a) View of all MPI processes.

(b) View for each MPI process

Figure 2: Vampir Trace for ABYSS-P using 4 MPI processes. Test case for two small input files and k=25.
User events in green, MPI events in red, and I/O events in dark green triangles and yellow bars.

Starcluster tool deploys a cluster with NFS,
therefore, in order to use a parallel file system,
this must be installed and configured by the user.

In this case, we have chosen PVFS2, which is an
open source file system developed to support effi-
cient read and write operations of large amounts
of data. PVFS2 is designed as a client-server ar-
chitecture where the server provides the storage
and the client contains the access logic to the dis-
tributed storage. Servers can be classified into
datafile (DF) and metadata servers (MDS). The
former keep parts of logical files while the latter
keep attributes of the logical file system objects
(files and directories in PVFS). Usually every I/O
node is either a DF or an MDS.

In general, parallel file systems have several
parameters that affect the performance. However,
in this work we focus on number of DFs, the stripe
size and the placement of the DFs and MDS into
the architecture of the HPC cluster. The number
of DF defines the file stripping and stripe size is
the number of bytes written on one DF before
cycling to the next DF.

3.6 Analyzing Results
Parallel application performance can be affected
for several issues like memory, compute, communi-
cation or I/O into files. The user normally focuses
on obtaining the results in the least possible time.
However, the administrator expects to have high
throughput at the HPC system level.

In this work, we focus our analysis on the I/O
into files to identify and extract the I/O patterns
of parallel applications that are portable to other

HPC-IO systems. The metrics considered to ana-
lyze the results are data transfer rate, I/O time
and I/O operations per second. A parallel appli-
cation I/O kernel is replicated through the I/O
patterns identified and IOR benchmark on differ-
ent I/O subsystems.

4 Experimental Evaluation

In this section, we present the evaluation of the
parallel application ABySS (Assembly By Short
Sequences) [13], which reports slow running on the
CACAU [14] cluster of the NBCGIB (Núcleo de
Biologia Computacional e Gestão de Informações
Biotecnológicas, Brazil). The user provides us
with the input data and specific parameters to
evaluate ABYSS. We perform an I/O pattern anal-
ysis in LRZ’s HPC systems [15] and define a set
of different configurations of the I/O system to be
implemented in a Cloud environment.

4.1 ABySS Application Description

ABySS is a parallelized sequence assembler. It
is specialized in assembling large genomes from
short sequences, using a pair-end (forward and
reverse) method. ABYSS is an example of a de
novo assembling algorithm, where the construc-
tion of a genome occurs in its pure form, without
consulting previously resolved references genomes.

The traditional short read de novo assemblers
are single-threaded applications designed to run
on a single processor. However, these assemblers
cannot process the total number of base pairs
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sequenced by massively parallel sequencing plat-
forms, such as the Illumina, Inc. Genome Analyzer
or Applied Biosystems SOLiD System, due to the
computation time and memory constraint limits.

One advantage of the ABySS compared with
other short read de novo assemblers is that it al-
lows a distribution of the assembly algorithm in
a parallel way (master/worker architecture). It is
possible because it uses a distributed representa-
tion of a de Bruijn graph [16]. This kind of graph
is a simple way to represent DNA sequences where
every read corresponds to a vertex, and two ver-
tices are connected by an edge if the corresponding
reads overlap. The main feature of a de Bruijn
graph is to allow the representation of sequence
regions that repeat as a unique edge. Thus, the
problem of fragment assembly is reduced to find a
path visiting every edge of the graph exactly once.

The ABySS algorithm proceeds in two phases.
The first phase loads short read sequences, break-
ing each into k-mers of length k. Then, it finds
adjacent (overlapping) k-mers and it removes k-
mers resulting from read errors. In the second
phase, mate-pair information is used to remove
variant sequences (bubbles) and to generate con-
tiguous sequences (contigs).

However, there are reports that indicate prob-
lems in ABySS algorithm scalability. The costly
communication and load-balancing inefficiencies
emerge from larger scale. It is because the algo-
rithm executes master-worker model with asyn-
chronous message/work complexes queues, and
uses MPI P2P and collective communication that
varies by execution stage. Furthermore, there
are extreme run-to-run execution time variations
(which is likely to be mostly due to file I/O).

4.2 Analyzing the ABySS I/O proper-
ties

Considering the ABYSS-P description a first anal-
ysis is performed to identify the I/O phases. We
select VampirTrace to start with a small test and
Darshan for larger number of MPI processes and
I/O workload. VampirTrace tool allows us to
observe the full behavior of the application and
Darshan tool extracts the I/O patterns.

We start the analysis of ABySS-P for a small
test by using 4 MPI processes, to assemble
paired reads in two files named reads1.fastq
and reads2.fastq into contigs in a file named
test-bubbles.fa; and k=25.

The test case is shown in Figure 2. This small
case allows us to identify two I/O phases at the be-
ginning of the running and at the ending. Figure
2(a) shows the timeline for the 4 MPI processes.
In Figure 2(b) a trace view for each process is de-
picted, where row 1 corresponds to user functions
and row 2 represents the I/O events (yellow bars)

Figure 3: Access mode for ABYSS-P using 4 MPI
processes. Sequential: An I/O operation issued
at an offset greater than where the previous I/O
operation ended. Consecutive: An I/O operation
issued at the offset immediately following the end
of the previous I/O operation.

and MPI events (red bars), green triangles rep-
resent the file open and close, and the red/green
triangles represent multiple I/O event at the same
time interval. In the first I/O phase, the pro-
cesses with rank 0 and 1 perform I/O activities;
and in the second phase (at running end) all MPI
processes write to output files.

To obtain detailed information about the I/O
pattern in each phase we analyze ABySS using
Darshan tool. A total of eleven files are used
by ABYSS-P that corresponds to 2 files per each
MPI process, two read files and 1 output file. I/O
patterns are represented by the sequential access
mode (see Figure 3) with mainly consecutive ac-
cesses for read operations, small request size (see
Figure 4(b)), read and seeks operations (see Fig-
ure 4(a)) that correspond to operations into the
input files. The I/O is serial by using the C I/O
library.

Figure 4(c) depicts the temporal pattern for
ABYSS-P where we can observe that only two
first processes perform read operations into
reads1.fastq and reads2.fastq files. Write op-
erations take a short time, so for this reason we
cannot observe them in the timeline.

Once the pattern for this case has been analysed,
we need to define the general phases and the I/O
pattern that will be applied to evaluate ABYSS-P
for real input files and number of MPI processes.
To do this, we select the Darshan tool due to its
light overhead and small trace file size compared
to other tracing tools.

ABYSS-P uses a total of np ∗ 2 write files, two
input files and 1 output file, where np is the num-
ber of MPI processes for the parallel execution.
Input files are read in a first phase where only the
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(a) Operation counts (b) Request Size

(c) Temporal Pattern ABYSS-P using 4 MPI processes. The y-Axis represents the MPI ranks and the x-Axis the time in
hours:minute:seconds. A total of 11 files was open but only the read files are shown because are representing the I/O with
more impact on the performance.

Figure 4: ABYSS-P’s I/O characteristics reported by Darshan tool for 4 MPI processes and test input
files.

Table 1: Read Phase for ABYSS-P by using np MPI processes for two real input files. Two files of 17
GiB are read by two I/O processes (I/O proc) that corresponds to rank 0 and rank 1. Request size (rs)
and access mode are independent of the input files.

np rs(B) I/O proc File per #iop Data x I/O proc Phase Data
I/O proc

24 8191 2 1 2135744 x 2 17 GiB 33 GiB
32 8191 2 1 2135744 x 2 17 GiB 33 GiB
64 8191 2 1 2135744 x 2 17 GiB 33 GiB
128 8191 2 1 2135744 x 2 17 GiB 33 GiB
512 8191 2 1 2135744 x 2 17 GiB 33 GiB
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rank 0 and 1 read a file each one independently of
number of MPI processes. The Read phase moves
more than 90% of the data and I/O operations
of ABYSS-P. Table 1 shows detailed information
by using different number of MPI processes only
focus on read phase.

4.3 Replicating the ABYSS-P’s I/O
properties

We design a set of experiments to replicate the
ABYSS-P’s I/O properties by using the IOR
benchmark (IOR 2.10.3) and only focus on the
read phase showed in Table 1.

IOR benchmark is configured as follow:

mpirun -np NP ./IOR -r -N 1 -a POSIX
-b 17496014848 -t 8192 -k

Where:

• NP represents the number of MPI processes
to evaluate.

• -r selects only read test because we are only
analyzing the ABYSS-P’s read phase.

• -N sets up the number of I/O processes, in
this case 1.

• -a sets up the I/O library.

• -b defines the contiguous data in bytes to
read for each I/O process that corresponds
to the total size of an input file of ABYSS-P.

• -t defines the request size in bytes that in
this case is 8192 because IOR does not allows
the value 8191.

• -k indicates that the read file has not be
removed when the test finishes.

To replicate the I/O concurrency into two in-
put files, two concurrent executions of IOR with
the previous configuration are run on different
configurations of the I/O system.

4.4 Deploying a virtual cluster

In order to deploy the virtual cluster we use the
StarCluster tool. As currently StarCluster does
not deploy a HPC cluster with a parallel filesystem,
a plugin has been developed to be integrated with
the StarCluster tool, which allows us to deploy
the PVFS2 file system automatically.

This plugin has been integrated using the stan-
dard plugin method provided by StarCluster. To
configure the PVFS2 file system, the plugin pro-
vides a configuration file, as is shown in Figure 5.
In this configuration file, users can choose between
two installation ways: regular and expert mode.

StarCluster 
PVFS2 
Plugin 

Pabplug	
config	

Virtual	HPC	Cluster	
with	PVFS2	

Figure 5: Integrating the pvfs2 plugin with Star-
Cluster

Table 2: Description of the CACAU cluster
Components CACAU

CACAU0 CACAU1
Compute Nodes 20 3
Processor 2 2
(per node) Intel Xeon Intel Xeon

E5430 E5-2400
(2.66GHz) (2.40 GHz)

CPU cores 8 12
(per node)
GPU cores - 2498
(per node)
RAM Memory 16 GB 48 GB
(per node)
Local FileSystem ext4 ext4
Capacity of Local
Storage (per node)

160 GB 500 GB

Device Type of Lo-
cal Storage

HDD HDD

MPI Library OpenMPI 1.10.2
Operating System RedHat Linux Server 6.3
Global FileSystem NFS v4
Capacity of Global
FileSystem

2 TB

Storage Total 8 TB
Storage Network 4 Gbps Ethernet

Using the regular mode, users only have the
possibility to specify the I/O nodes and the meta-
node, the rest of pvfs2 parameters are set up by
default. On the other hand, using the expert mode,
users have full control of the plugin. In this way,
users can specify all configuration parameters of
PVFS2 explained in [17]. Moreover, users can
specify the placement of the MDS and DFs into
HPC cluster architecture. In this case we define
two placements for the DFs: 1) a DF defined
on each compute node of the cluster or, 2) DFs
defined on independent nodes, which means that
these will only be I/O nodes.

4.5 Configuring the different I/O sub-
systems on Cloud

A set of experiments is designed by using the IOR
configuration defined in Section 4.3, and these ex-
periments are executed in the following scenarios:

• NFS: i) Mapping an I/O process in differ-
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Table 3: Characteristics of the Amazon’s Instances Selected
Instances Processor vCPUs RAM Storage Network $xHora

(GiB) (GB)
t2.medium Intel Xeon (Turbo up

to 3.3GHz)
2 4 only EBS Low to Moderate 0.052

c3.2xlarge Intel Xeon E5-2680 v2
(Ivy Bridge)

8 15 2x80 (SSD) High 0.42

ent compute nodes and ii) Mapping two I/O
processes on the same compute node.

• PVFS2: i) Mapping an I/O process in differ-
ent compute nodes and ii) Mapping two I/O
processes on the same compute node. Each
one on different data layout:

– Each input file placed in 1 different DF.
– Each input file stripped into different

numbers of DFs.

The I/O processes mapping is considered be-
cause each process reads a 17 GB file, which has
an impact on the memory utilization and it can
impact on the application performance, especially
for compute nodes with less than 33 GB of RAM.

To select the instance type for the testing, we
try to use an instance with similar characteristics
to the compute nodes of the CACAU cluster. The
CACAU features are shown in Table 2, which
is composed of two segments. We focus on the
CACAU0 segment.

We create clusters with six nodes: 1 master
and five compute nodes. The AWS EC2 instance
similar to the CACAU0 segment is the c3.2xlarge
(see Table 3). We also select the t2.medium (see
Table 3) to check it is possible to demonstrate the
hypothesis working with instances that have lower
features. Two Virtual Clusters are configured with
these two types of instances that are described in
Table 4.

For each VCC we use 6 instances to evaluate
NFS and PVFS2 file systems. For PVFS2 we use
a maximum of 3 DFs be able to evaluate the two
DFs placement on the HPC-VCC’s architecture.

4.6 Analyzing the I/O behavior on dif-
ferent scenarios

We evaluate the I/O kernel of the ABYSS-P in
the scenarios defined in section 4.5 and we obtain
different performance metrics on PVFS2 and NFS.
In this case, we present the result of data transfer
rate and I/O operations per second (IOPs). Figure
6(a) shows results by using instance t2.medium.
The x-axis represents the different configurations
for the file system, PVFS2 by using different num-
ber of DFs and NFS. The mapping an I/O process
in different compute nodes is represented by the

label 1PxCN, and 2PxCN for the mapping the
two I/O processes on the same compute node.

Figure 6(b) presents results for the c3.2xlarge
instance. In this case, the configuration PVFS-
1DFx1F means that each input file is striped to 1
DF but different DF for each one.

The results show that NFS reports more data
transfer rate than PVFS. This result is the same
for the different instances and it can be observed
that the bandwidth does not improve using more
DFs.

On the NFS file system, the mapping is im-
pacting on data transfer rate and this is more
significant for VCC with compute nodes with 4
GiB RAM. On PVFS2, we can observe an im-
provement for 1PxCN. The data layout 1DFx1F
reports more performance than other PVFS2 I/O
configurations.

Discussion ABYSS-P is a parallel application
that is reading from two files by using an I/O
process for each file. This behavior is the same in-
dependently of the number of MPI processes. This
I/O pattern cannot take advantage of the perfor-
mance capacity provided by a parallel filesystem
like PVFS2. The results in Figure 6 show this
problem. Although we increase the number of
DFs, the I/O performance presents similar values.

Furthermore, the small request size impacts on
the performance of PVFS2 when only one process
is carrying out I/O. We can observe that NFS can
provide an acceptable I/O performance. However,
we must to take care in this point because the
NFS filesystem for this kind of application should
be different to the NFS for home user accounts.

Moreover, we have not evaluated the impact
that the stripe size and the number of MDS can
have. Other parallel file systems like Lustre or
GPFS show more bandwidth for this kind of I/O
pattern. However, in this work, we select PVFS2
for the simple installation and free distribution.

During the process of the I/O pattern extraction
needed to define the I/O kernel of ABYSS-P, we
have observed that the I/O pattern is a problem
for the scalability. Due to the fact only two pro-
cesses are reading the input files and sending read
data to the rest of the processes, this is clearly
an inefficient I/O pattern and an obstacle for the
ABYSS-P scalability.
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Table 4: Descriptive Characteristics of the Virtual Clusters on cloud (VCC) configured equal for the
experiments.

I/O components VCC 1 VCC 2 VCC 3 VCC 4
Instance t2.medium t2.medium c3.2xlarge c3.2xlarge
Number of Instances 6 6 6 6
Temporal Storage - - Ephemeral Ephemeral
Persistent Storage EBS EBS EBS EBS
Temporal Device - - SSD SSD
Persistent Device SSD(GP

192/3000)
SSD(GP
300/3000)

SSD(GP
192/3000)

SSD(GP
300/3000)

Capacity of Persistent Storage 100GB 64GB 100GB 64GB
File system Local ext4 ext4 ext4 ext4
File system Global NFS PVFS2

(2.8.8)
NFS PVFS2

(2.8.8)
Parallel Storage Capacity - 500GB - 400GB
Number of data servers - 5 - 5
Number of Metadata Server - 1 - 1
Stripe Size - 64KB - 64KB
MPI library mpich-3.2 mpich-3.2 mpich-3.2 mpich-3.2

(a) Instance t2.medium

(b) Instance c3.2xlarge

Figure 6: Data transfer rate and IOPs for IOR configured to ABYSS-P’s I/O Kernel.
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Table 5: Description of the CAPITA cluster
Components CAPITA

CAP0 CAP1
Compute Nodes 13 13
CPU cores
(per node) 4 4
RAM Memory 16GB 16GB
Capacity of
Local Storage
(per node) 46GB 46GB
Device Type of
Local Storage SSD SSD
Local Filesystem Linux ext3 Linux ext3
Global Filesys-
tem

NFS PVFS2
(2.8.7)

Capacity of
Global FileSys-
tem

46GB 175GB

MPI-Library mpich2
(1.5)

mpich2
(1.5)

Number of data
servers

- 4

Number of Meta-
data Server

- 1

Stripe Size - 64K
Network 1 Gbps

Ethernet
1 Gbps
Ethernet

5 Experimental Validation

In this section, we validate the results obtained
in a Cloud environment by replicating the experi-
ments defined in Section 4.5, in the physical cluster
CAPITA. This is described in Table 5, the NFS
and PVFS2 file spaces are configured using SSD
devices. The NFS file space is a special partition
only used for intensive I/O that is different to
the NFS used as HOME file space. Due to phys-
ical nodes being more comparable to instances
C3.2xlarge, we focus on the validation comparing
the CAPITA results with VCCs experiments that
use instances C3.2xlarge.

In previous IOR experiments on a Cloud envi-
ronment (see Section 4.6), we have shown that the
PVFS2 provides less I/O performance than NFS.
These results are also observed in the CAPITA
cluster. Experimental results are shown in Figure
7, where the same behavior for the ABYSS’s I/O
kernel both in VCCs (see Figure 6(b)) as in the
CAPITA cluster can be observed. Therefore, we
can say that the Cloud environment can be used
as Test-Bed infrastructure as long as the virtual
cluster is designed considering the main compo-
nents of the physical cluster and the requirements
of the application’s I/O kernel.

Figure 7: Data transfer rate and IOPs for IOR
configured to ABYSS-P’s I/O Kernel. Results
obtained in CAPITA cluster.

6 Conclusion

In this paper, we have analyzed the real parallel
application ABYSS-P on different configurations
of the I/O subsystem without changing the I/O
system of CACAU physical cluster.

In Cloud environments the time consumed by
the instances is fundamental because we pay for
the time, for this reason we only evaluate the
ABYSS-P’s I/O kernel. This is obtained in a
physical cluster and it can be executed on different
HPC systems.

Our work shows that the Cloud allows different
I/O configurations to be deployed automatically
and their influence on the I/O performance of the
parallel application to be evaluated quickly.

From this evaluation we can suggest the user
tries to modify the I/O pattern because it will not
be able to take advantage of a parallel file system.

On other hand, the administrator must try to
allocate the application on compute nodes with
more memory, especially for the I/O processes
that usually need more memory for the input files.

Experimental results showed that the parallel
file system selected using different configurations
has less performance than NFS. The mapping
an I/O process per compute node on a NFS file
system was the most suitable configuration for
this kind of pattern.
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