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Asymmetric single-ISA multicore processors (AMPs), which integrate high-performance big cores and
low-power small cores, were shown to deliver higher performance per watt than symmetric multi-
cores. Previous work has highlighted that this potential of AMP systems can be realizable by schedul-
ing the various applications in a workload on the most appropriate core type. A number of scheduling
schemes have been proposed to accomplish different goals, such as system throughput optimization,
enforcing fairness or reducing energy consumption. While the interrelationship between throughput
and fairness on AMPs has been comprehensively studied, the impact that optimizing energy efficiency
has on the other two aspects is still unclear. To fill this gap, we carry out a comprehensive analytical
and experimental study that illustrates the interplay between throughput, fairness and energy effi-
ciency on AMPs. Our analytical study allowed us to define the energy-efficiency factor (EEF) met-
ric, which aids the OS scheduler in identifying which applications are more suitable for running
on the various cores to ensure a good balance between performance and energy consumption. We
propose two energy-aware OS-level schedulers that leverage the EEF metric; the first one strives
to optimize the energy-delay product and the second scheduler can be configured to optimize dif-
ferent metrics on the AMP. To demonstrate the effectiveness of these proposals, we performed an
extensive evaluation and comparison with state-of-the-art schemes by using real asymmetric hard-

ware and scheduler implementations in the Linux kernel.
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1. INTRODUCTION

Previous research has highlighted that asymmetric single-ISA
(instruction set architecture) multicore processors (AMPs),
which couple same-ISA complex high-performance big cores
with power-efficient small cores on the same chip, have been
shown to significantly improve upon the energy and power
efficiency of their symmetric counterparts [1]. The ARM big.
LITTLE processor [2] and the Intel QuickIA prototype [3]
demonstrate that AMP designs have drawn the attention of
major hardware players.
Despite their benefits, AMPs pose significant challenges to

the OS scheduler [4]. One of the main challenges is how to
effectively distribute big-core cycles among the various appli-
cations running on the system. Most existing scheduling
schemes have focused on maximizing the system throughput

for multi-application workloads [1, 5–8]. To this end, the
scheduler needs to map to big cores those applications that use
these cores efficiently, since they derive performance improve-
ments (speedup) relative to running on small cores [1]. Further
throughput gains can be achieved by using big cores to acceler-
ate sequential phases of parallel programs [6, 9, 10].
Notably, asymmetry-aware schedulers that maximize

throughput alone are known to be inherently unfair [11].
Unfairness typically gives rise to undesirable effects on the sys-
tem [12, 13]. For example, an application may experience very
different completion times from run to run, depending on the
co-running applications [14]. Moreover, equal-priority applica-
tions may not experience the same performance penalty (slow-
down) when running together relative to their performance
when running alone on the AMP. This makes priority-based
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scheduling policies ineffective, reduces performance predictabil-
ity and can lead to wrong billings in commercial cloud-like
computing services, where users are charged for CPU hours.
These QoS-related issues can be addressed on AMPs via
fairness-aware scheduling algorithms [11, 14–16].
Previous research has also highlighted that maximizing

system throughput on AMPs does not always result in a good
performance-energy consumption trade-off [17]. Specifically,
using big cores to run applications in the workload that derive
the highest big-to-small relative speedup does not always con-
stitute the most energy-efficient schedule. In the quest of high-
er energy efficiency on AMPs, several scheduling schemes
have been recently proposed [17, 18].
While previous work has shown that the goals of system

throughput optimization and fairness optimization on AMPs are
largely conflicting scheduling objectives [11, 14], no one has
yet analyzed the interrelationship between energy efficiency,
throughput and fairness. In this paper, we carry out a compre-
hensive analytical and experimental study that illustrates how
optimizing one of these aspects alone affects the other two.
Specifically, our paper makes the following main contributions:

• We derived an analytical model to approximate the
system throughput, degree of fairness and energy effi-
ciency that a given scheduler delivers for multi-
program workloads on AMPs. By using a simulator
that relies on this model, we find the schedule that opti-
mizes each metric for different synthetic workloads.
Our study reveals that optimizing the energy-delay
product (EDP)—a proxy for assessing the degree of
energy efficiency—may come at the expense of serious
fairness and throughput degradation. This theoretical
study also allowed us to define the energy-efficiency
factor (EEF) metric, a key heuristic enabling the sched-
uler to substantially reduce the EDP for multi-program
workloads on an asymmetric multicore system.

• We propose two novel asymmetry-aware OS-level
scheduling algorithms that leverage the EEF metric. The
first scheduler, referred to as EEF-Driven, approximates
the theoretical scheduler that delivers the maximum
throughput attainable for the optimal (minimal) EDP
value. The second scheduler, named ACFS-E, is a vari-
ant of the fairness-aware ACFS scheduler [14]. ACFS-E
is equipped with configurable parameters enabling the
system administrator to gradually trade fairness for
energy efficiency or throughput. Moreover, to the best
of our knowledge, ACFS-E constitutes the first
asymmetry-aware scheduling scheme that can be config-
ured to optimize fairness, energy efficiency or through-
put, by employing a single yet flexible algorithm.

• We implemented the EEF-Driven and ACFS-E schedu-
lers in the Linux kernel. Specifically, the implementation
of these algorithms relies on the ability of the OS to
determine the EEF of a thread at runtime. To determine

this factor online on existing asymmetric hardware, we
built performance-counter-based prediction models by
leveraging a variant of the methodology proposed in a
previous work [19], which was originally devised to aid
in predicting a thread’s cross-core relative performance.
In relying on prediction models, the implementation of
EEF-Driven and ACFS-E does not require changes in
the applications or special hardware extensions.

• To assess the effectiveness of the proposed OS-level
scheduling schemes, we employed a commercial asym-
metric multicore platform that features an ARM big.
LITTLE processor [20]. On this platform, we performed
an extensive experimental comparison with state-of-the-
art asymmetry-aware schemes [5, 6, 14, 17]. Notably,
some of these previously proposed schemes were evalu-
ated before on emulated asymmetric hardware [5, 6] or
simulators [17]. Instead, we implemented these schemes
in the Linux kernel and performed an extensive evalu-
ation on real asymmetric hardware. Our experimental
analysis (Section 5) corroborate the conclusions drawn
from our theoretical study (Section 2). Moreover, the
results reveal that EEF-Driven improves throughput (by
up to 20%) and reduces the EDP (by up to 15%) com-
pared to a state-of-the-art energy-aware scheme [17].
Furthermore, our study demonstrates that ACFS-E
makes a versatile scheduling scheme, as it enables the
administrator to (i) optimize different metrics in the
AMP with a single algorithm, and (ii) to trade fairness
for energy efficiency or throughput in scenarios where
fairness constraints are relaxed.

The rest of the article is organized as follows. Section 2 pre-
sents the theoretical model proposed in this work and show-
cases the results of our analytical study. Section 3 describes
related work. Section 4 outlines the design of the EEF-Driven
and ACFS-E schedulers. Section 5 presents the results of our
experimental evaluation, and Section 6 concludes.

2. ANALYTICAL STUDY: SYSTEM THROUGHPUT,
FAIRNESS AND ENERGY EFFICIENCY ON
AMPS

In this section, we begin by introducing the metrics used to
quantify throughput, energy efficiency and fairness on AMPs.
Then, we present the synthetic scenario considered for our
study, the theoretical model derived and the scheduling algo-
rithms considered. Finally, we proceed to discuss the results
of our theoretical study.

2.1. Metrics

Previous research on fairness for CMPs [12, 13, 21] and
AMPs [11, 16] define a scheme as fair if equal-priority appli-
cations in a multi-program workload suffer the same
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slowdown due to sharing the system. To cope with this notion
of fairness, we employed the (lower-is-better) unfairness met-
ric [13], which is defined as follows:
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where n is the number of applications in the workload, and
CT islow, is the completion time of application i when it runs
alone on the AMP and uses small cores only. The ASP metric
(higher-is-better) captures the overall efficiency that a workload
derives from the various cores under a particular scheduler.
To assess the energy efficiency of a workload under a particu-

lar scheduler, we use the (lower-is-better) EDP [22–24] metric:
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where T is the workload’s completion time. Equation (3) was
extracted from [24].

2.2. Synthetic scenario

To illustrate the interrelationship between the aforementioned
three metrics, we carry out a theoretical study on the effect-
iveness of different scheduling algorithms when running sev-
eral synthetic multi-program workloads on an AMP system
consisting of two big cores and two small cores. All work-
loads comprise four compute-intensive single-threaded appli-
cations each. In this hypothetical scenario, we assume that
applications exhibit constant big-to-small performance ratios
and uniform energy-per-instruction (EPI) ratios on each core
type throughout the execution. For single-threaded applica-
tions, the big-to-small speedup matches the speedup factor
(SF) of its single runnable thread, defined as

IPS

IPS
big

small
, where

IPSbig and IPSsmall are the thread’s instructions per second
(IPS) ratios achieved on big and small cores, respectively.
In building the synthetic workloads, we analyzed the

behavior of various benchmarks from SPEC CPU running on

the ARM Juno Development board [20]. This system features
a 64 bit ARM big.LITTLE processor consisting of Cortex
A53 small cores and Cortex A57 big cores (More information
on this platform can be found in Section 5). We used the per-
formance counters and energy registers integrated in the
ARM Juno board to obtain the IPC and EPI values for differ-
ent program phases on the various core types for the bench-
marks. For each benchmark, we picked a program phase
exhibiting stable IPC and EPI ratios on both core types for
several contiguous samples.1 Each synthetic application used
in our study represents one of these stable program phases.
Table 1 shows the properties of the various synthetic appli-

cations considered. For each application, the associated SPEC
CPU benchmark, the SF, as well as the IPC and the EPI
values (specified in nanojoules/instr.) for both core types are
displayed. In measuring EPI values, we factored in both the
energy consumption of the corresponding CPU core cluster
(big or little) and the net DRAM energy consumption while
the benchmark runs alone on the system. Note that OS sched-
uling decisions (e.g. thread-to-core mappings) can largely
affect the energy consumption of CPU cores and DRAM
when running workloads consisting of CPU-intensive and
memory-intensive applications, such as those considered in
our analysis. As such, in this work we opted to factor in the
energy consumption of both platform components.

2.3. Theoretical model

In an earlier work [11], we proposed a set of analytically
derived formulas to approximate the ASP and unfairness of a
workload under a particular scheduler in the synthetic scen-
ario described in the previous section. These formulas make
it possible for us to find the schedule (i.e. big-core cycle dis-
tribution across applications) that optimizes throughput, fair-
ness or guarantees a specific trade-off between both metrics
[11]. Our main goal is to augment that theoretical model with
a mechanism to approximate the EDP metric in the synthetic
scenario considered. This is crucial to find the schedule that
optimizes the EDP for diverse workloads.
Before proceeding with the derivation of the formulas

enabling to approximate the EDP, we present the basics of
the theoretical model proposed in [11], which consists of the
following equations:
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1We sampled performance counters and energy registers every 500 million
instructions. For this task, we turned to the Event-Based Sampling feature of
the PMCTrack tool [25].
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where Fi denotes the big-core time fraction allotted by a given
scheduler to application i throughout the execution, fi repre-
sents the fraction of instructions over the total that application
i completes on a big core under the scheduler in question, and
SFi is the application’s SF. Despite the fact that Fi and fi are
related (as shown in Equation (6)), obtaining Fi for an appli-
cation under a particular scheduler is more straightforward
than obtaining f ;i we elaborate on this aspect in Section 2.4.
Hence, Equation (6) is provided for the sake of convenience.
Overall, Equations (1) and (4)–(6) make it possible to
approximate the ASP and unfairness of a workload under a
particular scheduler.
To make the derivation of the aforementioned formulas

tractable, some simplifying assumptions were made in [11].
First, the number of applications (n) does not exceed the total
number of cores in the AMP: + ³N N nBC SC , where NBC

and NSC, denote the number of big and small cores in the
AMP, respectively. Second, all applications in the workload
run continuously on the system for a certain amount of time
T. The analytical unfairness and throughput (ASP) values
approximate the actual values corresponding to that time
interval. Third, the scheduler is work conserving and keeps

big cores busy to improve throughput. Therefore, an applica-
tion’s small-core fraction is - F1 i , and we have that
£ £F0 1i and å == F Nj

n
j1 BC . Fourth, the model does not

factor in overheads due to shared-resource contention or
thread migrations. Note that we do account for these over-
heads in our experimental evaluation (Section 5).
We now proceed to derive a set of analytical formulas

making it possible to approximate the EDP for synthetic
workload scenarios. Let EC isched, and EPI isched, be the energy
consumption and EPI ratio, respectively, for application i
when running for T seconds under a particular scheduler. Let
IPS isched, be the number of IPS achieved by application i.
Suppose further that NIi denotes the total number of instruc-
tions that application i completes in T seconds under the
scheduler in question. Hence, we can derive the analytical
EDP as follows:
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TABLE 1. Synthetic applications.

Applications Benchmark IPCbig IPCsmall SF ( )EPI nJ instrbig ( )EPI nJ instrsmall

A1 art 0.60 0.24 2.47 1.59 1.86
A2 astar 0.58 0.31 1.86 1.40 1.10
A3 bzip2 1.49 0.73 2.02 0.61 0.45
A4 equake 0.80 0.26 3.07 1.31 1.45
A5 galgel 1.30 0.41 3.16 0.82 0.91
A6 gamess 2.01 0.69 2.91 0.51 0.49
A7 gobmk 1.09 0.61 1.79 0.75 0.54
A8 gzip 1.07 0.63 1.70 0.78 0.56
A9 h264ref 1.83 0.93 1.96 0.51 0.37
A10 hmmer 2.80 1.04 2.69 0.42 0.36
A11 mcf 0.18 0.09 2.02 3.98 4.44
A12 mgrid 1.28 0.59 2.17 0.85 0.65
A13 perlbench 1.42 0.71 2.01 0.60 0.47
A14 perlbmk 1.77 0.78 2.27 0.54 0.41
A15 povray 1.15 0.53 2.19 0.85 0.66
A16 soplex 0.52 0.20 2.53 1.68 1.86
A17 swim 0.25 0.11 2.24 3.11 3.34
A18 vortex 1.73 0.72 2.41 0.56 0.45
A19 wupwise 1.63 0.64 2.56 0.66 0.54
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In turn, IPS isched, [11] and EPI isched, can be defined in terms
of fi as well as the various application properties shown in
Table 1, as follows:
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Note that EPI ibig, and EPI ismall, represent the EPI rates for
application i when it runs on a big and on a small core,
respectively.

2.4. Scheduling algorithms

For our analytical study, we consider four asymmetry-aware
schedulers. The first one, denoted as High-SPeedup (HSP) [1,
5, 6, 8], optimizes throughput by using big cores to run the
NBC single-threaded applications in the workload that experi-
ence the greatest big-to-small speedup. For these applications

=F 1i ; the remaining threads are mapped to small cores (i.e.
=F 0i ). The second scheduler, referred to as Opt-Unf, consti-

tutes a theoretical schedule that ensures the maximum ASP
(throughput) value attainable for the optimal unfairness. (As
shown in [19], the ACFS scheduler makes it possible to
approximate the behavior of Opt-Unf.) The third scheduler
considered, denoted as Opt-EDP, is also a theoretical scheme;
it ensures the maximum ASP value attainable for the optimal
EDP. Finally, the fourth scheduling algorithm is referred to as
EEF-Driven, one of the schedulers proposed in this work.
Essentially, EEF-Driven maps to big cores the NBC applica-
tions that yield the highest EEF; the remaining applications
are mapped to small cores. An application’s EEF is defined
as follows: SF

EPIbig
, where EPIbig is given in nanojoules/instr.

Notably, we arrived at this factor by analyzing the thread-to-
core mappings performed by the Opt-EDP scheduler.
Specifically, EEF-Driven strives to approximate the behavior
of this theoretical schedule, by using the EEF of the various
applications, which can be estimated at run time on commer-
cial AMPs (as shown in Section 4.2).
While determining the big-core cycle distribution among

applications (Fi) for the HSP and EEF-Driven is straightfor-
ward in this synthetic scenario—as the application properties
shown in Table 1 are known—obtaining this information
under the theoretical approaches (Opt-Unf and Opt-EDP)
requires an extensive exploration of the search space. To
determine the big-core cycle distribution among applications
in this context, we created a simulator that makes use of
Equations (1) and (4)–(9), and finds the optimal solution in
each case via a branch-and-bound algorithm. For example,
for the Opt-Unf scheduler, the search algorithm operates as
follows. Given a workload, defined by the set of applications’
SFs, the algorithm computes the (Unfairness, ASP) pair for

each possible distribution of big-core cycles among the appli-
cations. Because exploring the whole continuous search space
is unfeasible, candidate solutions are created varying Fi from
0 to 1 in steps of 0.01, such that å =F Ni BC. In addition, sim-
ple heuristics are used to prune unpromising solutions. A
similar approach is used to find the optimal schedule for Opt-
EDP. In that case, however, the IPS, EPI and SF for each
application in the workload are factored in, to be able to
determine the EDP associated with the various solutions
explored. Note also that in determining optimal schedules, we
assume that the frequency of each core cluster (big or small)
remains at the default setting throughout the execution. While
lowering the processor frequency may help reducing energy
consumption on AMPs [26], it may also degrade application
performance as well, which has a negative impact in through-
put and fairness. Analyzing the effects of OS-level asym-
metry-aware scheduling coupled with DVFS policies is out of
the scope of this paper, but constitutes an interesting avenue
for future work.

2.5. Discussion

To evaluate the effectiveness of the aforementioned algo-
rithms regarding throughput, fairness and energy efficiency,
we built different workloads consisting of combinations of
the synthetic applications from Table 1. In creating the work-
loads, we filtered out those application mixes where the HSP
and the Opt-EDP schedulers perform the same big-core cycle
distribution, as these workloads yield the same ASP, unfair-
ness and EDP values. Table 2 shows a representative subset
of the workloads we explored. The results associated with
these workloads are displayed in Fig. 1a and b; the first figure
shows an ASP-versus-EDP graph, whereas the second one
displays unfairness versus EDP.
The results reveal that the three metrics cannot be opti-

mized simultaneously. Clearly, HSP achieves the best
throughput figures across the board, while achieving EDP
values considerably higher (worse) than the optimal (up to a

TABLE 2. Workloads.

Workload Applications

W1 A5, A4, A6, A10
W2 A16, A17, A13, A9
W3 A16, A1, A18, A14
W4 A5, A4, A10, A15
W5 A5, A4, A6, A12
W6 A1, A12, A3, A13
W7 A1, A17, A7, A8
W8 A15, A11, A13, A2
W9 A4, A11, A3, A8
W10 A10, A19, A16, A9
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22% increase). Conversely, Opt-EDP yields the minimum
EDP value for all workloads, but this comes at the expense of
crude throughput degradation in some cases (up to 44% for
W9). Note also that Opt-EDP and HSP are inherently unfair;
both schedulers reap throughput benefits and energy savings
at the cost of significant fairness degradation (values consid-
erably higher than 1). As for EEF-Driven, we observed that it
enforces the same big-core cycle distribution than Opt-EDP
in most cases, which leads to identical EDP, throughput and
fairness results. More importantly, in those workload scen-
arios where EEF-Driven and Opt-EDP perform a different
big-core cycle distribution, such as W10 and W9, EEF-
Driven yields a very small increase in EDP (up to 4%) while
improving throughput significantly. Hence, the theoretical
results suggest that EFF-Driven constitutes a good approxi-
mation of Opt-EDP.
The workloads explored thus far consist of synthetic appli-

cations that represent program phases of SPEC CPU bench-
marks running on a 64 bit big.LITTLE processor. To verify
that the conclusions drawn so far are also valid on a different
AMP platform, we also experimented with the Odroid XU4
board [27]. This system features a 32 bit big.LITTLE proces-
sor that integrates a mix of Cortex A7 small cores, and
Cortex A15 big cores. On such a system, the SF and EPI
ranges for SPEC CPU benchmarks are very different to those
observed on the big.LITTLE processor of the Juno board.
This stems from the fact that cores of the same category (i.e.
big or small) on these platforms differ in microarchitectural

features, processor frequency and power consumption [20,
27]. Specifically, we observed that the power consumption of
a big core on the 32 bit processor (Odroid XU4) is roughly
four times the power consumption of a big core on the 64 bit
processor (Juno). Under these circumstances, to cover a wide
spectrum of performance and energy consumption profiles for
the Odroid board, we had to select a specific set of represen-
tative program phases. To that end, we ran different SPEC
CPU benchmarks alone on big and small cores, and identified
program phases with a stable value of IPS and EPI. Note that,
unlike the Juno board, the Odroid XU4 does not feature built-
in energy registers. To measure energy consumption on this
system, we turned to an external power monitor (the Odroid
Smart Power), from which we obtain data via the PMCTrack
monitoring tool [25].
By using the phase-level information gathered for various

SPEC CPU benchmarks on the Odroid XU4 board, we
defined a set of synthetic applications, whose properties are
shown in Table 3. We then built different 4-application mixes
using these synthetic applications, by following the same pro-
cedure used for the Juno board. Table 4 shows a representa-
tive subset of the workloads we explored for a hypothetical
AMP system consisting of two big cores and two small cores.
The results associated with these workloads are displayed in
Fig. 2a and b. These results exhibit similar trends as those
observed for the synthetic workloads on the 64 bit big.
LITTLE processor. Again, the HSP scheduler is capable of
delivering the best throughput values at the expense of
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FIGURE 1. ASP, EDP and unfairness values for workloads from Table 2 under the various schedulers. In the left figure, the closer to the top
left corner, the better the result. In the figure on the right, better results are concentrated towards the bottom left corner. Note that we used
T=10 s to obtain EDP estimations with the simulator. Nevertheless, the trends remain the same regardless of the value of T. (a) EDP vs. ASP,
(b) EDP vs. Unfairness.
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substantial EDP degradation (up to 65%). We also observe
that the EDP degradation with respect to Opt-EDP is higher
on this system, due to the wider range of EPI ratios observed
on this platform. The results reveal that in this scenario EEF-
Driven and Opt-EDP perform the same big-core cycle distri-
bution for all the workloads, so EEF-Driven always achieves
the maximum ASP value for the optimal EDP. More import-
antly, among every possible 4-program combination of the
synthetic applications in Table 3, we did not found any work-
load where EEF-Driven and Opt-EDP perform differently in
this scenario.
To sum up, our theoretical results highlight that fairness,

throughput and energy efficiency clearly constitute conflicting
objectives on AMPs, as attempting to optimize one metric
may backfire by degrading the others substantially. In particu-
lar, delivering acceptable fairness (unfairness values close to
one) usually comes at the expense of degrading both through-
put and energy efficiency. Finally, the results also demon-
strate that EEF-Driven constitutes a good approximation of
the scheduler that optimizes the EDP.

3. RELATED WORK

A large body of work has advocated the benefits of AMPs
over symmetric CMPs [1, 28, 29]. Despite these benefits,
AMP systems pose significant challenges to the system soft-
ware [4]. OS scheduling is one of the most critical challenges
and this is the focus of our article.
Several scheduling schemes have been proposed to improve

fairness, system throughput and energy efficiency alone on
AMPs. Nevertheless, no previous work has analyzed the inter-
relationship between these three optimization goals. Our work
fills this gap and, at the same time, illustrates the capabilities
of various scheduling algorithms to optimize these potentially
conflicting metrics. Notably, we also propose ACFS-E, a

versatile scheduling scheme that be configured to optimize
any of the aforementioned three metrics with a single algo-
rithm. The design, implementation and evaluation of this OS-
level scheduler constitutes a key contribution of our research.
In the remainder of this section, we first cover scheduling

proposals that seek to optimize throughput and then outline
schemes designed to improve fairness. Finally, we recap pre-
vious work that focuses on reducing energy consumption on
AMPs.

3.1. Throughput optimization and determining the
speedup

To maximize throughput in multi-application scenarios, previ-
ous research has demonstrated that the scheduler must follow
the HSP approach; in other words, it must preferentially use
big cores to run those applications that derive a higher benefit
or speedup from big cores. The main difference between the
available variants of the HSP approach [1, 5–8] lies in the
mechanism employed to obtain threads’ SFs online. Three

TABLE 3. Synthetic applications.

Applications Benchmark IPCbig IPCsmall SF ( )nJ instrEPIbig ( )nJ instrEPIsmall

B1 astar 0.76 0.37 2.05 4.53 1.70
B2 crafty 2.46 1.00 2.47 1.54 0.54
B3 equake 0.54 0.19 2.83 6.32 3.30
B4 gobmk 1.68 0.76 2.21 2.02 0.69
B5 h264ref 3.08 1.04 2.97 1.31 0.57
B6 mcf 0.29 0.08 3.52 10.57 7.94
B7 mgrid 2.53 0.74 3.44 1.86 0.94
B8 perlbench 2.45 1.00 2.45 1.46 0.51
B9 perlbmk 2.80 1.04 2.68 1.36 0.54
B10 povray 2.15 0.74 2.90 1.91 0.62
B11 sixtrack 1.90 0.48 3.92 1.90 1.01
B12 soplex 0.62 0.19 3.29 5.71 3.46
B13 swim 0.75 0.23 3.21 4.89 2.93

TABLE 4. Workloads.

Workload Applications

X1 B6, B12, B5, B2
X2 B12, B3, B9, B8
X3 B11, B6, B5, B3
X4 B11, B6, B5, B1
X5 B10, B3, B9, B8
X6 B7, B13, B5, B9
X7 B11, B6, B7, B5
X8 B11, B6, B5, B10
X9 B11, B3, B9, B4
X10 B6, B7, B5, B4
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techniques have been explored to do so. The first approach
comes down to measuring SFs directly [1, 8], which entails
running each thread on big and small cores to track the IPC
(instructions per cycle) on both core types. Previous work has
demonstrated that this approach, known as IPC sampling, is
subject to inaccuracies associated with program-phase
changes [7, 19]. The second approach relies on estimating a
thread’s SF using its runtime properties collected on any core
type online using performance counters [5, 6, 18]. The third
technique is PIE [30], a hardware-aided mechanism that has
been shown to provide accurate SF estimates. Unfortunately,
PIE poses certain shortcomings that renders it difficult its
integration on real hardware [31].2

Due to the limitations of IPC sampling and PIE, we opted
to use the second approach to determine a thread’s SF online
in the implementation of the scheduling algorithm evaluated
in this work. Note that we also rely on estimation models to
approximate the EEF of a thread. As discussed in Section 4.2,
direct measurement of this factor is not feasible in current
AMP hardware.
Other researchers proposed specific support for multi-

threaded applications running on AMPs [6, 9, 32–34]. Most
of these proposals target HPC applications, and make use of
big cores in the AMP to accelerate serial execution phases
and other scalability bottlenecks in parallel applications by
employing software [6, 9] or hardware-aided approaches

[32, 33]. Other authors have devised mechanisms to pro-
vide better support for irregular non-scalable applications
present in desktop workloads [34]. The OS-level schedu-
lers considered in our work are largely orthogonal to these
approaches.

3.2. Fairness and priority enforcement

The first approach to fairness-aware scheduling on AMPs was
an asymmetry-aware Round-Robin (RR) scheduler that sim-
ply fair-shares big cores among applications by triggering
periodic thread migrations [8]. This algorithm can be easily
implemented in most OSes and does not require hardware
support. A hardware implementation of this scheme has also
been explored [35]. Fair-sharing big cores has proven to pro-
vide more repeatable completion times across runs on AMPs
[15] than default schedulers in general-purpose OSes, which
are largely asymmetry agnostic, and also delivers better per-
formance [7]. For this reason, RR has been widely used as a
baseline for comparison [6, 8, 36].
Despite the fact that RR constitutes a suboptimal fairness

solution [11, 19], we observed that RR does ensure repeatable
completion time across runs for compute-intensive workloads,
like the ones we used in our experiments. This is, however,
not the case under the default scheduler of the Linux main-
stream kernel (CFS), which is asymmetry unaware, and also
not the case under the variant of this scheduler for AMP sys-
tems (provided by the HMP patch [37]). These two schedu-
lers may map the same application to different core types in
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FIGURE 2. ASP, EDP and unfairness values for workloads from Table 4. (a) EDP vs. ASP, (b) EDP vs. Unfairness.

2Despite the practical limitations of PIE, we strongly believe that adding
hardware support for accurate SF estimation is a promising research avenue
that could bring important benefits.
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different runs of the same compute-intensive multi-program
workload. On our experimental platform, these nearly random
thread-to-core mappings lead to an enormous variation in the
completion time of an application (up to a 2.9× increase with
respect to the fastest run), which causes unrepeatable values
for the ASP, the EDP and the unfairness in different runs of
the same workload. Under these circumstances, and to avoid
misleading conclusions from our analysis, we opted not to
discuss the results of these schedulers in our experimental
evaluation (Section 5). Instead, we provide the results of the
RR scheme for comparison purposes.
Li et al. [15] proposed A-DWRR, which aims to deliver

fairness on AMPs by factoring in the computational power of
the various cores when performing per-thread CPU account-
ing. Note that A-DWRR, and other schemes based on it [38],
do not take into account the fact that applications derive dif-
ferent SFs when using big cores (at a fixed processor fre-
quency) on the platform, and that these speedups may vary
over time as an application goes through different program
phases. As shown in [14], this leads A-DWRR to unfairness
and throughput degradation. Other researchers [11] have
attempted to deliver fairness and priority enforcement on
AMPs by assigning big-core share to applications in propor-
tion to the application speedup and its priority. Nevertheless,
this approach is also known to constitute a suboptimal fair-
ness solution as it does not guarantee that equal-priority appli-
cations experience similar slowdowns (fairness) when sharing
the asymmetric multicore system [14].
The ACFS scheduler [14] was designed to optimize fair-

ness on AMPs. To this end, it leverages per-thread SF values
to continuously track the relative progress that each thread in
the workload makes on the AMP, and enforces fairness by
evening out the slowdown observed across applications. A
brief description on how the ACFS algorithm works can be
found in Section 4.3. The experimental analysis presented in
[19] demonstrates that ACFS clearly outperforms previous
fairness-aware schemes [8, 11, 15, 16] for a wide range of
workloads running on real asymmetric hardware. At the same
time, unlike other asymmetry-aware schedulers that also sup-
port priorities [11], ACFS effectively maintains low unfair-
ness in scenarios where applications with different priorities
coexist on the system. Given the effectiveness of ACFS, we
considered this algorithm in our experimental evaluation
(Section 5.2).
More recently, Kim and Huh [39] propose different sched-

uling schemes, which do not try to minimize the unfairness
metric, but instead strive to strictly limit the performance deg-
radation suffered by individual applications in a workload.
Notably, in their analysis, the degradation is measured with
respect to the performance achieved under a scheduler that
fair-shares big cores across applications (i.e. the RR scheme).
This stands in contrast with measuring the performance degrad-
ation relative to running each application alone on the system
(aka. slowdown), as done in previous work [13, 14, 16, 21]

and as we do in this paper. We observed that reporting per-
formance degradation with respect to a specific scheduler
may mask the negative effects of shared-resource contention,
which plays and important role in assessing the effectiveness
of the various schemes (as we discuss in Section 5.2). Hence,
we employ the widely used notion of fairness presented in
Section 2.1, instead of that used in [39].

3.3. Improving energy efficiency

Other researchers have devised ways to reduce energy and
power consumption on AMPs [17, 18, 40, 41]. Mogul et al.
[40] proposed using small cores in asymmetric multicores to
execute system calls. They modified an operating system to
switch the execution to a less powerful core when a thread
invokes a system call. The effectiveness of this scheme relies
on the observation that system calls and OS code in general
use big high-performance cores inefficiently. In a similar
vein, Kumar and Fedorova [41] proposed binding the control
domain dom0 of the Xen hipervisor to slow cores. These
approaches are orthogonal to our proposal.
The closest proposal to our EEF-Driven scheduler is the

PRIM scheme, proposed by Zhang et al. [17]. Specifically,
PRIM is a rule-set-guided scheduling algorithm that strives to
improve energy efficiency on AMPs. At a high level, this
scheme works as follows. Initially, when a thread is created,
it is mapped to a random core type in the system in order to
preserve load balance. Every so often, the scheduler randomly
selects a certain number of thread pairs consisting of a thread
running on a big core (TB) and another thread running on a
small core (TS). For each randomly selected pair, the sched-
uler estimates whether swapping TB with TS would result in
energy savings by means of a set of platform-specific rules.3

If that is the case, the scheduler swaps both threads.
In the original work [17], the PRIM algorithm was simu-

lated. To evaluate this algorithm on real asymmetric multicore
hardware, we created an implementation for it in the Linux
kernel. The evaluation of the PRIM scheme on a real OS and
using actual asymmetric hardware is an important contribu-
tion of our work. In evaluating PRIM, we detected two
important limitations of this scheduling scheme. First, it does
not always minimize EDP, and is subject to throughput deg-
radation, as we demonstrate in Section 5. Second, the inherent
nature of the rules on which PRIM relies leads this scheduler
to suboptimal thread-to-core mappings. Note that PRIM
platform-specific rules do not quantify the actual energy sav-
ings resulting from a thread swap, but instead indicate
whether a specific thread swap would be beneficial or not in
terms of energy consumption. Therefore, the PRIM scheduler
cannot tell whether there is a better candidate thread running

3Evaluating these platform-specific rules at run time requires the OS to
gather threads’ high-level performance metrics (such as the IPC or the LLC
miss rate) by means of hardware counters.
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on a small core TS2 such that swapping TB with TS2 would
result in higher energy savings than those resulting from
swapping TB with TS. This issue, coupled with the fact that
thread pairs are selected randomly by PRIM, often causes this
approach to make suboptimal thread-to-core mappings. The
EEF-Driven scheduler is not subject to these limitations.
It should be noted that our work focuses on general-

purpose systems. Nevertheless, for embedded workloads, fur-
ther optimizations are possible, since threads may exhibit
more predictable execution patterns. In this context, Petrucci
et al. [18] proposed a global optimization scheme that targets
embedded thread sets with periodic characteristics. Their
user-level scheduling proposal is able to determine energy-
efficient thread assignments by leveraging an Integer Linear
Programming model. This scheduler enforces thread-to-core
mappings by imposing thread affinities via system calls. By
contrast, we propose two light-weight OS-level general-
purpose scheduling schemes that do not rely on any assump-
tion about the workload characteristics.
Finally, we should also highlight that none of these works

on energy consumption on AMPs analyzed the interrelation-
ship between energy efficiency, system throughput and fair-
ness, as we do here. Moreover, to carry out our experimental
evaluation, we do not rely on simulation [17] or emulated
asymmetry via frequency scaling [18], but instead we experi-
ment with schedulers in an actual OS running on real asym-
metric hardware.

4. DESIGN

The analytical study presented in Section 2 raises some
important questions:

• How can the EEF-Driven scheduler be implemented
on a real system, and how can it react to program
phase changes at run time?

• How can we determine an application’s EEF online on
commercial off-the-shelf asymmetric multicores?

• Is it possible to create special knobs in the scheduler
to make it possible for the user to trade fairness for
throughput or energy efficiency?

We provide an answer for these questions in the following
three sections, respectively.

4.1. The EEF-Driven scheduler

EEF-Driven assigns threads to big and small cores so as to
preserve load balance in the AMP, and periodically readjusts
thread-to-core mappings in accordance with the EEF of the
various threads.
When a new thread enters the system, EEF-Driven assigns

a default value of the EEF to it, since the actual value is

unknown at that point.4 The initial mapping of newly created
threads is performed such that the load balance across the
cores is preserved. As soon as the thread begins to run, the
scheduler continuously monitors the IPC and other relevant
high-level metrics using hardware performance counters, in
order to estimate the thread’s EEF at run time. The EEF esti-
mation mechanism is described in Section 4.2.
As threads run, two things happen: EEFs for newly arrived

threads become known, and EEFs of old threads may change
(as they go through different program phases). The scheduler
must map threads to cores according to their EEF, and, to that
end, it triggers event-driven migrations. Overall, event-driven
migrations ensure that the system adheres to the following
two rules: (i) all threads on big cores have a higher EEF than
the thread with maximum EEF running on a small core and
(ii) load balance must be preserved. In order to enforce Rule
1, the scheduler must check that the thread with minimum
EEF on big cores (TBC) has a higher EEF than the thread
with highest EEF on slow cores (TSC). This rule may be bro-
ken either when a change in the EEF of a thread takes place
or in the event that a thread transitions between a runnable
and a non-runnable state (e.g. it blocks due to a page fault or
due to synchronization). In the first scenario, the scheduler
enforces the rule by swapping TBC and TSC when needed. In
the second case, migrating one of the aforementioned threads
to a different core type is enough to guarantee that the two
rules of EEF-Driven hold true.
To simplify the enforcement of the two rules, the scheduler

maintains per-core-type lists of runnable threads sorted by
EEF to aid in the selection of the most appropriate thread(s)
to be migrated (or swapped): TBC and TSC. For efficiency rea-
sons, the big core list is kept sorted in an ascending order by
EEF, while a descending order by EEF is preferred for the
small-core thread list. As a result, finding the most appropri-
ate swap candidate has constant complexity.
We found that reacting immediately to sudden changes in

the EEF of a thread (e.g. during abrupt phase changes or
spikes in the EEF) may cause premature and potentially
costly migrations, which may degrade performance. To
address this issue, the scheduler considers raw EEF estima-
tions directly only in the event that a thread has entered a
phase exhibiting stable behavior. For this task, we use a
phase-detection mechanism inspired by that used in some var-
iants of the HSP approach [6]. At a high level, this mechan-
ism works as follows. The scheduler keeps a running average
of the EEF values estimated over time for a thread. When the
running average is updated, it is compared with the previous
value of this average. If the difference between both values
exceeds a given threshold, a phase transition is indicated.

4For this default value, we opted to choose the lowest EEF observed for
SPEC CPU benchmarks on the platform. In doing so, threads with a rela-
tively low estimated EEF and legitimately assigned to big cores are not rele-
gated to small cores when new threads enter the system.
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Two or more sampling intervals containing no indicated
phase transition signal a stable phase. During stable phases
the scheduler uses the last EEF estimate for the thread to
make scheduling decisions. By contrast, when a thread goes
through unstable EEF stages (frequent spikes), the scheduler
uses the running average of the EEF values observed in the
last few intervals. This makes it possible for EEF-Driven to
mitigate the effects of oscillations and, in turn, to effectively
reduce the number of thread migrations.

4.2. Determining the EEF

Some applications in a workload may exhibit a uniform EEF
during the vast majority of its execution, whereas others go
through different EEF phases over time. Figure 3 illustrates
this fact by showing the EEF over time for two applications
with different behavior.
To cater to the time-changing behavior of the applications,

the EEF-Driven scheduler readjusts thread-to-core mappings
dynamically based on the current EEF of the various threads.
To make this possible, the OS scheduler must be equipped
with a mechanism to obtain a thread’s EEF over time.
Designing such a mechanism is a challenging task, in part
due to the fact that direct measurement of the EEF at run time
is not possible. Recall that a thread’s EEF is defined as the

ratio of the thread’s SF to its EPI rate on the big core
(EPIbig). As stated in Section 3.1, measuring the SF directly
is feasible, though not very effective, since it often leads to
inaccurate values [7]. Unfortunately, measuring a thread’s
EPIbig directly when running together with other threads on
the platform is typically not possible on a real system. Most
commercial multicore systems that are equipped with energy
registers or sensors, do not provide per-thread measurements,
but instead system-wide measurements. Specifically, these
registers provide energy (or power consumption) readings for
different core clusters sharing a last-level cache, and for
DRAM [20, 42].5 With this support, the OS cannot isolate the
individual contribution of each application to the aggregate
DRAM or core cluster energy consumption in the context of
a multi-program workload.
To overcome this limitation, the EEF-Driven scheduler

determines a thread’s EEF online by feeding a platform-
specific prediction model with the value of various perform-
ance metrics gathered via hardware counters. Note that
because the value of a performance metric (e.g. the IPC) may
differ across core types, the scheduler actually relies on two
models: one for predicting the EEF from big-core metrics
and another for predicting it from small-core metrics. These
two estimation models (used for all threads) are generated
offline.

4.2.1. Building EEF estimation models
To aid in the construction of the EEF estimation models, we
used a variant of the Phase-SF methodology proposed in [19],
which was originally devised to build SF estimation models.
Overall, the methodology entails performing the following
steps. We first pick a representative set of single-threaded appli-
cations (e.g. a subset of SPEC CPU benchmarks) and a compre-
hensive set of performance metrics that allow characterization
of the microarchitectural and memory behavior of the various
programs. We then run these benchmarks on big and small
cores to monitor the performance metrics via performance mon-
itoring counters (PMCs) using fixed instruction windows.
Because gathering monitoring information from the entire exe-
cution of the benchmarks can be a time-consuming process, we
collected information for a small number of instruction win-
dows only. During the execution on the big core, we also meas-
ure the EPIbig. The gathering of this information entails
sampling PMCs and energy registers in a fully coordinated
fashion. By using the collected data, we identify coarse-grained
program EEF phases by matching the various samples collected
on both core types for contiguous instruction windows of the
same application. (The EEF of a certain application’s instruc-
tion window can be obtained from the IPC values collected on
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FIGURE 3. EEF over time observed for the equake (top) and
astar (bottom) programs when running alone on the ARM Juno
board.

5Most recent Intel (symmetric) multicore processors provide per-core
energy readings, but still the DRAM energy consumption register reports the
aggregate energy consumption.
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both core types plus the EPIbig value observed for that instruc-
tion window.) Finally, we use the per-application EEF-phase
data obtained in the previous step as input to the additive-
regression engine provided by the WEKA machine-learning
tool [43]. By using this engine, we generate two estimation
models, enabling the prediction of the EEF from the big and
from the small core. It should be noted that the additive-
regression engineï»¿ automatically identifies irrelevant perform-
ance metrics (very low regression coefficients). In order to
reduce the number of metrics that the scheduler needs to moni-
tor at run time to obtain predictions, we discarded these irrele-
vant metrics in building the final estimation models.
Figure 4 illustrates the accuracy of the predictions obtained

with the final EEF estimation models for both core types on
the ARM Juno development board used for our experiments.
The correlation coefficients for the estimation on the big and
the small core are 0.97 and 0.95, respectively. In generating
the models, we used performance and energy data from over
500 EEF phases from various benchmarks from the SPEC
CPU suite. (In the experimental evaluation shown in the next
section we used additional applications different from those
used to generate the estimation models.) Specifically, Table 5
enumerates the set of performance metrics and associated
hardware events that the estimation models depend upon.

4.2.2. Obtaining EEF estimates at run time
In order to determine a thread’s EEF at run time, by using the
estimation models presented in the previous section, the OS
must continuously monitor the necessary performance metrics
(Table 5) as a thread runs by means of hardware performance
counters.
We should highlight that accessing performance counters

directly from the core scheduler code would lead the

implementation to be tied to specific processor models. To
prevent this from happening, we have implemented both esti-
mation models by means of a PMCTrack monitoring module
[25]. The monitoring module (deployed in a loadable kernel
module) is responsible for sampling hardware counters, and
feeds the scheduler with per-thread EEF estimates at run
time. In using this approach, the core scheduler implementa-
tion (inside the OS kernel) remains fully architecture inde-
pendent. Extending the EEF-Driven scheduler to work on any
asymmetric platform comes down to implementing the asso-
ciated monitoring module.

4.3. ACFS-E: trading fairness for energy efficiency or
throughput

Most scheduling algorithms that attempt to optimize through-
put or improve energy efficiency—such as HSP [5, 6] or the
EEF-Driven scheme—are subject to an important limitation:
they deliver a fixed trade-off between fairness, throughput
and energy consumption. At the same time, as our study in
Section 2 reveals, these scheduling schemes are inherently
unfair. This stems from the fact that optimizing throughput or
energy consumption typically entails mapping a subset of
threads in the workload to big cores and relegating the
remaining threads to small cores for long periods of time.
This makes it difficult to augment these scheduling schemes
with quality-of-service support (e.g. by enabling the user to
impose application priorities), or to implement scheduler
knobs that allow the system administrator to trade one metric
for another (e.g. fairness for throughput).
The ACFS scheduler [14] overcomes some of these issues.

This scheduler seeks to optimize fairness on AMPs by even-
ing out observed slowdowns across applications in the
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ARM Juno development board. Perfectly accurate estimations have all points on the diagonal line.

12 J.C. SAEZ et al.

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2017



workload. To this end, it factors in threads’ SFs when making
scheduling decisions. ACFS also supports user-defined prior-
ities, and is equipped with a knob, referred to as the unfair-
ness factor, which enables the system administrator to trade
fairness for throughput.
In this work, we extend ACFS with a mechanism that

allows the user to trade fairness for energy efficiency. Prior to
describing this extension, we first outline the basics of the ori-
ginal ACFS scheduler. To keep track of the relative progress
of the various applications on the AMP, ACFS maintains a
progress counter for each thread referred to as amp_vrun-
time. This counter tracks how much progress the thread has
made thus far with respect to the progress that would have
resulted from running it on a big core the whole time. When
a thread runs for a clock tick on a given core type, ACFS
increments the thread’ amp_vruntime by amp vruntimeD _ ,
defined as follows:

amp vruntimeD = ( )
·
·
W

S W
_

100
, 10

t

def

core

where Wt is the thread’s weight, derived directly from the
application priority (set by the user); Wdef is the weight of
applications with the default priority; and Score is the slow-
down factor. Note that when a thread runs on the big core,

=S 1core . When it runs on a small one, =S Score BS, where
SBS represents the application’s current big-to-small speedup,

which is estimated online. To enforce fairness, ACFS aims to
even out the amp_vruntime across threads. To make this
possible, it may need to perform thread swaps (migrations)
between different core types every so often.
In synthetic scenarios like the one considered in Section 2

(multi-application workloads consisting constant-SF applica-
tions) and assuming perfect SF estimations, the base implemen-
tation of ACFS makes the same big-core cycle distribution
across applications as the Opt-Unf theoretical scheduler [19].
Hence, ACFS provides the maximum throughput attainable for
the optimal unfairness. For values of the unfairness factor great-
er than the default setting, higher throughput can be obtained at
the expense of degrading fairness [19].
To enable the system administrator to trade fairness for

energy efficiency (EDP), we augmented ACFS with the
EDP_factor knob. Henceforth, we will refer to this variant
of ACFS as ACFS-E. The proposed mechanism works as fol-
lows. When this knob is set at its default value (1.0), the
scheduler behaves as the base implementation, hence attempt-
ing to achieve the maximum throughput attainable for the
optimal unfairness. For EDP_factor values greater than the
default setting, the scheduler reduces the EDP at the expense
of degrading fairness. Intuitively, making this possible comes
down to gradually increasing the big-core share for those
applications in the workload with a higher EEF while redu-
cing the big-core share of the remaining ones. To this end,
we factor in the EDP_factor when updating a thread’s

TABLE 5. Performance metrics and associated hardware events used to predict the SF and the EEF on the various cores of the ARM Juno
development board.

Hardware events Performance metrics
EEF
(big)

EEF
(small)

SF
(big)

SF
(small)

Instructions retired, processor cycles Instructions per cycle ✓ ✓ ✓ ✓

L2 (LLC) cache misses LLC cache misses per 1 K instr. ✓ ✓ ✓ ✓

L2 Data cache accesses L2 Data cache accesses per 1 K instr. ✓ ✓

L1 data cache misses L1 data cache misses per 1 K instr. ✓ ✓ ✓

Data memory access Data memory accesses per 1 K instr. ✓

Predictable branches speculatively executed Predictable branch speculatively
executed per 1 K instr.

✓ ✓

Conditional branch executed Conditional branch executed per 1 K
instr.

✓ ✓

Mispredicted or not predicted branches speculatively executed Mispredicted or not predicted branch
speculatively executed per 1 K instr.

✓ ✓

L1 instruction TLB misses L1 ITLB misses per 1M instr. ✓ ✓

STALLS_A: Counts every cycle there is an interlock that is not because
of an Advanced SIMD or Floating-point instruction, and not because of a
load/store instruction waiting for data to calculate the address in the AGU

STALLS_A per 1 K cycles. ✓ ✓

STALLS_B: Counts every cycle the DPU IQ is empty and there is an
instruction cache miss being processed

STALLS_B per 1 K cycles. ✓ ✓

STALLS_C: Counts every cycle the DPU IQ is empty and there is an
instruction micro-TLB miss being processed

STALLS_C per 1 K cycles. ✓
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amp_vruntime every tick. This entails replacing the
thread’s static priority or weight (Wt) in equation (10) with its
dynamic weight (DWt), which is defined as follows:

EDP factor
=

æ

è
ççç

+
( - ) ( - )

-

ö

ø
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· ·
WDW 1

_ 1 EEF EEF

EEF EEF
,t t

t min

max min

where EEFt denotes the thread’s EEF, and EEFmax and
EEFmin are the maximum and minimum EEFs observed
among threads in the workload, respectively. Essentially,
with this new definition of amp vruntimeD _ , the amp_vrun-
time of high-EEF threads increases at a slower pace than
that of low-EEF threads, which results in a higher big-core
share for high-EEF applications and, in turn, in higher EDP
reductions. We have observed this trend by using the analyt-
ical model presented in Section 2. In Section 5.2, we experi-
mentally analyze the effect of varying the EDP_factor
using our implementation of ACFS-E in the Linux kernel.
Our experiments reveal, among other things, that using a high
value of the EDP_factor (5 in our experimental platform)
enables ACFS-E to achieve comparable energy-efficiency
figures to those obtained with the EEF-Driven scheduler,
which strives to optimize the EDP.
In order for ACFS-E to update a thread’s amp_vruntime

every tick, the scheduler needs to determine the thread’s current
SF and EEF online. To obtain up-to-date EEF values on our
experimental platform, we used the EEF estimation models pre-
sented in Section 4.2. To approximate a thread’s SF on the big
and on the small core, we built two estimation models by using
the Phase-SF methodology presented in [19]. Figure 5 illus-
trates the accuracy of the predictions obtained with the SF esti-
mation models for the ARM Juno development board. The
correlation coefficients for the estimation observed on both core

types are 0.95. Table 5 shows the set of performance metrics
and associated hardware events that the OS must monitor at run
time for each thread to obtain SF and EEF predictions on the
various cores on our experimental platform.

5. EXPERIMENTAL EVALUATION

In our experiments, we compare the effectiveness of the EEF-
Driven scheme with that of several previously proposed
asymmetry-aware schedulers: HSP [5, 6], PRIM [17], ACFS
[14] and RR [8]. We also experimented with the ACFS-E
scheduler, presented in Section 4.3. We implemented all these
schemes as a separate scheduling class in the Linux kernel
v3.10. As discussed in Section 3.2, we omit the results of the
Linux default scheduler (with and without the HMP patch
[37]), as it does not ensure repeatable application completion
times across multiple runs of the same workload.
All the schedulers considered (except for RR) rely on PMCs

to function. Specifically, our implementation of HSP and
ACFS determines threads’ SFs online using the PMC-based
estimation models presented in Section 4.3. EEF-Driven and
ACFS-E also rely on PMCs to estimate thread’s EEFs at run
time by using the prediction models described in Section 4.2.
Finally, the PRIM scheduler leverages a set of platform-
specific PMC-based rules to determine whether a given thread
swap brings energy savings or not. Note that this algorithm
had been evaluated before via simulation only [17]. To be able
to compare this scheme against our proposal, we created a
real-world implementation of PRIM in the Linux kernel, and
adapted the rules presented in [17] to the real asymmetric hard-
ware platform we used. We should also highlight that to ensure
that the core implementation of the various schedulers
(included in the Linux kernel) remains platform independent,
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FIGURE 5. SF prediction on the big (left) and the small (right) core for various program phases from SPEC CPU benchmarks running on the
ARM Juno development board.
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the different PMC-based estimation models on which they
depend were implemented inside a loadable kernel module
using various PMCTrack monitoring modules [25]. Each mon-
itoring module samples performance counters every 200 ms on
a per-thread basis; this sampling interval was used in previous
work on asymmetry-aware scheduling [18, 6]. We observed
that the overhead associated with PMC sampling and determin-
ing thread’s EEFs and SFs becomes negligible at this rate.
To evaluate the effectiveness of the various algorithms, we

used the ARM Juno Development board [20], which integrates
a 64-bit ARM big.LITTLE processor consisting of two big cores
(Cortex A57) and four small (Cortex A53). Table 6 shows more
information about this system. Each core of the big.LITTLE
processor features a private L1 cache and shares a last-level (L2)
cache with the other cores of the same type. On this asymmetric
system, we experimented with two asymmetric configurations,
referred to as 2B–4S (two big cores and four small cores) and
1B–3S (one big core and three small cores). The 1B–3S config-
uration enables us to study the behavior of the various schedul-
ing schemes in a scenario where applications have to compete
for a single big core with a ‘private’ 2MB last-level cache.
Our evaluation targets multi-application workloads consist-

ing of compute-intensive benchmarks from the SPEC
CPU2006 and CPU2000 suites. We opted to use this kind of
workloads to ensure a fair comparison against PRIM, HSP,
RR and ACFS, as these schedulers were evaluated before
using similar workloads [5, 8, 14, 17]. In all experiments, the
total thread count in the workload was set to match the num-
ber of cores in the platform, as in previous work on AMPs
that also employs compute-intensive workloads [5, 6, 18]. In
each multi-application workload, we ensure that all applica-
tions are started simultaneously and when an application ter-
minates it is restarted repeatedly until the longest application
in the set completes three times. We then obtain the ASP and
unfairness for the scheduler in question, by using the geomet-
ric mean of the completion times for each program. To meas-
ure the EDP for each workload (by using Equation (3)), we
use the PMCTrack tool [25], which is equipped with support
for gathering monitoring information from energy registers
and performance counters available on the Juno board.
The remainder of this section is divided into two parts. In

Section 5.1, we analyze the effectiveness of the EEF-Driven
scheduler. In that section, we also discuss the results of the

base implementation of ACFS [14], which (as stated in Section
4.3) behaves just like the ACFS-E scheduler with the default
setting of the EDP_factor (1.0). In Section 5.2, we assess
the impact of varying the EDP_factor knob under ACFS-E.

5.1. Evaluation of EEF-Driven

5.1.1. Workload selection

Table 7 shows the composition of the 20 workloads that we
analyzed in detail under the various schedulers considered. The
first 10 program mixes, consisting of six applications each
were run on the 2B–4S configuration; the last 10 mixes (M11-
M20), with four applications each, were run on 1B–3S. In
building the workloads, we generated random program mixes
(with four or six applications each) by combining 18 SPEC
benchmarks that cover a wide spectrum of SF and EEF values.
From these workloads, we filtered out those application mixes
where the HSP and the EEF-Driven schemes perform the same
big-core cycle distribution for the vast majority of the execu-
tion. For these workloads, the applications with the highest
overall SFs also happen to be those with the highest EEF
values. Thus, optimizing throughput (the HSP approach) also
leads to optimization of the EDP. This type of program mixes
does not showcase the potential of energy-aware schedulers, as
the HSP and EEF-Driven yield very close ASP, unfairness and
energy-efficiency values (differences in a 1% range) in these
scenarios. By contrast, for workloads in Table 7 HSP and
EEF-Driven perform very differently. The various programs in

TABLE 6. Features of the ARM Juno development board.

Processor model (s) Cortex A57 Cortex A53

Core count 2 4
Processor frequency 1.10 GHz 850MHz
Pipeline Out-of-order In-order
Last-level cache (L2) 2MB/16-way 1MB/16-way

Main memory 8 GB DDR3 @ 800MHz

TABLE 7. Multi-application workloads.

Name Applications

M1 equake,soplex,vortex,perlbmk,povray,gobmk
M2 equake,gamess,hmmer,perlbench,gzip,gobmk
M3 galgel,equake,hmmer,povray,mgrid,gobmk
M4 galgel,gamess,hmmer,povray,perlbench,gobmk
M5 equake,gamess,hmmer,gobmk,crafty,sixtrack
M6 galgel,equake,gamess,hmmer,sixtrack,povray
M7 galgel,equake,hmmer,bzip2,perlbench,h264ref
M8 gamess,art,gobmk,crafty,sixtrack,vortex
M9 gamess,art,bzip2,gobmk,sixtrack,vortex
M10 soplex,bzip2,perlbench,gzip,h264ref,gobmk
M11 equake,hmmer,sixtrack,povray
M12 equake,hmmer,povray,astar
M13 galgel,hmmer,povray,mgrid
M14 equake,gamess,hmmer,perlbench
M15 equake,vortex,povray,h264ref
M16 galgel,hmmer,crafty,perlbench
M17 soplex,vortex,povray,h264ref
M18 art,vortex,perlbmk,povray
M19 art,perlbmk,povray,h264ref
M20 art,perlbmk,sixtrack,povray
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each workload shown in the table are listed in descending
order by its overall SF (observed throughout the execution).
Hence, the programs displayed first enjoy a higher big-core
share under the HSP scheduler than the rest of the programs.

5.1.2. Discussion
Figure 6a–c display the EDP, throughput (ASP) and unfair-
ness for workloads M1–M10 running on 2B–4S under the
various scheduling algorithms. The reported EDP and ASP
values have been normalized with respect to the results of the
HSP scheduler.
The experimental results exhibit similar trends to those

extracted from our theoretical study (Section 2). Clearly, opti-
mizing one metric may lead to substantial degradation of
another metric. As is evident, the HSP scheduler, which
strives to optimize throughput achieves the best ASP values
across the board. Conversely, the EEF-Driven scheduler
obtains the best EDP results (the lower, the better) for all
workloads. HSP and EEF-Driven, however, may degrade the
EDP and the throughput, respectively. In particular, HSP can
experience up to a 20% degradation in EDP with respect to
EEF-Driven, in exchange for a 2.5% increase in throughput
(e.g. for the M6 workload). Conversely, EEF-Driven may
also obtain modest EDP improvements with respect to HSP
in some cases (5% for M10) at the expense of significant per-
formance degradation (21% for M10). Notably, the relative
throughput degradation for the M10 workload is even higher
under the PRIM scheme (27.5%), which achieves only a
2.5% reduction in EDP compared to HSP for that workload.
Regarding fairness, the results reveal that RR and ACFS,
which are fairness aware, are the only schedulers that deliver
decent unfairness figures (close to one). Delivering fairness,
however, comes at the cost of EDP and throughput degrad-
ation compared to other schemes that seek to optimize
throughput (HSP) or aim to improve energy efficiency (EEF-
Driven and PRIM).
We now proceed to analyze the results of the energy-aware

schedulers considered: PRIM and the EEF-Driven scheduler
(our proposal). As discussed in Section 3.3, PRIM strives to
improve energy efficiency by performing thread swaps that
lead to energy savings. In doing so, threads with a lower EPI

ratio on the big core (EPIbig) are typically mapped to big
cores for longer periods of time than other threads. We
found that for some workloads (such as M1, M5 or M6),
this scheduler performs very close big-core cycle distribu-
tions to those enforced by EEF-Driven, hence the similar
results observed for these workloads. In these scenarios, pro-
grams with the lowest EPIbig value also exhibit the highest
EEF values. By contrast, in the rest of workloads, EEF-
Driven clearly improves upon PRIM in both EDP (up to a
15% reduction for M2) and throughput (up to a 20%
increase -M2-). This difference primarily stems from the fact
that in these scenarios, several programs exhibit a similar
EPIbig but different EEF values (due to a different SF). In
the event that two threads go through program phases with
similar EPIbig values, the thread with the highest SF is mapped
preferentially to the big core by EEF-Driven. Failing to con-
sider the ratio of the SF to the EPIbig (aka. the EEF) leads
PRIM to performing thread-to-core mappings that do not opti-
mize the EDP and, at the same time, degrade throughput sig-
nificantly. We also observed that the random nature of the
thread swaps performed by PRIM also leads to suboptimal
thread-to-core mappings for short periods of time (as explained
in Section 3.3), which results in worse EDP values compared to
EEF-Driven.
As for the fairness-aware schedulers considered, the results

reveal that ACFS delivers better throughput and fairness than
RR across the board. This stems from the fact that ACFS fac-
tors in the SF when making scheduling decisions whereas RR
does not. The results also illustrate that both schedulers
achieve significantly worse EDP values—up to a 25% higher
(M4 workload)—than those obtained by EEF-Driven.
We now turn our attention to the results for the M11–M20

workloads running on the 1B–3S configuration. The relative
EDP, relative ASP and unfairness for the various workloads
and schedulers are reported in Fig. 7a–c, respectively. The
results showcase similar trends to those observed for the 2B–
4S configuration. Nevertheless, two important observations
are in order. First, EEF-Driven brings a higher average reduc-
tion in EDP with respect to HSP on this configuration (20%)
compared to that that observed on 2B–4S (13.5%). At the
same time, the average throughput degradation relative to
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HSP also increases from 9% to 21.5%. Essentially, for work-
loads M11–M20, the application listed first in the correspond-
ing row of Table 7 (e.g. equake for M11) is the one that
enjoys a higher big core share under HSP. This stands in con-
trast with what the EEF-Driven scheme does: it maps the
application listed in the second place (e.g. hmmer for M11)
to the big core for the vast majority of the execution due to
its higher EEF. If a second big core were available (as on
2B–4S), both schedulers would grant a substantial big-core
share to both applications, which would lead to closer EDP
and ASP values. Second, fairness-aware schedulers achieve
lower EDP values than HSP across the board; this was not
the case on the 2B–4S configuration. Intuitively, the big-core
share of all applications (including those with a high EPIbig

value) increases under RR and ACFS on 2B–4S due to the
additional big core; this results in significantly higher energy
consumption and EDP on 2B–4S than on 1B–3S.

5.2. Effectiveness of the ACFS-E scheduler

All the scheduling schemes evaluated in the previous section
deliver a fixed trade-off between fairness, throughput and
energy efficiency. In the quest of a more flexible and config-
urable scheduling scheme, we designed the ACFS-E

scheduler (described in Section 4.3). This fairness-aware
scheduler is equipped with two knobs, referred to as
EDP_factor and unfairness_factor. When these
parameters are set to the default setting (1.0), ACFS-E
behaves as the original ACFS scheduler [14, 19], which
strives to deliver the maximum ASP (throughput) attainable
for the optimal unfairness. When a non-default value of either
of these parameters is established,6 a specific dynamic priority
scheme is engaged, which adjusts a thread’s priority based on
either its SF (for the unfairness_factor) or its EEF (for
the EDP_factor). As discussed in Section 4.3, the two
knobs empower the system administrator with a means to
provide a configurable balance between fairness and EDP or
system throughput on the AMP.
Figure 8a shows how the choice of the EDP_factor

affects the unfairness and the EDP for four selected work-
loads from Table 7 (running on the 2B–4S configuration).
The results reveal that the default and lowest possible setting
for the EDP_factor provides the best fairness figures,
whereas higher values of this parameter lead to reductions in
the EDP at the expense of fairness degradation. Notably, the
results also illustrate that, as we gradually increase the

1.0 1.5 2.0 2.5 3.0 3.5

Unfairness

0.80

0.85

0.90

0.95

1.00

1.05

1.10(a) (b) (c)

R
el

at
iv

e
E

D
P

1.0

1.5

2.0
3.0

4.0

5.0

EEF-Driven

1.0

1.5 2.0

3.0 5.04.0EEF-Driven

1.0

1.5

2.0

3.0

4.0

5.0EEF-Driven

1.0

1.5

2.0 3.0
4.05.0

EEF-Driven

M4
M7
M8
M3

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

un
fa

irn
es

s

ACFS-E (EDPF = 1.0)

ACFS-E (EDPF = 1.5)

ACFS-E (EDPF = 2.0)

ACFS-E (EDPF = 3.0)

ACFS-E (EDPF = 4.0)

ACFS-E (EDPF = 5.0)

EEF-Driven

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

re
la

tiv
e 

E
D

P
ACFS-E (EDPF = 1.0)

ACFS-E (EDPF = 1.5)

ACFS-E (EDPF = 2.0)

ACFS-E (EDPF = 3.0)

ACFS-E (EDPF = 4.0)

ACFS-E (EDPF = 5.0)

EEF-Driven

FIGURE 8. Unfairness vs. relative EDP for different values of the EDP_factor (EDPF) under the ACFS-E scheduler. (a) Unfairness vs.
Relative EDP for selected workloads, (b) Relative EDP, (c) Unfairness.

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

(a) (b) (c)

M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 Avg

re
la

tiv
e 

E
D

P

ACFS
RR

HSP
PRIM

EEF-Driven

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 Avg

re
la

tiv
e 

th
ro

ug
hp

ut

ACFS
RR

HSP
PRIM

EEF-Driven

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 Avg

un
fa

irn
es

s

ACFS
RR

HSP
PRIM

EEF-Driven

FIGURE 7. Results for workloads M11–M20 running on 1B-3S. (a) Relative EDP, (b) Relative throughput, (c) Unfairness.

6It is not possible to set values different than the default setting for both
parameters simultaneously under ACFS-E.
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EDP_factor, the EDP and unfairness numbers under
ACFS-E become closer to those of the EEF-Driven scheduler,
which optimizes the EDP.
For the sake of completeness, Fig. 8b and c illustrates how

the EDP and unfairness (respectively) vary for the full set of
six-application workloads shown in Table 7 (M1–M10) when
using values of the EDP_factor ranging between 1 and 5.
As is evident, the same behavior observed for the selected
workloads is also observed for the remaining program mixes:
the higher the value of the EDP_factor, the lower the EDP
and the higher the unfairness. The results also reveal that set-
ting the EDP_factor to 5 enables ACFS-E to deliver a rela-
tive EDP value within a 1% range of the EEF-Driven
scheduler for all the workloads explored, except for M4.
Notably, we also tried increasing the EDP_factor beyond 5
for the M4 workload, and found that ACFS-E eventually
(EDP_factor≈6.5) achieves a very similar big-core cycle
distribution among applications as that performed by EEF-
Driven, hence leading both schedulers to very close EDP and
unfairness figures (in a 1% range).
The results in Fig. 8b and c also illustrate that when the

EDP_factor is set to 5, ACFS-E is capable to obtain better
unfairness numbers than EEF-Driven for workloads M1, M3,
M4 and M9, and, at the same time, it reaps comparable
energy-efficiency results. This behavior stems from the fact
that these workloads include at least three programs exhibit-
ing a relatively high EEF and SF values for the vast majority
of the execution, such as vortex, galgel or hmmer. On
the AMP configuration used, the EEF-Driven scheduler
devotes the two available big cores to running the two appli-
cations in the workload with the greatest EEF values, while
relegating the rest to small cores. Conversely, in this scenario,
ACFS-E grants a non-negligible big-core share to all high-SF
high-EEF programs, which contributes to reducing unfairness
and also delivers good energy-efficiency figures. Despite the
striking reduction in EDP achieved by ACFS-E when increas-
ing the EDP_factor, this scheme clearly yields high unfair-
ness values when EDP factor ³_ 2.

Unlike the EDP_factor, the unfairness_factor
was already included in the base implementation of the
ACFS scheduler. In [14], we demonstrated experimentally
that this parameter provides a configurable balance between
fairness and the system throughput on the Intel QuickIA
prototype [3]. The results in Fig. 9a demonstrate that this par-
ameter proves effective on the ARM Juno board as well.
Specifically, the chart illustrates the impact of varying the
unfairness_factor on fairness and throughput for the
four selected workloads considered earlier. We observe that,
in general, higher values of the unfairness_factor lead
to throughput gains at the expense of degrading fairness. In
addition, the results reveal that the higher the value of this
parameter, the closer the ASP value provided by ACFS-E is
to that of the HSP scheduler, which strives to optimize
throughput.
Figure 9b and c illustrates how throughput and unfairness

(respectively) vary for the M1–M10 workloads shown in
Table 7 when using values of the unfairness_factor
(UF) ranging between 1 and 2 in steps of 0.2. Similar trends
observed for the selected program mixes are observed for the
remaining workloads as well: the higher the setting of the
UF, the closer the behavior of the ACFS-E scheduler is to
that of HSP. For the vast majority of workloads, setting the
UF value to 2 makes it possible for ACFS-E to achieve
throughput figures in a 4% range to those of HSP. For a few
workloads, such as M4 or M8, increasing the unfairness fac-
tor beyond 2 is necessary for ACFS-E to get that close to
HSP in terms of throughput. Specifically, we tried increasing
the UF further and found that in order for ACFS-E to perform
in a 4% range of HSP under the M4 and M8 workloads, UF
values as high as 3.6 and 3, respectively, must be used.
The results in Fig. 9b and c also reveal that for most work-

loads, higher values of the unfairness_factor lead to
throughput gains coupled with fairness degradation. Contrary
to our initial expectations, this is not exactly the observed
behavior for workloads M1, M3 and M6; for these program
mixes, ACFS-E is capable to deliver throughput gains relative
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to the HSP scheduler (up to a 5% increase under M1).
Moreover, the maximum throughput value observed is not
reached when using the highest explored value of the
unfairness_factor; instead, throughput drops when
increasing the unfairness_factor beyond a certain
point (e.g. 1.8 for M1 and 1.4 for M6). We found that this
behavior comes from shared-resource contention effects that
become apparent in the M1, M3 and M6 program mixes,
which include several memory-intensive and cache-sensitive
applications, such as equake, soplex and galgel.
To fully understand the results for the M1, M3 and M6

workloads, it is worth highlighting that none of the scheduling
algorithms analyzed in this work (some of them proposed by
other authors) deals with shared-resource contention effects.
The aforementioned memory-bound applications present in
these workloads happen to be the ones that derive the highest
big-to-small speedup in the program mix. The benefit that
these applications experience from the big cores comes in part
due to the fact that this core type features a larger shared L2
cache than the small core (see Table 6 for details).
Unfortunately, when the OS scheduler maps two memory-
bound programs on the big cores simultaneously, cores com-
pete with each other for space in the shared L2 cache as well
as for bus bandwidth, which gives rise to non-negligible per-
formance degradation for both applications, and in turn
degrades system throughput.7 Specifically, we found that
under workloads M1, M3 and M6, the HSP scheduler maps
memory-bound applications to big cores simultaneously for
longer periods of time than ACFS-E when using the default
setting of the unfairness_factor (1.0). As we increase
the unfairness_factor, the ACFS-E scheduler grants a
higher big-core share to HSP applications (the memory-bound
programs in this case). Clearly, a modest increase of the big-
core share of HSP memory-intensive applications results at
first in higher performance for these application and, in turn,
in substantial throughput gains. However, increasing too much
the amount of time that these applications spend on the big
cores (what happens as a result of increasing the unfair-
ness_factor beyond a certain point), lead HSP memory-
intensive applications to be mapped simultaneously to big
cores more often, which backfires by degrading the perform-
ance of individual applications. This observation suggests that
for workloads that feature multiple HSP memory-intensive
applications taking shared-resource contention effects into
consideration when making scheduling decisions may help
improving system throughput even further on AMPs. Making
ACFS-E aware of shared-resource contention issues constitu-
tes a very promising avenue for future research.

To sum up, our study has demonstrated that the EDP_factor
and unfairness_factor knobs enable us to gradually
improve energy efficiency or system throughput under
ACFS-E when fairness constraints are relaxed. Moreover, by
using high values for these parameters as those used in our
experiments, ACFS-E can be configured to approximate the
behavior of the EEF-Driven or HSP schemes, which optimize
energy efficiency and throughput, respectively. Hence, the
main takeaway from our study is that ACFS-E constitutes a
flexible and versatile scheme, as it enables the system admin-
istrator to pursue several optimization goals with a single
scheduling algorithm.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have carried out an analytical and experi-
mental analysis that showcase the interrelationship between
throughput, fairness and energy efficiency on AMPs in the
context of OS scheduling. Although several schedulers that
strive to optimize some of these aspects separately were pro-
posed before [5, 6, 14, 17], no previous work had illustrated
the impact that optimizing one of the aforementioned aspects
alone has in the other two.
To fill this gap, we created a theoretical model making it pos-

sible to find the optimal schedule for the various optimization
goals in diverse synthetic scenarios. To this end, we augmented
the theoretical model presented in [11] with the ability to esti-
mate the EDP analytically. Our analytical study enabled us to
draw three major insights. First, optimizing the EDP on asym-
metric multicores always leads to unfairness, and may also
come at the expense of substantial throughput degradation.
Second, in most cases, delivering fairness entails sacrificing
throughput and energy efficiency to a great extent. Third, the
schedule that ensures the maximum throughput attainable for
the optimal (lowest) EDP value, can be approximated by lever-
aging an application’s EEF, which is defined as the ratio of an
application big-to-small speedup (aka SF) to the EPI rate
achieved on the big core. Specifically, substantial reductions in
the EDP can be accomplished by dedicating big cores to running
applications in the workload that exhibit the highest EEF values.
By leveraging the EEF metric, we designed two novel

energy-aware OS-scheduling algorithms for AMPs: EEF-
Driven and ACFS-E. We implemented these algorithms in the
Linux kernel and evaluated their effectiveness on a real asym-
metric system that features an ARM big.LITTLE multicore
processor. An extensive comparison with existing schemes [5,
6, 14, 17] was performed. Our experimental results reveal that
the EEF-Driven scheduler reduces the EDP and improves
throughput substantially compared to a state-of-the-art energy-
aware scheduler [17]. We also demonstrated that asymmetry-
aware schedulers that strive to optimize one metric alone (e.g.
throughput) always deliver a fixed trade-off between system
throughput, fairness and energy efficiency on AMPs, and so

7We also observed that contention on the L2 cache shared among little in-
order cores is not so high, leading to much lower (and more uniform) per-
formance degradation across applications in the workloads we explored. We
hypothesized that this smaller degree of cache contention has to do with the
fact that an in-order core cannot handle multiple outstanding cache misses;
this leads to a smaller rate of LLC requests per cycle.
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these schemes may not provide a comprehensive support in
general-purpose OSes. Our experimental analysis demon-
strates that ACFS-E constitutes a more versatile approach as it
can be configured to optimize any of the aforementioned three
metrics, and, at the same time, enables the user to trade fair-
ness for energy efficiency or throughput in scenarios where
fairness constraints are relaxed.
An interesting direction for future work is to incorporate

shared-resource contention awareness into asymmetry-aware
algorithms like the ones studied in this paper. We strongly
believe that this would be a first step towards designing all-
encompassing scheduling algorithms for asymmetric multi-
core systems.
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