
Contents lists available at ScienceDirect

Int. J. Human–Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Automatic detection of usability smells in web applications

Julián Grigeraa,⁎, Alejandra Garridoa,b, José Matías Riveroa,b, Gustavo Rossia,b

a LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
b CONICET, Argentina

A R T I C L E I N F O

Keywords:
Usability testing
Web-based interaction
Refactoring
Log analysis

A B S T R A C T

Usability assessment of web applications continues to be an expensive and often neglected practice. While large
companies are able to spare resources for studying and improving usability in their products, smaller businesses
often divert theirs in other aspects. To help these cases, researches have devised automatic approaches for user
interaction analysis, and there are commercial services that offer automated usability statistics at relatively low
fees. However, most existing approaches still fall short in specifying the usability problems concretely enough to
identify and suggest solutions. In this work we describe usability smells of user interaction, i.e., hints of usability
problems on running web applications, and the process in which they can be identified by analyzing user
interaction events. We also describe USF, the tool that implements the process in a fully automated way with
minimum setup effort. USF analyses user interaction events on-the-fly, discovers usability smells and reports
them together with a concrete solution in terms of a usability refactoring, providing usability advice for deployed
web applications.

1. Introduction

Web applications help us in many of our daily life activities, like
shopping, news reading, social interaction, home banking, trip plan-
ning or requesting a doctor's appointment. Every day new websites
appear broadening our possibilities to accomplish tasks comfortably
from home, and yet many times they suffer from usability problems
that make them awkward and hard to use. As Nielsen said, usability
rules the web, and it is crucial for a website's success (Nielsen and
Loranger, 2006; Gregg and Walczak, 2010). Companies acknowledge
that competition is so high that they will hardly survive if they do not
invest in usability, although it still remains expensive and therefore
neglected despite the progress in research and tools (Nielsen and
Loranger, 2006).

One of the most popular ways of evaluating usability is by
conducting usability tests, particularly, user tests (Rubin and
Chisnell, 2008). The benefit of user testing over inspection methods
like heuristic evaluations is that it captures real usage data and users’
experiences. The down-side, however, is that it requires recruiting
users and spending time and resources for experts first to design the
tests and afterwards to analyze the results, discover the problems and
find solutions for those problems.

To overcome the need of having the expert manually collecting and
comparing test results, different automated approaches exist for

remote user testing. Several approaches log user interaction (UI)
events and perform some log analysis to help the expert discover usage
patterns (Santana and Baranauskas, 2015). The results are usually
presented with sophisticated visualization tools that allow comparing
user event sequences with an optimal sequence. However, these tools
rarely provide suggestions to help designers improve their artifacts; the
expert is still needed to detect concrete usability problems in the
deviations among event sequences, and find a solution (Fernandez
et al., 2011). Moreover, the set of usability problems that can be
recognized by comparing event sequences is limited (for instance, a
frequently performed activity could be unnecessarily long for all users).
In turn, there are many sources of usability guidelines and good
practices in the literature, though it is still hard for a developer to
identify which of these guidelines address a particular problem that
appears on a running application.

Our proposal for overcoming these two issues related to dynamic
usability assessment and repair is to extend event logging analysis to
report concrete problems that are solvable through refactoring. Being
an agile practice, refactoring allows improving usability in an incre-
mental way using feedback from users, even (especially) in already
deployed applications (Garrido et al., 2011). Moreover, refactorings are
beneficial not only as cataloged, mechanized solutions, but also because
each solution is linked to the particular problem or "smell" that it
solves. In the case of usability, we call them usability smells (Garrido

http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
Received 12 December 2015; Received in revised form 13 September 2016; Accepted 17 September 2016

⁎ Corresponding author.
E-mail addresses: julian.grigera@lifia.info.unlp.edu.ar (J. Grigera), garrido@lifia.info.unlp.edu.ar (A. Garrido), mrivero@lifia.info.unlp.edu.ar (J.M. Rivero),

gustavo@lifia.info.unlp.edu.ar (G. Rossi).

Int. J. Human–Computer Studies 97 (2017) 129–148

1071-5819/ © 2016 Elsevier Ltd. All rights reserved.
Available online 19 September 2016

crossmark

http://www.sciencedirect.com/science/journal/10715819
http://www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.09.009&domain=pdf

et al., 2011).
In our current work, we aim at providing automatic advice about

usability smells of user interaction for deployed web applications. Our
automated strategy to usability smell recognition is based on the
analysis of user interaction (UI) events. Thus, we extend previous
work in this area by linking specific UI events to usability smells,
defining new usability smells, and reporting usability smells on-the-fly
at an abstraction level which makes it possible to suggest concrete
solutions for them in terms of refactorings.

We have implemented the approach in a tool called USF (Usability
Smells Finder). The tool can be used as a service (SaaS) with minimal
setup effort, and is able to provide up-to-the-minute advice for
deployed web applications. It is implemented in a way that allows for
the extension of usability smells' detection strategies. Therefore, it is
targeted to a broad audience of practitioners with different levels of
usability expertize. On the one hand, usability experts may use USF to
get rapid feedback of real interactions from a mass of users, configuring
the tool to their needs. On the other hand, developers without usability
expertize may use USF after a simple installation, let the tool gather
evidence to diagnose usability problems and implement the solutions
that it suggests.

The structure of the rest of the article is as follows: the next section
presents background on usability refactoring and our catalog of
usability smells for user interaction. Section 2 provides background
and describes the differences and similarities with related work.
Section 3 describes the usability smells used in this work, while
Section 4 describes in detail the process of usability smell recognition
and reporting, starting from the analysis of UI events, their abstraction
to a mid-level concept called usability events, and the filtering and
aggregation of usability events into usability smells. Section 5 provides
the architecture and implementation details of the tool. Section 6
presents two experiments that we ran to assess the accuracy and
versatility of the process and tool, and finally Section 7 concludes the
article with contributions and future work.

2. Related work

In this section, we will review different approaches related to
different aspects of our proposal. We first provide a background on
refactoring and bad smells, their specific application in the context of
web usability, and our previous work on the definition of usability
smells. We then review usability evaluation methods in general, and
place our work into their classifications. Then, we review log analysis
and visualization methods, following with remote user testing and
finally we describe the most relevant approaches we found to be closer
to our proposal.

2.1. Background on usability and refactoring-based tools

Our work in usability takes many ideas from code refactoring.
Refactoring was originally defined by Opdyke as a transformation that
preserves behavior, aimed at improving the internal design of code
(Opdyke, 1992). Later on, Fowler popularized the technique by
publishing a catalog of refactorings for object-oriented code (Fowler,
1999). The refactorings in Fowler's catalog seek to improve internal
quality measures like understandability, extensibility and maintain-
ability of the different components in an object-oriented program like
methods, classes and hierarchies, as well as data and conditional
expressions. For example, "Extract Method" turns a piece of code into
its own method, with an appropriate name that explains its purpose.
The power of refactoring lies in helping non-experts to identify
potential problems in the target aspect and traverse through a series
of small steps towards a good solution for those problems. In the
refactoring jargon, these potential problems are called "bad smells",
and their presence likely means that the code needs refactoring. For
example, the refactoring "Extract Method" is intended to solve smells

like "Long Method" and "Duplicate Code" (Fowler, 1999).
The refactoring technique became an essential practice of agile

methodologies, and its scope was soon extended to other programming
paradigms and beyond improving internal qualities of code into
improving external qualities of software, like database safety (Ambler
and Sadalage, 2006), parallel programs' performance (Dig, 2011), and
web application's navigability (Cabot and Gómez, 2008). In 2007, we
started working on the application of refactoring to improve the
usability of web applications (Garrido et al., 2007). We defined
usability refactorings as changes to the navigation, presentation or
business processes of a web application with the purpose of improving
its usability, while preserving the expected functionality and result
(Garrido et al., 2011). With these refactorings, developers may attain
usability enhancements like a balanced distribution of content in the
screen and among pages, a better navigation structure and process
workflow, proper support for the user while executing a business
process, etc. An example of a usability refactoring is "Provide
Breadcrumbs", to help users keep track of their navigation path up
to the current page (Garrido et al., 2011).

Similarly to bad smells in code ("code smells" for short), we have
defined usability smells as indicators of possible problems that need
refactoring (Garrido et al., 2011), where the problems relate to any
aspect of the quality in use of a web application: effectiveness in use,
efficiency in use, or satisfaction in use (ISO, 2011). In our earlier work,
usability smells were cataloged to be manually recognized at different
model levels (Garrido et al., 2011). Examples of these smells are
"Absence of meaningful links" (in the navigation model), "Cluttered
interface" (in the presentation model), and "Long activity" (in the
process model).

In a later work, we developed a framework that allows applying
usability refactorings on the client side, thus reducing the cost of
changing a running system at the server (Garrido et al., 2013). We also
developed a catalog with new usability refactorings and usability smells
(Distante et al., 2014). The refactorings in this catalog may be applied
either at the model level, in a model-driven development approach or
at the client-side, and usability smells may be discovered in the models
or by manually inspecting the results of user tests. An example of
usability refactoring from that catalog is Change the widget used to
execute an activity, aimed at replacing a widget that has been found
awkward to use or produce errors for a more appropriate one, e.g.
replacing free textboxes with calendar widgets for selecting dates, or
selection boxes for ranged values. In the catalog, the usability smell
that triggers this refactoring is Risk of error. Other cataloged usability
smells are Difficult access to information, User confusion, and Process
inflexibility (Distante et al., 2014).

Moreover, we have conducted a statistical test to measure the real
gain that usability refactorings produce on effectiveness in use,
efficiency in use and satisfaction in use (Grigera et al., 2016). For the
experiment, detecting usability smells was not a simple task, as it
required manual expert intervention to go through the results of user
tests.

Finally, in the context of refactoring, our process for smells
detection could be compared to the work of Lanza and Marinescu
(2006) to systematically detect bad smells in code: they use well-known
object-oriented metrics and metric-based patterns as detection strate-
gies to identify potential bad smells and structural design problems and
provide the appropriate refactorings as recovery means. In a similar
way, we use UI event patterns to characterize usability smells and
suggest usability refactorings for most cases.

2.2. Usability evaluation methods

Like Hornbæk (2006) said in his review back, usability cannot be
directly measured, so researchers must select usability aspects that can
be measured and represent valid indicators of usability, like in the
model proposed by Seffah et al. (2006). There are different ways to

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

130

classify usability measures and usability evaluation methods, although
there is a general classification for the latter into two main types:
inspection methods and empirical methods (Fernandez et al., 2011).
With inspection methods, expert evaluators perform conformance
reviews and problem prediction based on heuristics. Thus, inspection
methods are limited in the kind of problems that can be found in a lab
setting, the quality of the heuristics and the expertize of the evaluator.
The limitations of inspection methods have led to the popularity of
empirical methods, particularly user testing, which capture and analyze
real usage data (Rubin and Chisnell, 2008). Our approach is based on
remote user testing and the usage data captured are UI events.

Hilbert and Redmiles (2000) defined a comparison framework for
characterizing automated usability evaluation methods. According to
this framework, our approach would mostly fit the categories:
Transformation, since it involves selecting, abstracting, and recoding
event streams, Analysis, specifically counts and summary statistics and
sequences detection, and Visualization of abstracted events (usability
smells). In general, we provide an Integrated evaluation support, i.e.,
an environment with integrated support for flexible composition of
various transformation, analysis, and visualization capabilities.
Sequences of actions are also analyzed in some usability smells
detection, fitting the Sequence detection category, but it is not a central
part of the approach. Another very comprehensive survey was made by
Ivory and Hearst (2001). This survey presents a taxonomy of usability
evaluation methods according their automation level, and classifies a
total of 132 evaluation methods in 4 different dimensions: Method
Class, Method Type, Automation Type and Effort Level. In this early
work, the authors notice the many advantages of automating usability
evaluations, but also highlight that a full replacement of manual
methods is not possible. According to this taxonomy, our approach
fits in the Method Class: testing, Method Type: log file analysis,
Automation Type: critique and Effort Level: minimal.

2.3. Logs analysis and visualization methods

The idea of gathering usability metrics from UI events has long
been regarded as a valuable source of information, even beyond the
web realm. Back in 2002, when the industry of web analytics was rising,
researchers like Chi devised sophisticated data analysis techniques and
visualization tools to help experts understand the large amount of data
from user logs (Chi, 2002). His visualization approach included site
structure based on usage, traffic patterns, and path prediction com-
pared to actual paths. In a similar way of current web analytic tools,
Chi's visualization approach was able to point to navigation deficiencies
of a website, though it required an expert web analyst to discover other
concrete usability problems. Nowadays, web analytics services are
provided by commercial tools like CrazyEgg1 or Hotjar2 that auto-
matically gather interaction data from live websites, offering heatmaps
and other usability-specific statistics. These services demand fewer
resources, since end-users are the ones who unknowingly provide the
required feedback. However, concrete, high-level problems are still
hidden behind the statistics, and require a usability expert to uncover
them and find their solutions.

Regarding the study of interaction logs, the work of Apaolaza et al.
(2015) analyze low level logs captured “in the wild”, i.e. from real users
in real websites performing free tasks. They transform these logs into
higher abstraction entities called micro-behaviors, and use them to
demonstrate how users’ behavior evolves over time. In a similar way,
Breslav et al. (2014) propose to discover problematic micro-interac-
tions by analyzing individual user sessions recorded in terms of
interaction events. In our work, we also capture logs “in the wild”,
and take advantage from the abstraction of events in higher level

entities, but we do not store or analyze full user sessions.
Other kinds of visualization methods for usability metrics has been

studied in different approaches that perform remote usability tests.
WebQuilt (Hong et al., 2001) is a proxy-based system for running task-
based (controlled) usability tests with volunteer users. It captures
visited pages and navigation paths, as well as time-based metrics, and
shows the aggregated data from all test sessions in a zoomable
visualization. Thus, while this tool provides helpful insights on user
tests, it requires a usability expert to set up tasks, pinpoint usability
problems and fix them. Atterer et al. (2006) proposed another
approach to analyze logs during remote usability testing where usage
data is collected on a proxy. They capture interaction events transpar-
ently and in such detail that the output could be used for a number of
different scenarios, from usability testing, to user profiling, and
advanced visualization techniques for usage data. However, they don’t
expand on the processing required to use the output data in those
scenarios. In a similar way of that work, our tool captures interaction
events transparently, though it gathers enough detail to help detect a
usability smell, thus reducing processing time and complexity.

In a similar line of work, Okada and Fujioka (2008) proposed a
method to detect usability problems from mouse traces (unnecessary
and missed operations), by automatically comparing user logs with
optimal logs of clicked points, gathered from tasks performed in an
optimal way. The authors report that the method can find 61% of the
problems found manually in a much shorter time. The difference with
our approach is that we do not require previous reference data. We also
search for other events besides mouse traces.

2.4. Remote user testing

Current tools in the area of remote user testing are WUP, WELFIT
and CrowdStudy. Similarly to WebQuilt, WUP (Web Usability Probe)
(Burzacca and Paternò, 2013; Carta et al., 2011) uses a task-based
approach for remote user testing, though in this case it logs events in
the client. WUP uses sophisticated visualizations to show event log
data: a timeline comparator allowing the interactive manipulation of
timelines to find deviations with the optimal one and displaying color-
coded events and associated data; a page-flow comparator or story-
board, and even screen dumps. In a more recent work, the authors have
presented an improved, more interactive tool for timeline comparison
(Paternò et al., 2016). The difference with our approach is that it works
with a specific evaluation task list and the definition of an optimal path
for each task. Moreover, while it provides automated techniques to
discover deviations from the optimal path, it still requires a usability
expert to discover concrete usability problems in the deviations, and
their solutions. In the case of WELFIT (Santana and Baranauskas,
2015), event logs are visualized through usage graphs. In a similar way
of WUP’s, it requires an expert to find deviations in walks present in
the graph and thus discover usability problems in a potentially large
graph.

Another work for organizing remote user tests and gathering results
is CrowdStudy (Nebeling et al., 2013a). CrowdStudy presents an
interesting approach to remote user testing since it incorporates
crowdsourcing techniques such as Amazon's Mechanical Turk to
recruit volunteers, and it also considers their context, like the type of
device. They also present a set of metrics to gather the tests’ results.
Although being a very different approach from ours, since it is based on
user testing with volunteers and guided tasks, the architecture of
CrowdStudy is of interest to our proposal, since it also aims at
gathering usability metrics from the largest possible amount of users.

2.5. Automated log analysis and evaluation

We next report on three approaches for usability evaluation in
uncontrolled environments that are closer to our proposal. Testing in
uncontrolled environments requires different analysis techniques,

1 www.crazyegg.com/
2 www.hotjar.com

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

131

since there are no optimal event streams to compare with, and the
amount of data is potentially large and disorganized. Nevertheless, it
has at least two benefits over controlled methods: first, they are less
expensive as they do not require recruiting volunteers nor designing
tasks, and second, they may find other problems that only appear in a
real, uncontrolled environment, where users are not restricted to a
limited set of tasks.

One of these approaches by Speicher et al. (2015) present a suite of
tools for obtaining usability scores about Search Engine Results Pages
(SERPs). Despite being focused only on SERPs, their approach also
tracks UI events to measure usability and provides suggestions for
improvements from a catalog of best practices. Once a new version of a
SERP is manually created, a comparative analysis of the old and new
versions is performed through A/B testing.

The second work similar to ours is that of Harms and Grabowski
(2014), which also use the concept of usability smell to point to high-
level problems in specific webpage elements. They use a slightly
different definition of usability smell, by referring to them as excep-
tional user behaviors that may indicate a usability issue. There are
two differences with this approach: first, the shape of the captured logs.
They obtain long tasks from full user sessions and generate task trees to
detect the smells, whereas we capture smaller grained events sequences
(that do not compromise user privacy), since we aim to provide results
in real time as soon as the smells appear. The second difference is
derived from the first, and consists in the nature of the smells, which
are more oriented to discovering inefficient tasks' flow. Besides their
differences, both approaches described above could provide good
complements for our ideas since the detection processes are quite
different, and hence detect different kinds of problems.

The closest approach to ours in terms of functionality is, to our
knowledge, W3Touch (Nebeling et al., 2013b). W3Touch is a toolkit
devised for automatically assessing touch-based interaction problems
on mobile devices and providing adaptations to solve them. It includes
complex mechanisms to track touch events and touch-specific metrics,
which by default are missed links and zoom levels. W3Touch provides
default adaptations for some cases that consist in altering the size and
spacing of the affected widgets, depending on the device, and allows
triggering adaptation created by developers. The toolkit analyzes
tracked data and identifies critical components as DOM elements that
probably have touch related problems (missed links or zoom levels
beyond some threshold values). This analysis may be compared to the
processing that our usability smell finders perform when classifying
DOM elements with potential usability problems. However, while
W3Touch uses an ID-based classification of DOM elements to segment
the page into critical components, USF uses a similarity algorithm to
classify DOM elements in terms of semantic equivalence, and thus, in
terms of having the same smell and the same solution. The main
difference with our proposal is that W3Touch is essentially focused on
responsiveness issues for touch-based devices, rather than usability in
general. Also, W3Touch is able to detect interaction issues on single
pages, while our approach is able to catch higher level usability smells
that could entail navigation across pages, yielding to a broader range of
detectable issues.

3. Usability smells of user interaction

This section provides the definition of usability smell that we use in
this work, and describes our catalog of usability smells for user
interaction. In the refactoring jargon, the term bad smell describes a
potential problem with known consequences, and also known solutions
by means of refactoring (Fowler, 1999). In the case of usability, a bad
smell is a hint of poor interface design that makes it difficult for the
end-user to accomplish common tasks.

In our previous work we found that detecting usability smells could
be very demanding as it requires experience and time. Therefore, it is a
task that can be greatly improved with automation at different levels,

which is why we strive a fully automated detection of usability smells.
This would make the approach practical and useful for all developers,
independent of their expertize in usability. By achieving automated
detection of usability smells, our goal is to also point to a concrete
usability refactoring to solve it. However, finding matches for smells
and refactorings requires the abstraction level of usability smells to be
much more concrete than the ones featured in our existing catalogs.
For example, the smell User Confusion may have several unrelated
causes like misleading links, lack of information or content redun-
dancy, and thus, it is related to different refactorings as solutions, like
Improve the description of process links, or Clearly describe errors in
executed activities (Distante et al., 2014). Consequently, to build
automated tools we had to define much finer-grained smells than in
previous catalogs.

Moreover, since we advocate for agile development methods and
incremental usability improvement, we aimed at incorporating con-
stant user feedback by capturing real user events. Building upon
previous literature on UI event log analysis, we defined a catalog of
usability smells for user interaction by abstracting patterns of user
events that were shown to create problematic interaction, and then
linking those patterns to usability smells that can be (i) automatically
discovered and (ii) solved by applying usability refactorings.

We next present a catalog of usability smells of user interaction.
Each smell is described by name, description, and example. Afterwards,
Table 1 connects each smell with its recommended solution in terms of
a usability refactoring, and also the related smell from the previous
catalog.

1. Undescriptive Element: this smell appears when many users try
to get a tooltip from a webpage element. This may indicate that the
element is not self-descriptive enough. According to the Design and
GUI Guidelines for Windows 10 Developer3: “A valuable tooltip will
clarify an unclear action.” An interesting feature of this smell is that
it will appear no matter whether the tooltip is actually implemented
or not, since the mere necessity of displaying can indicate a problem
with the element’s description.

For example, Fig. 1 shows a screenshot of Google Drive where we
found that inexperienced users hover over their names (in this case,
"Alejandra") looking for a "log out" option. User names were removed
from the heading of Google Drive in the latest version.

2. Misleading Link: this smell is similar to Undescriptive Element
but specific to links. Besides tooltip attempts on links, this smell
also captures sequences of events where many users navigate a link
only to return shortly after, indicating that most probably, the
linked contents are not correctly represented by the link name.

This problem with Misleading Links has been documented in
the motivation for applying the web design pattern "Descriptive,
Longer Link Names" (van Duyne et al., 2006), which points to the
frustration of users that continually "pogo" back and forth when
navigating links that don't interest them. A common example is a
link poorly described by a stub text like “click here”, which can lead
to a content that the user did not expect.

3. No Processing Page: this smell is detected when users have to
wait too long for a page to load without feedback. The waiting
threshold intends to capture the moment when users lose interest.
This has been studied in the literature, and although the thresholds
vary from one study to the next, they typically range between 8 and
15 s (Nah, 2004). During our trial runs we have achieved best
results with a 10 s threshold. This smell is inspired by the
motivation for the web design pattern “Processing Page”.4.

3 https://msdn.microsoft.com/en-us/windows/uwp/controls-and-patterns/tooltips
(last accessed Jun 8, 2016)

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

132

4. Free Input for Limited Values: this smell is triggered when a
standard text input is used for entering data from a limited set of
values, like cities or countries. Users are forced to type the full text
when in fact the options are restricted. In the case when there are
few options, a select box is more suitable than a text input, and
when the number of options drops below 5 or 7, a radio button set
is more appropriate. This smell may also appear when the options
are not restricted but there is actually a narrow set of very popular
choices. In that case, at least an auto completion feature should
help users type less text, feeling more reassured about the entered
option.

5. Unformatted Input: this smell indicates that a standard text
input is being used to enter data that has a determined format, like
dates, phone numbers or zip codes. In these cases, the form could
help the user format the data. While entering phone numbers or
dates, for example, automatic formatting can be very useful,
especially when the site has an international audience. In our
experiments we found that using calendar widgets instead of
unformatted text inputs for dates may improve satisfaction in use
in online stores (Grigera et al., 2016). This smell is detected by
matching the entered data with regular expressions (one for each
format).

6. Short Input: this smell is detected when an input field is not wide
enough to match the size of the most usually entered texts.
Inadequate text input width is a confusing issue, as pointed out
by authors like Wroblewski (Wroblewski, 2008). In fact, text inputs
that are much wider than actually required can also confuse users
(we plan to capture these cases too).

7. Unnecessary Bulk Action: it is usual for web applications that
display lists of items (like products or messages) to offer bulk
action capabilities. Users typically perform these actions by first
selecting a group of items using checkboxes, then selecting the
action, e.g. “Delete”, or “Move to…” and finally applying the action
(although this last step might be unnecessary, depending on the
way of choosing the action). While this interaction works well when
applied to a group of items, it takes unnecessarily long to apply to a
single one. When the most frequent case is the latter, and users do
not have (or do not use) an alternative, faster, way of applying these
actions, the smell Unnecessary Bulk Action is detected. This smell

emerged from our own previous work on accessibility refactoring,
and appeared as “Difficult interaction to apply operations on
elements” (Garrido et al., 2013). For unsighted users, this smell
is quite serious, as it requires going through the page elements
many times with the screen reader, first to read the list elements,
then to select one or more, and finally to select the operation to
apply on the element, which usually appears at the top of the list.

8. Overlooked Content: some content is usually scrolled-through
very quickly by users, so it is probable that they don’t read/see it.
Also, they usually stop at the same area (y-position), so it’s likely
that the reached content could be easier to find if it were closer to
the top. While nowadays users are allegedly more willing to scroll,
they still need a reason to do so, since it still involves an extra
interaction step. Apart from signaling a potential usability issue,
this smell provides valuable input when the overlooked content is
considered of importance by the web application’s owner. Some
web analytic tools provide scroll maps which show how far down
the page users scroll, but do not show at which speed.

9. Distant Content: this usability smell detects repeating navigation
paths where users only stay for a brief time at all intermediate
nodes. The rationale behind the smell is that users are seeking for
the contents in the final node, but this requires a long path to reach.
A usual way of studying navigation usability is often by comparing
optimal paths with real ones followed by users, either in a real
context or in experiment settings (Atterer et al., 2006). The Distant
Content smell, however, indicates that the most followed path from
node A to node B might be too long.

10. No Client Validation: reporting errors on web forms in a clear
and timely way is a widely known guideline for web forms usability
(Seckler et al.. 2014). This smell detects forms that have a high
rejection rate, where validation happens on the server side. This
scenario is detected by keeping track of a new request, and the
presence of the same form after the response.

11. Late Validation: this smell is essentially the same as the
previous one, No Client Validation, with the difference that it is
specific for the scenario where validation occurs after the “Submit”
button is clicked, but submission does not happen. This usually
means there is client-sided validation, but could be improved by
inline validation. This kind of validation has been reported to

Table 1
List of usability smells and associated refactorings.

Smell Id Usability Smell Abstract Usability Smell (s) Refactorings

1 Undescriptive Element User Confusion Rename Element/Change Widget
2 Misleading Link User Confusion Rename Anchor
3 No Processing Page Premature Abandonment Add Processing Page
4 Free Input For Limited Values Risk of Error/Activity too Long/Frequent Empty Results Add Autocomplete/Change Widget
5 Unformatted Input – Change Widget
6 Short Input User Confusion Resize Element
7 Unnecessary Bulk Action Activity Too Long Distribute Menu
8 Overlooked Content – Split Page/Remove Redundant Content
9 Distant Content User Distractions Add Link
10 No Client Validation Subsequent Failed Validations Anticipate Validation
11 Late Validation Subsequent Failed Validations Anticipate Validation
12 Abandoned Form Premature abandonment/Activity too Long Split Activity/Postpone activity
13 Scarce Search Results Frequent empty results. Add Autocomplete
14 Useless Search Results – Add Autocomplete
15 Wrong Default Value Unnecessary activities in the main process Set Default Value
16 Unresponsive Element Difficult Access to Information/Absence of Meaningful Navigation Links Turn Attribute Into Link/Change Widget

Fig. 1. Screenshot of the heading of Google Drive in May'2016.

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

133

improve several metrics like success rates and completion times in
some cases 5 (Wroblewski, 2008).

12. Abandoned Form: this smell is detected when the drop-off rate
of a form exceeds a given threshold, thus alerting the evaluator of a
form that is probably too complex and it discourages users to fill it.
During our trial runs, we got better results with this threshold set to
40%, although this is particularly difficult to standardize since web
forms have many different purposes; a login form is expected to
have much higher success rate than a contact form or a registra-
tion.

13. Scarce Search Results: search forms are a fundamental part of
the web, as pointed out by Nielsen at the top of his “top 10 mistakes
in web design”.6. This smell is detected when a form does not bring
results most of the times. It also saves the most popular unsuccess-
ful queries to provide the web owner with a ranking.

14. Useless Search Results: as a variant of the previously listed
Scarce Search Results, this smell detects what happens after a
search form does bring results. If users rarely click on one of such
results, then it might be that such results, even if they appear, are
not what users were searching for. Sometimes, however, the results
page can be informative enough that a further click is not
necessary, and this smell could be ignored.

15. Wrong Default Value: filling up a form can be tedious, so
having as few questions as possible increases the likelihood of users
completing it. Having reasonable default values (“smart defaults”
(Wroblewski, 2008)) for the questions decreases completion time
even more. This smells detects whenever the most popular choice
for a radio button set or a select box doesn’t match the default
value. This smell is linked to the smell Unnecessary activities in the
main process from our previous catalog.

16. Unresponsive Element: this smell is detected when an element
is usually clicked by users, but does not trigger any actions. This
happens when such elements give a hint because of their appear-
ance. Typical elements where we have found this smell include
products list photos, website headings, checkbox/radio button
labels, underlined/highlighted texts.

.
As we previously mentioned, most usability smells presented in this

section are specializations of more generic ones presented our previous

catalog (Distante et al., 2014). In Table 1 we include a list of all
refactorings and, when applicable, also link them with the previously
cataloged smells.

The definitions of refactorings on the right column of Table 1
appear in previous works (Garrido et al., 2011; Garrido, Firmenich,
et al., 2013; Distante et al., 2014; Harold, 2012). Some refactorings,
however, were cataloged in more general forms than the ones in
Table 1: Rename Anchor is a concrete form of Improve the description
of process links and Resize Element is a specialization of Change
Widget. Moreover, note that these refactorings were cataloged as
solutions to more abstract usability smells. For example, the general
smell User Confusion may be solved by any of the refactorings Rename
Element, Rename Anchor, Add Processing Page, Split Page or Remove
Redundant Content. Thus, this work contributes to a more precise
matching between usability smells and associated refactoring.

It’s important to remember that usability smells are hints or
indicators of problems, and in some cases they could not point to an
actual usability issue, depending on the context. For instance, a Wrong
Default Value could suggest that the most popular choice should be set
as default, when in fact the designer requires a different one (e.g. when
setting on purpose the option to receive a newsletter).

4. The process

Our automated strategy to usability smell identification is based on
a process consisting of three steps: Events Logging, Usability Smells
Detection, and Reporting. In addition, the architecture for this process
is divided into a client-side component that performs Events Logging,
and a server-side component that is responsible of the remaining two
steps.

In the Events Logging step, the client-side component mines fine-
grained events to filter and aggregate the relevant ones into mid-level
events called usability events. In the Usability Smells Detection step,
the server-side component classifies and analyzes usability events using
specialized algorithms to discover usability smells. Finally, the server-
side component is also responsible for the Reporting step, when
usability smells are instantly visualized along with the suggested
refactorings that may solve them, and with enough detail for devel-
opers and stakeholders to understand the problems and take action to
fix them.

Fig. 2 shows an overview of the 3 steps of the process and the
following subsections describe each step in detail..

4.1. Events logging

Events logging is a strategy that many researchers have long studied

Usability
Events
Logger

Usability
Events Usability

Smells

Client Side

end users

web app under analysis

Server Side

Events Logging Usability Smells Detection Usability Smells Reporting

 Usability
 Smells
Finder

Usability Smells Report

web app
owner

Fig. 2. The three steps of the process.

4 http://welie.com (last accessed Jun 8, 2016)
5 http://alistapart.com/article/inline-validation-in-web-forms (accessed Jun 14,

2016)
6 https://www.nngroup.com/articles/top-10-mistakes-web-design (accessed Jun 14,

2016)

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

134

to understand user behavior and problems in user interaction (Ivory
and Hearst, 2001). Most approaches simply log all UI events at the
client, and later perform sophisticated log analysis at the server, to
provide visualizations of different metrics or compute deviations of
user events from an optimal way of performing a task.

During our own research in web usability refactoring, we realized
that manually detecting usability smells on web applications was a
costly task that could be automated by using known analysis techniques
over UI events. It is important to note, however, that we aim at
providing developers with real-time reports as soon as the smells are
discovered, and processing potentially huge amounts of low-level logs
on the server would take too long. For this purpose, we perform a
preliminary analysis at client-side, filtering and aggregating low-level
UI events and sending to the server only the ones that could lead to
detect a usability smell. Besides, by doing client-side processing we are
able to gather information of the user context at the very moment the
event is taking place. Thus, the aggregation of low-level UI events,
together with context information about the event, allow us to generate
higher-level events that we call usability events.

Usability events were mostly designed in a top-down fashion from
usability smells, i.e., we first observed the behavior that indicated the
presence of a usability smell, and then decomposed this behavior in
smaller-grained actions that can be automatically captured from single
users in single sessions of work. An example of a usability event is
Flash Scroll. When a user scrolls faster than a given speed, a Flash
Scroll event is logged that aggregates all relevant data like starting/
ending vertical position, speed and timestamp. All usability events
generated by different end-users are collected and analyzed at the
server, in the second step of the process. In this example, if enough
users trigger the Flash Scroll event on the same DOM elements, this
will indicate the presence of the usability smell Overlooked Contents,
that is, the often scrolled-through content may not be of interest to the
visitors.

There is a many-to-many relationship between usability events and
usability smells, i.e. a single usability event can help to detect different
kinds of usability smells, and detecting certain usability smells requires
analyzing more than one kind of usability event. Below we describe all
usability events and afterwards Table 2 lists the correspondence
between usability events and usability smells. For each event we also
define its threshold values.

For all events that apply to a DOM element, such element is stored
including its xPath, dimensions and position, which are later used in
the reporting stage to display it. The HTML code is also logged, since it
is fundamental to cluster events by similarity as they arrive at the
server. All the events are stored with a timestamp.

A. Tooltip Attempt: this event is generated when a user poses the
mouse cursor on an anchor or image for a certain amount of time.

The event includes the affected DOM element and the waiting time.
There is a minimum and maximum waiting time threshold, set by
default to 1.5 and 5 respectively, which were the values that better
captured this behavior during our preliminary experiments.

B. Click Attempt: this event is generated when a user clicks on an
element that doesn’t react. Mouse clicks on most DOM elements
(excepting e.g. anchors or form controls) are tracked, and if they are
not followed by a navigation or an action, the event is triggered. A
Click Attempt stores the timestamp and information on the clicked
DOM Element. The algorithm that detects this event rules out clicks
made on large elements, since they usually represent accidental
clicks that, for instance, users make to ensure focus on the browser's
window. It also discards clicks made for selecting text, or dragging
elements.

C. Flash Scroll: this event is generated with a quick scroll action,
either up or downwards, over a long area. The data that is saved
with the event is the URL, initial/final top, and duration of the
action. Based on our experiments, the default scroll speed threshold
is set to the page height divided by 2 s.

D. Flash Navigation: this event consists in a rapid navigation
sequence, where a user navigates to a given page, browses it for a
very brief time, and returns to previous page shortly after. The event
stores the DOM information of the clicked anchor, both source and
target URLs, along with the dwelling time at the target. The
threshold for maximum dwelling time is configured to 3 s.

E. Navigation Path: this event is similar to Flash Navigation in that
it reveals rapid navigation sequences, but in this case the event is
created when 2 or more quick navigations happen in a row, over a
path of pages. The path is recorded, where each node contains the
clicked anchor and the target URL. The dwelling time at each node
is set to 3 s.

F. Search: The Search event is used to count the number of
successful/unsuccessful searches that users perform, and whether
successful searches were actually useful. The algorithm that detects
this event follows 3 steps:

1. When the user submits a form, the first step uses a simple heuristic
to determine whether it is a search form (by analyzing properties like
the submit button’s caption, the number of text inputs, the word
‘search’ in different languages). In the case of a search form, the
search query is stored.

2. After the submission, the second step scans the resulting page for a
list of results that contains the search query. This step attempts to
establish whether the search was successful or not.

3. Once the user leaves the results page, the third step logs how that
happened, i.e., whether the user clicked one of the results (meaning
the search was useful), or navigated away.

Only after the third step is the event sent to the server, with all the
associated information: search query, search form contents, presence
of search results, and whether the user clicked on any of them.

Since steps 1 and 2 are based on heuristics, we adjusted them based
on several tests on popular sites to ensure they cover the most possible
cases.

A. Bulk Action: this event is logged when a set of elements in a list is
checked, and then a submission occurs. The algorithm covers
different scenarios using the following heuristics:
a. to detect a list of checkable elements, it searches for a list of

aligned checkboxes - or elements shaped as checkboxes with
attributes “class” or “role” equal to “checkbox”. The minimum
number of elements to be considered as a list is configured by
default to 4.

b. to detect a bulk action, the algorithm verifies if no checkboxes are
checked after any click or navigation.

This event logs the form's DOM information, along with the

Table 2
Usability Events and their related Usability Smells.

Event Id Event Usability Smell

A Tooltip Attempt Undescriptive Element
B Click Attempt Unresponsive Element
C Flash Scrolling Overlooked Contents
D Flash Navigation Misleading Link
E Navigation Path Distant Contents
F Search Scarce Search Results, Useless Search Results
G Bulk Action Unnecessary Bulk Action
H Option Selection Wrong Default Value
I Form

Submission
Late Validation, Abandoned Form, Scarce
Search Results, Useless Search Results

J Unfilled Form Abandoned Form
K Text Input Free Input For Limited Values, Unformatted

Input, Short Input
L Long Request No Processing Page

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

135

count of checked items.
B. Option Selection: this event logs a selection made on a select box

or a radio button set. It particularly detects whether the default
option has been changed. This information is logged along with the
selection index (and also text, in select boxes) and the form’s DOM
element data.

C. Form Submission: the main aspect captured by this event is the
validation strategy in a given form, i.e., at which point after a failed
form submission errors are displayed to the user. The algorithm for
this event evaluates what happens after the submit button is clicked.
If a new navigation follows, then it searches for the same form on
the destination page, in order to determine if the submission was
rejected (excluding search forms, since they usually appear back
again in the results’ page). If no navigation happens, then the form
is assumed to have client-side validation. The validation strategy is
logged along with the form’s DOM element data.

D. Unfilled Form: this event is generated when a form gets partially
filled and then abandoned.

E. Text Input: this event is logged any time a user fills a text input,
along with several additional details:

– input time: the amount of time the user spent writing, i.e., from
focus to blur events.

– keystrokes count: amount of keys pressed, which could be different
from the resulting text size. This can be used for deriving interesting
insights, e.g. when it is usual to have few keystrokes and much larger
texts, it may indicate the presence of auto-completion.

– resulting text (except when the input type is “password”)
– correction: indicates whether the input was previously populated
– DOM element information.

This event in particular provides useful information to the process
and helps to detect several usability smells.

A. Long Request: this event logs whenever a request takes longer
than a given threshold. The event logs the source and target URLs,
along with the waiting time.

4.2. Usability smell detection

This step consists in classifying, aggregating and analyzing the
captured usability events to discover usability smells. Since the analysis
for detecting different smells varies from one to the other, there is a
different algorithm for each one. These algorithms are implemented in
entities called usability smells finders, and each one of these finders is
able to detect a single kind of usability smell by consuming and
analyzing one or more kinds of usability events. Each application
under analysis has its own set of finders, and each finder is configured

with certain parameters that determine the number, proportion, or
combination of usability events that trigger a specific smell. Even if we
provide default optimal values obtained through experimentation with
the tool, they can be adjusted for specific purposes.

In order to produce results in real time, usability events are
processed at the moment they arrive at the server, and all the
individual usability smells finders re-evaluate the events to detect
potential new usability smells. To speed up the detection process, we
adjusted it so the execution time does not depend on the amount of
logged events. This happens in 3 steps:

1. Events classification: at the time of arrival, the new usability
event is sent to the associated finder(s). For example, if a new Click
Attempt arrives, it is sent to the finder that detects Unresponsive
Element smells. Once the event has reached a finder, it is classified
once again, this time depending on the element it affects (e.g. a DOM
element). This allows us to re-evaluate only the events affecting this
particular element.

2. Data synthesis: as soon as the event is classified by its affected
element, the finder extracts some key information from it. For
example, it might increment a count or update a buffered average.
This synthesis step is key for the process’ performance, since it
avoids going through all the events each time a new one arrives.

3. Usability smells evaluation: with the updated info brought by
the new event, the single finder reevaluates the presence of a smell
on the affected element. New smells will be added to the report, and
old smells which are no longer detected (because updated values do
not meet the thresholds anymore) are kept for completeness of the
report, but this is indicated to the evaluator.

This way of processing data, especially the Data Synthesis step,
allows us to obtain instant results without depending on the amount of
usability events. The three steps for usability smells detection are
depicted in Fig. 3. In the figure, circles represent usability events that
travel from the client to the server component, where they are clustered
to help detect usability smells..

The set of finders can be easily extended. The architecture is
prepared in a way that adding a finder for a new kind of usability
smell only implies selecting the kind(s) of usability events to be
consumed, the criterion to group them together (by default is set to
same/similar DOM element), and the logics for detection, that typically
involves counting proportions on the grouped events’ properties.

We will illustrate the detection process with two usability smells,
Scarce Search Results and Free Input for Limited Values, showing a
brief description for each one, the usability events that trigger them,
and how these events are processed. Additionally, we enumerate the
parameters that can be adjusted for the detection process and the
refactorings suggested to solve the usability smell.

Usability Event
Related Finder

Data Synthesis Smell Evaluation

Affected Element

Usability Smell

Fig. 3. Usability Smells Detection.

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

136

Scarce Search Results.

• Description: a search form usually fails to bring results.

• Associated Usability Events: Search.

• Detection Process:

1. For each form affected with search events, split the events in two
groups: those that indicate results, and those that indicate absence
of results.

2. If the group of events without results is proportionally larger than
the other set by a given threshold, then trigger the bad smell on the
form.

• Adjustable Parameters:

a. Minimum “no results” proportion: what is the minimum proportion
of searches with no results to consider the presence of the bad
smell?

• Recommended Refactorings: Add Autocomplete to the search form,
decreasing the users’ uncertainty before hitting the search button.

In this case, the logics are simple, but the client-side script plays
a major role at collecting usability events, since it logs whether the
search action was successful or not.

Free Input for Limited Values

• Description: a free text input is presented to the user, but the
accepted values belong to a limited set.

• Associated Usability Event: Text Input.

• Detection Process:

1. For each input field, collect all Text Input events.
2. For all Text Input events on a given input field, group together the

events with a same or similar value. By default, the finder uses
Levenshtein's algorithm to compute string similarity (Levenshtein,
1966). Collect the remaining unique values in a group called other.

3. Count the events for each group.
4. If (a) the size of each group except other is larger than a minimum

proportion threshold, and (b) the proportion of the group other is
smaller than a tolerance threshold, then trigger the bad smell on the
current input field.

• Adjustable Parameters:

a. Minimum events count: how many Text Input events an element
must have before considering the bad smell detection?

b. Minimum group proportion: how large must a group of similar
values be, in terms of proportion, to consider it a frequently typed
value?

c. Maximum proportion of unique values: how many infrequent
values should be tolerated?

d. Similarity algorithm: how do we determine that two different values
must be considered to be the same?

• Recommended Refactorings: There are two possible solutions for
this bad smell. One is Add Autocomplete for the input field. The
other is Change Widget, i.e. replace the input field by a fixed
selection widget such as a select box or a radio buttons' group,
depending on the number of options. Note that with the second
solution, it is still important to offer a generic option "other", even if
there were not infrequent values observed, so to preserve the
original functionality that allowed any value to be entered.

For example, consider a checkout form where users indicate a
shipping address, and the "City" field is a text input. The website only
operates in Denmark, so there is a limited set of possible cities.
Analyzing the events, the system finds large groups of repeated values
like “Aarhus”, “Copenhagen” and “Aalborg”, even with typos or
different casing/spelling (e.g. “ÅRHUS”). Fig. 4 shows this distribution
of values..

While there are also a 4% of values with random text or unknown
cities, the “City” field is affected with the bad smell Free Input for
Limited Values.

4.3. Reporting and refactorings suggestion

The final step of our process involves reporting the detected
usability smells, along with the refactorings that can be applied to
solve them. At this stage, each smell is presented with information
intended to help the developer make a decision. For example, the
Scarce Search Results smell informs a ranking of the top queries that
brought no results to the end users, and the Late Validation shows the
bounce ratio of the form. As we previously explained, in the particular
case that an existing smell is no longer detected, the smell is kept in the
report with an indication for the evaluator, for completeness purposes.

The report also recommends the refactorings that may solve each
detected smell. When the developer applies a refactoring, they should
reset the statistics for that particular smell, so the process of smell
detection starts again. This iteration causes a continuous assessment of
the website, to ensure that the solutions applied actually solved to
reported problems.

5. The tool

We implemented our approach in a tool called Usability Smells
Finder (USF), which works as Software-as-a-Service. Usability evalua-
tors can sign up, and the tool provides a code snippet that they must
have included in their web application. This snippet enables the tool to

Values ente red at //@city input

VALUE TIMES ENTERED

Aarhus 400

Odense 640

Aalborg 234

Copenhagen 987

Other 89

Other
4%

Copenhagen
42%

Aalborg
10%

Odense
27%

Aarhus
17%

Fig. 4. Sample data for detection of Free Input for Limited Values.

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

137

log interaction data for finding usability smells, which are then
graphically reported in the website owner’s account. An early version
of USF tool was introduced in a previous publication (Grigera et al.,
2014).

5.1. Event logging mechanics

The Events Logging step is implemented by a client-side script that
intercepts selected low-level UI events. Whenever an end user loads a
page, the script starts analyzing low-level events like single keystrokes
or mouse moves. It then processes these events according to different
criteria and generates higher-level usability events as described in
Section 3, which are sent to the server for further analysis. This client-
side processing also discards events that will not help to detect bad
smells, reducing the communication with the server and preventing
unnecessary heavy-weighted computation. The script is able to capture
usability events even when they require information across different
pages (or requests), such as the Navigation Path event, which keeps
track of quick navigations sequences. Still, it does not interfere with the
users' interaction, making it suitable for production stage. Threshold
values for usability events generation may be adjusted in the snippet
code. This way expert evaluators may tweak the tool to their needs.

When developing a tool that logs events from users, their privacy
becomes an important concern. We implemented some measures to
mitigate the risk of user identification from the logged information.
First, the UI events our tool logs contain no information about the
users or their devices (such as IP addresses). While the script is able to
keep track of events even across different pages, these events are only
focused on simple actions instead of complete tasks, and there is no
reliable way of reconstructing a particular user’s session by grouping
events. In addition, the client-side script never records passwords or
credit cards, only a stub text for the sake of indicating that something
was typed. In the case of passwords, the tool verifies the input’s type; in
the case of credit cards, after a first detection of input name and label,
the script verifies the entered number using regular expressions. Notice
that only the format is checked, and other validations like the Luhn
algorithm are omitted, since storing an almost correct credit card
number (or many similar ones) can be nearly as dangerous as storing
the correct one. No matter these basic precautions, there is still a risk of
user identification, and further anonymization techniques should be
used to intensify privacy. For example, emails and phone numbers
could be detected and substituted with data masking techniques to
preserve a real looking data. Moreover, in the cases where storing a
realistic data format is not useful, e.g. people’s names, this data could
be directly obfuscated as done with passwords. However, in this case it
is important to correctly detect the data nature, so valuable, not private
information is not kept from the tool.

5.2. Smell detection mechanics

The Usability Smell Detection step takes place at the server, using
the different kinds of usability smell finders. Each kind of finder detects
a specific type of usability smell, and each application under analysis
has its own set of finders with potentially different configurations. As
previously described, we provide a default configuration to parameter-
ize finders, but evaluators may adjust the configuration to their needs.

A finder classifies the detected usability smells by a common
criterion, generally by the affected DOM element, but also by URL
(smells No Processing Page and Overlooked Contents) or URL
sequence (smell Distant Content). When smells are classified by
DOM element, it's important to note that a single HTML template
may be used to generate different but equivalent DOM elements, i.e.,
different instances of the same widget (for instance, different products
in a list). Detecting these cases is key to our approach, to prevent
populating the usability smells' report with different smells that are
actually a single one on equivalent elements. The tool is able to

establish the level of similitude between two DOM elements, to
determine whether they share the same template. This is achieved by
using a tree similarity algorithm, which determines the edit distance
between two DOM elements' trees, in a similar way than the
Levenshtein distance does for comparing strings (Levenshtein, 1966).
This is used along with a simple clustering strategy to classify the DOM
elements. We have in fact implemented different comparison strategies
in the USF tool, by modifying known Tree Edit Distance algorithms like
RTDM (Reis et al., 2004), usually conceived for analyzing full web
pages, to compare smaller DOM elements, as required by our approach.
We use a strict matching to avoid grouping DOM elements that are
semantically different. Details of such implementations are out of the
scope of this paper, but during early tests with a group of 350 DOM
elements captured from known websites we have reached a precision of
0.963, and 0.992 recall in the DOM elements similitude comparison. At
the time of writing this paper, we are still conducting experiments to
find the best DOM matching algorithm in terms of precision and
performance.

5.3. Reporting mechanics

Our tool reports bad smells right as they appear. Despite that it
requires a minimum amount of events before showing interesting
results, evaluators can check on the application’s bad smells status at
any time. For enabling on-the-fly reports, we developed a web frontend
that shows detailed information on every bad smell, including when
possible a live view of the affected widget (or a representative instance).
Fig. 5a shows a screenshot of a real application used for the Smells
Experiment. Two problems of the web page are highlighted in the
figure: the one labeled as “A” is a widget that displays the steps
composing the current process and the current step being executed, but
it does not allow to navigate back to a previous step; the one labeled as
“B” is an error message that appears after hitting submit and the
validation fails. Fig. 5.b shows two screenshots of the USF tool
reporting two usability smells: Unresponsive Element and Late
Validation. In this case, the Unresponsive Element smell was detected
after many users attempted to go back in the checkout process, by
clicking on the previous steps buttons without realizing they were
actually grayed out. The Late Validation smell was detected after many
users tried to submit an incomplete form that didn’t indicate the
required missing fields until they hit “Submit”..

Each usability smell shows specific data for a better understanding
of the problem. In the case of Late Validation, the reporter shows the
percentage of unsuccessful form submissions, and in Unresponsive
Element, the number of times the element was clicked. The tool also
suggests refactorings for the detected smells, together with a brief
description and a link to "Learn more" about the refactoring me-
chanics. Evaluators can also ignore usability smells presented in the
report (as shown in Fig. 5c), either because they do not consider the
smell to be a problem or because of a false positive. Moreover,
evaluators may reset the stats for a given smell, e.g., after applying a
refactoring.

In Fig. 5b, the reporter suggests the refactoring Turn attribute into
link (Garrido et al., 2011) to solve the smell Unresponsive Element, in
this case by allowing users to go back to a previous step on the process.
In the case of the Late Validation smell, it suggests the refactoring
Anticipate Validation, which embodies validating the input fields
earlier, to prevent the users from trying to submit before the right
data is entered.

6. Assessing the approach

To assess the validity of our process and its implementation with
the USF tool, we ran two experiments. In Section 6.1, we describe an
experiment that validates the usability events detection process per-
formed by the client-side component. In the remainder of the paper we

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

138

Fig. 5. a. Screenshot of a web application under analysis, 5b. Screenshots of the tool displaying captured usability smells, Fig. 5.c. Screenshot of bad smell report.

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

139

will refer to this experiment as Events Experiment. In Section 6.2, we
show a second experiment that validates the server-side component
with respect to the success and reliability of the usability smells
detection process. This experiment will be referred to as Smells
Experiment.

6.1. Usability events validation

Our approach depends heavily on the correct detection of usability
events. Some of these events involve heuristics that may be error-
prone, like interpreting user’s intention (did the user actually mean to
click on this widget?) or inferring the nature of a GUI widget (is this
DOM Element a search form?). We first performed a preliminary
evaluation with several trial runs on different websites, and we were
able to adjust the events detection heuristics and parameters.
Following the preliminary evaluation, we performed an experiment to
validate the accuracy, precision and recall of the USF tool when
detecting usability events using these heuristics and parameters.
Such experiment is described in this section.

To do this validation we actually had to consider two very different
scenarios: on the one hand, we needed to test heuristics involving user
intention interpretation, and on the other, those involving detection of
DOM Elements. Other heuristics were very simple or involved no
interpretation whatsoever, so we did not consider them for the
validation. We detail all these cases in the following subsection.

6.1.1. Experiment definition and planning

Before actually planning the experiment, we determined that we
had 3 different groups of heuristics within the 12 usability events the
USF tool is currently able to detect:

1. Heuristics involving user intention: the usability events that
depend on these heuristics are Tooltip Attempt, Click Attempt, Flash
Navigation, Navigation Path, and Flash Scrolling.

2. Heuristics involving detection of DOM element semantics:
the usability events that depend on these heuristics are Bulk Action,
Search, and Form Submission,

3. Low level heuristics: these heuristics depend almost solely on low
level events, so they are very unlikely to fail, or the few scenarios
where they could, are very hard to reproduce in an experiment with a
restricted set of web applications. Hence, we left them out of the
validation. They are the following:
a. Text Input: filling up a text field is a very low level event and we

consider it very difficult to either miss it (false negative) or
misinterpret it as an accidental action (false positive).

b. Option Selection: this event detects when a user has selected an
option from a select box or a radio button set. We didn’t validate
this heuristic since cases where non-standard widgets are used for
these kinds of selection, while they do exist, are very unusual.

c. Long Request: this particular event detects a long time between
requests. After 3 s between page loads, the event is triggered.
Although we do not rule out the chance of misdetection, during
our tests we found no cases where this failed. It should be noticed
that the 3-s threshold was set for the sake of not missing events,
and the associated smell has a 10-s threshold, as explained in
Section 2.

d. Unfilled Form: this event combines the detection logics of Text
Input (to detect the moment a user starts filling a form) with the
low level page unload event, which can be securely captured in
the vast majority of web applications. Hence, it has a marginal
chance of misdetection.

To test the heuristics in group 1, we asked a group of users to
perform specific interactions, and then compared the usability events
we observed “manually” with the usability events automatically cap-

tured by our tool during that period. The experiment preparation then
consisted in creating scenarios where these usability events should be
detected, and a second set of scenarios where the events should not be
detected but the tool could be “tricked” into doing so. We created
different groups of such scenarios to generate more comprehensive
tasks in order to recreate realistic situations for the subjects. We used 3
websites of different domains, and recruited 15 volunteers to run tasks
on 2 websites each. Volunteers were 8 males and 7 females with ages
ranging from 26 to 64 (x̄ 35.66, s2 75.52), and had diverse backgrounds
and knowledge on the selected websites, from regular users to new-
comers. Further details about users and tasks can be found in Appendix
A.

During the test, we ran the tool to capture usability events, while we
closely observed the interactions to manually detect events that the tool
might have missed, or incorrectly logged. Two evaluators were involved
in the experiment: one was in charge of guiding the volunteer through
the tasks while the other monitored the events as they happened using
a modified version of the USF tool that provides instant visualization of
usability events. While the first was concerned with the undetected
events (false negatives), the second was in charge of detecting the ones
incorrectly logged (false positives). In the cases where we used popular
websites on which we naturally cannot install the client-side script, we
incorporated it using browser extensions.

The heuristics in group 2 (for events Form Submission, Search and
Bulk Action) are mostly based on DOM element analysis and need not
be tested by different subjects, since their interpretation do not affect
the results. Instead, we tested them across different websites to assess
the tool’s ability to detect the same situation across different pages. The
evaluated websites were obtained from the Alexa’s top sites ranking7

(local and global), plus those from the experiments with volunteers.
The criterion for selecting the sites was twofold: first, we had to make
sure they involved some interaction, as opposed to text contents only.
The other criterion was merely technical: given the technique we used
to simulate the tool’s installation by using browser extensions, part of
the tool’s functionality was in some sites blocked for security reasons,
so we had to discard such sites.

6.1.2. Results

After the experiment for both groups of heuristics, we cross
examined the observed results and the logged usability events to obtain
different indicators. We used the F2 score to obtain a measure on the
precision and recall of the tool’s performance. We selected this
measurement over the most widely known F1 score because it gives
recall a higher weight, and at this stage of the process we prioritize
recall over precision – the second stage of the process may dismiss false
positive events when finding smells, but missed ones can’t be recov-
ered. Table 3 shows all measures for each usability event.

Accuracy determines the percentage of events correctly diagnosed
by the tool, i.e. correctly captured and correctly omitted, that matched
our criterion in the observed behavior of the subjects. Recall indicates
how many events were correctly captured with respect to all that should
have been captured according to our observations, without considering
omissions (neither right nor wrong). Finally, precision shows the level
of false positives, i.e. out of all the captured events, the proportion of
correct ones. The F1 and F2 scores work as a weighted average of these
measurements:

F precision recall
precision recall

=2* *
+1

F precision recall
precision recall

=5* *
4* +2

7 http://www.alexa.com/topsites (last accessed Jun 8, 2016)

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

140

As we explained earlier, we will give more relevance to F2 since we
are interested in measuring recall over precision.

6.1.3. Discussion

Some results deserve a special explanation. High recall percentages
on Click Attempt and Flash Scroll mean that missing a usability event
in these cases is rare, which is coherent with the capture logics with
which they are implemented. They can, however, happen. Some
example of missing Click Attempts are clicks made for text selection
that were interpreted as clicks in the observations, or clicks made
specifically after a text selection that are not captured with the current
heuristics. In the case of Flash scroll, the threshold is speed-based and
simply missed a few scrolls that were judged fast enough in the
observations. Other similar thresholds based on speed that may suffer
the same effect are Tooltip Attempt, Navigation Path and Flash
Navigation. Nevertheless, these thresholds are very conservative. In
the cases of the events in group 2, namely Bulk Action, Search and
Form Submission, the main cause of missing events is failure to detect
forms correctly, or actions related to them, such as submission actions
in non-standard HTML GUIs.

Events can also lead to log false positives, which are consequence of
misinterpreting the user’s intentions, and that’s why their F2 scores can
decrease in comparison with their recall.

The results on F2 show relatively high scores (above 0.65) in the
performance of USF with all the events. Nevertheless, it is possible to
identify among the F2 scores two groups of usability events. The group
that performed better (0.75 < F2 < 0.97 – Click Attempt, Tooltip
Attempt, Flash Scroll, Navigation Path, Bulk Action), matches mostly
the usability events that depend on user interpretation. The group with
moderate results (0.67 < F2 < 0.75, Search, Flash Navigation, Form
Submission) corresponds mostly with events that involve intensive
reasoning on DOM elements’ structures.

Even if F2 measures are acceptable for all events, improving the
detection logics for those that involve intensive analysis on DOM
elements will increase the coverage of detected bad smells. Regarding
the events that show higher recall but low precision (Tooltip Attempt,
Flash Scroll, Navigation Path), the problem that must be addressed is
the false positive rate, that could lead to false positive usability smells.

We consider the results to be a positive scenario, since DOM
elements interpretation can be improved more easily than user
interpretation, simply processing more HTML code samples.

6.1.4. Threats to validity

There is a number of threats to this experiment’s validity. Since we
ran it in two different settings (multiple subjects for user intention/
multiple websites for HTML structure), we considered two separate
sets of threats. In the experiment that involved subjects, we considered
a number of threats that we tried to mitigate. Since we had to search for
events detection in finite sessions, the experiment was affected by the
fishing threat, i.e. searching for specific results. This was reduced by
designing meaningful tasks for the users, and not providing further

guidance during the experiment, to avoid forcing them to run into
specific interaction problems. The external validity threats were
reduced by selecting intentionally heterogeneous volunteers, and with
diverse expertize on the analyzed websites. Also, the websites were real,
and while we provided the subjects with the device to run the tests, we
did not remove them from their workplaces or environments. In the
case of social threats to construct validity, which might affect the
results when subjects are afraid to be evaluated or act differently, we
minimized it by recruiting only volunteers who are not aware of the
process that’s being evaluated, since the logger tool is unnoticeable.
Besides, the process of capturing events is not affected by fearful
behavior in either positive or negative ways.

Regarding the experiment involving many websites, evaluated by
ourselves, we mostly considered external validity threats regarding the
representativeness of the sample. To tackle this issue, we selected
websites from the top 50 websites on the Alexa ranking.

6.2. Evaluation of automated usability smells detection

The evaluation regarding the automated detection of usability
smells assesses how the USF tool performs in real websites, both alone
and in contrast with traditional user tests where an expert observes
users completing tasks on a website, in a controlled environment. The
method used for our assessment is the Goal–Question–Metric (GQM)
(Basili et al., 1994). GQM defines goals, refines them into questions,
and specifies required metrics to answers these questions.

6.2.1. Experiment definition and planning

Our goal was to find out the degree to which the USF tool can
complement or replace manual methods for usability assessment. For
this purpose, we measured USF’s reliability, the agreement with
manual user tests, and the demanded resources.

We refined our goal into three questions, with their corresponding
metrics:

Q1: How many usability problems can the USF tool find with
respect to a typical usability test?

M1: Number of problems found by each approach.
M2: % of problems found by USF with respect to traditional

usability tests.
Q2: How much time and resources does the USF tool require

compared to a typical usability test?
M3: Man-hours spent on detecting problems.
M4: Required resources.
Q3: How reliable are USF automated results?
M5: Number of correct results.
M6: Number of false positives.
In a similar way of the experiment described in Section 6.1, we

performed a preliminary evaluation on several web applications
(different from the ones in the current experiment) in order to adjust
the threshold parameters of usability smell finders in order to drop the
false positives ratio as low as possible. The presence of false positives is
the primary threat that the USF tool faces, being a highly sensitive
approach for the smells it is able to detect, so the parameters
adjustment is mostly related to this aspect. We found that, in order
to get consistent results, different traffic loads required different
thresholds. The trial runs were carried out in 2 periods of 1 month
each. The final threshold parameters are shown in Appendix A.

After the preliminary evaluation, the first part of the experiment
consisted in running manual usability tests on both web applications.
To use as a reference, we ran a typical manual test with 9 subjects, 4
males and 5 females with ages ranging from 25 to 62 (x̄ 35, s2 125.25).
A well-known study by Nielsen affirms that a single test with 5 subjects
can detect about 85% of the usability problems on a website.8

According to this study, the percentage of problems found with n users
is (1−(1−L) n), being L the proportion of usability problems discovered

Table 3
Results of the experiment on usability events capture.

Accuracy Recall Precision F1 score F2 score

Click Attempt 88.00% 97.37% 88.10% 0.94 0.97
Tooltip Attempt 57.89% 82.22% 60.66% 0.70 0.77
Search 68.57% 71.88% 92.00% 0.81 0.75
Flash Scroll 79.82% 94.87% 64.91% 0.77 0.87
Flash Navigation 56.25% 72.73% 66.67% 0.70 0.71
Form Submission 56.25% 64.29% 81.82% 0.72 0.67
Navigation Path 55.56% 90.00% 56.25% 0.69 0.80
Bulk Action 75.00% 77.78% 87.50% 0.82 0.80

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

141

while testing a single user. A typical value for L is 31%, based on their
experience. Using this formula, a single test with 9 users provides about
96% of the problems, which makes the test an effective and inexpensive
comparison point.

We ran the experiment on two real web applications: an online
travel agency (TA application), and a merchandising shop franchise for
a first division football club (FF application), both based in Argentina.
The subject selection for the TA application was based on the statistics
from the Argentine Ministry of Tourism,9 while for the FF application it
was based on a personal interview with the retail store manager for the
same franchise. By observing the demographic information, we re-
cruited subjects that proportionally represented the groups. We worked
alongside the site owners in each case to find out the most frequent
tasks their users performed in their sites. A complete list of tasks
appears in Appendix A.

Subjects had to complete five typical tasks on each application,
while we observed their behavior and measured the completion times.
In order for the subjects to feel comfortable introducing their personal
data and performing purchases in a realistic way, we set up clones of
the real applications. After the tests, we obtained a list of usability
issues for both applications (to gather values for metrics M1, M2, M5
and M6) and also the time and resources spent by developers/staff (for
metrics M3 and M4).

The second part of the experiment was to gather the results from
USF. To do this, we created one account for each real version of the
aforementioned applications at the USF tool and installed the code
snippet as indicated by the tool. This allowed for measuring the time to
set up (for M3), resources spent (for M4). The tool collected and
analyzed interaction data for a period of 5 weeks, 3 weeks in February
2015 and 2 additional weeks in May 2016 (for M1, M2, M5 and M6).
During these periods, we used a single instance of the USF tool on a
VPS (Virtual Private Server) with 1gb of RAM running Ubuntu Server
14.04.

6.2.2. Results

Regarding metric M1, the combined total number of problems
found by both approaches was 27. Out of this total, having processed
52,568 events (25,556 for the FF application and 27,012 for TT), USF
found 18 issues (66.67% of the total 27), while the manual test found
19 (70.37%), with an intersection of 10 issues (37.04%). Regarding this
intersection, if we solely consider the 19 problems found by the manual
tests, USF found 52.63%.

Amongst the problems that both methods found, the registration
form in the TA application didn’t highlight the mandatory fields, which
we observed during the manual tests, and USF reported as a Late
Validation smell. In the FF application, users wanted to return to
previous steps during the checkout process, but the steps indicators
were read-only; this was found in the manual tests and also reported by
USF as an Unresponsive Element smell.

Regarding the problems exclusively found by the manual tests (i.e.,
undetected by the tool) we found specific application behavior or
inconveniences detected by body language, which are very difficult to
capture, or cannot be captured automatically at all. For example, in the
FF application, users were confused by the “Add to cart” action, that
did not show clearly enough that the product had been added.

Meanwhile, the problems exclusively found by the automated tool
(i.e., undetected in the manual tests) were primarily due to interactions
that were not covered by the tasks on the manual tests. For example, in
the FF application, the tool detected that many users clicked on a read-
only welcome banner that was not mentioned in the tasks, probably

expecting to navigate to another section.
Concerning M5 and M6 for the USF results, the total number of

problems found was actually higher than the 18 valid ones. The tool
found 6 extra smells that were false positives, which amounts to 75% of
true positives (M5) and 25% of false positives (M6). As an example of
false positive, a Late Validation was found in the FF application for the
“Add to cart” button, which was actually a submit button for a form.
After submission, the same form reappeared, since adding a product to
the cart does not navigate away from the product’s page. This was
interpreted by the events capturer as a failed submission, when in fact
the product was being added to the cart. Table 4 shows the detected
smells separated by kind, along with the True/False Positive count.

Regarding man-hours (metric M3), the total time consumed by the
manual tests was 5 h 40′ for TA, and 6 h 20′ for FF (for tasks'
design, setup of clone applications, user tests, and analyses – excluding
travel times), while the USF approach required 45′ for FF and 35′ for
TA (for tool's setup and results’ inspection). Regarding resources
(metric M4), the manual test required 9 subjects for each application,
two usability experts to run the tests, and a web developer to set up the
applications’ clones on a separate server. USF required a web developer
capable of adding the code snippet to the evaluated application.

6.2.3. Discussion

The first question we attempted to answer with our experiment’s
definition was Q1: “How many problems can the USF tool find with
respect to a typical usability test?”. The experiment showed that the
USF tool found half of the problems that the manual tests had found,
which we consider a positive result, since it means that USF is able to
find similar problems than a proven technique does – albeit in an
automated way. However, some of the problems detected only on the
manual tests (4/27) were too application-specific, and required human
reasoning, which means USF will probably never be able to find them.
Nevertheless, USF did find problems that the manual test did not. This
happened for two reasons: (1) the tasks set a fixed course of actions for
the subjects, which narrows down the possible usability issues they will
run into, and (2) the limit of 9 users (and so the alleged 96% coverage)
also restricts the number of problems that the expert can find. USF,
being based on real interactions from a larger mass of users, was able to
find other results.

Regarding Q3: “How accurate are USF automated results?”, even if
the false positives ratio was noticeable (25%), and leaves room for
improvement, we believe it does not make the approach/tool unreli-
able. Also, the failed results can be fixed in most cases by improving the
heuristics.

Finally, we believe that Q2: “How much time and resources does
the USF tool require compared to a typical usability test?” shows a
strong point in favor of USF. Even if it does require time to show
substantial results, depending on the site’s traffic, the cost and effort is
minimum, so there is a big cost/benefit ratio for those who cannot
spare resources, or lack the knowledge for running a traditional

Table 4
Results of the experiment on usability smells capture.

True Positives False Positives Total

Scarce Search Results 1 1 2
Late Validation 3 2 5
Unresponsive Element 4 1 5
Free Input For Limited

Values
3 0 3

Misleading Link 1 1 2
Short Input 2 0 2
Undescriptive Element 0 1 1
No Processing Page 3 0 3
Abandoned Form 1 0 1
Total 18 6 24

8 http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/(last
accessed Jun 16, 2016)

9 http://desarrolloturistico.gob.ar/estadistica/evyth (last accessed Jun 16, 2016)

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

142

usability test.
By answering these questions, we met our goal, i.e., we got a first

perspective on the extent to which our approach could replace manual
usability testing. The answer is two-fold. Firstly, the results indicate
that the tool can find meaningful smells, and comparable to the
problems found by manual testing, although it cannot replace human
reasoning required for some of them. Secondly, the cost of analyzing a
web application is extremely low, compared to manual testing. Thus,
the tool can be (1) an alternative with nearly zero-cost for developers
with no resources to run usability tests, and also (2) a good comple-
ment for manual testing, since it may find problems that manual
testing does not cover.

Another positive aspect of the experiment was the opportunity to
add new usability smells to our tool, since the manual tests provided
new insights. For example, a remarkable issue found by the manual test
in the TA application was a case of banner blindness: users had to visit
a specific section, but since the link looked like an advertisement
(though it was not) nobody found it. This behavior can be generalized
and detected as a usability smell.

6.2.4. Threats to validity

Our experiment was naturally subject to potential threats that
required our attention. The most relevant internal validity threats were
dealt with from the experiment’s design. To mitigate instrumentation
threats regarding the users’ environment, we allowed them to use their
own devices, in their own homes or workplaces. Regarding external
validity threats, we looked for user representativeness on each
application, as earlier described. Moreover, we faced the fishing threat
to conclusion validity, that could threat the experiment in two possible
ways: by running the manual experiment knowing the USF results, and
vice versa, i.e., by knowing the manual experiment’s results before
adjusting the USF tool. For the first case, we didn't inspect the results
from USF until we had finished manual testing, to prevent the latter
results from being biased by our knowledge on the tool’s performance.
We also reduced this threat by designing common, representative tasks
for each website, without providing specific instructions other than the
tasks themselves. For the reverse case of phishing threat, we set the
parameters for the usability smells finders based on the trial runs on
different websites than the ones involved in the experiment. Regarding
construction validity, we minimized evaluation apprehension by
recruiting only volunteers.

7. Concluding remarks and further work

The main contribution of the work presented in this article are
summarized below:

• a process for the systematic detection and correction of usability
smells that appear in user events on highly interactive websites;
most importantly, these usability smells that we propose are specific
enough to suggest solutions in terms of refactorings.

• a tool, based on that process, that discovers 16 usability smells
automatically and reports them along with suggested refactorings to
evaluators, who do not need to be usability experts;

• a framework with a client-side and a server-side component that
allows extensibility at both ends, i.e., incorporating new events to be
captured on the client, and adding new usability smells, so the
detection mechanism can improve over time, or may be adapted to

different contexts (like mobile applications, or specific domains);

• an empirical validation for the process applied in real web applica-
tions; through these validations we proved that our process can find
a number of meaningful usability smells with almost no setup cost.

The approach has however some limitations. There are some
usability problems that require human reasoning, so the automated
solution naturally cannot detect them. Also, the number of usability
smells we are able to detect is restricted to those that users repeatedly
run into. Consequently, our future work includes adding to our tool the
possibility of automatically finding problems through other techniques
such as statically analyzing the DOM structure of each webpage.
Another limitation to our process is that it doesn't have training
information on how tasks are supposed to be done, nor it gathers
explicit feedback from end-users. Nevertheless, we purposely decided
to bear with this limitation from the start, since we strive for a fully
automated and unattended process that requires the least possible
effort at setup.

We have assessed the performance of both usability events and
usability smells detection with separate experiments. In the Smells
Experiment, the automated tool was able to find 52% of usability smells
manually found in the control applications, while the Events
Experiment showed a high level of accordance with respect to the
manual analysis, indicated by an average 0.75 F2 score. Despite the
numeric results, by running the experiment we were able to spot the
weak parts of our detection process, and we are already working on
improving them.

There are also other lines of work we are pursuing within the
presented approach. First, since the number of usability events can
grow very quickly in deployed applications, we plan to apply data
mining techniques to select representative samples logging a portion of
the continuous flow of events without sacrificing detection power. This
can be done with different criteria:

• Events kind/Affected elements: we might choose to log only a
certain amount or percentage of events on a specific smell or
affected DOM element.

• User demographic data/Device: having collected information on the
location or device used of our visitors, we could select a sample
depending on that data, and log events proportionally.

• Time of event: we might need to detect issues that happen at all
times in equal distribution, or restrict to a specific time of day.

Moreover, the experiments showed that for a few usability smells,
the best default threshold values were dependent on the traffic load, so
we set them manually for each case. Future work involves studying how
these values relate to the traffic in order to set them automatically.

We are also extending the approach to automate the refactoring
implementation. For this purpose we will integrate our previous work
on client-side refactorings, which implement most cataloged usability
refactorings (Firmenich et al., 2013). This integration will permit a
fully automated process where not only we can automate the detection
of bad smells, but also the refactoring themselves.

Finally, we are investigating stronger ways of protecting users'
privacy by anonymization techniques. With a sound work on this area,
we could even start logging full user sessions without compromising
their privacy and potentially obtaining better results in the detection of
usability smells.

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

143

Appendix A. Experiments' details

Events experiment – Usability Events (Section 6.1)

Group 1 – Heuristics involving user intention:
Users' experience on the tested websites, from 1 (no experience) to 5 (frequent user).

mercadolibre.com info.unlp.edu.ar stackoverflow.com Gender Age

Volunteer 1 3 M 34
Volunteer 2 3 F 36
Volunteer 3 2 1 M 34
Volunteer 4 5 1 F 33
Volunteer 5 1 1 F 64
Volunteer 6 4 5 F 27
Volunteer 7 3 3 M 40
Volunteer 8 1 2 F 37
Volunteer 9 3 5 2 M 35
Volunteer 10 3 1 M 35
Volunteer 11 4 1 M 39
Volunteer 12 4 3 M 32
Volunteer 13 3 3 M 32
Volunteer 14 3 3 F 27
Volunteer 15 3 4 F 30

Tasks.
Site 1: mercadolibre.com.

1. Search for a used Android tablet to buy and get into its details.
2. Search for flaws on the tablet.
3. Check for stock on the tablet.
4. Find out the tablet’s price.
5. Find out what the blue icons are for.
6. Register as a user.
7. Find out how “MercadoEnvios” works, and who pays for the shipping.
8. (N: “MercadoEnvios” is a shipping service offered by the website).
9. Find out what’s the percentage of the total cost that the site gets out of a sold item.

Site 2: info.unlp.edu.ar.

1. Find out what are the first 2 icons on the upper bar for.
2. Search for an article on predictive technology. Find out what the user on the photo is browsing on his phone.
3. Go back to the homepage.
4. Search for the studies plan for “Licenciado en Sistemas”. Find out whether it requires a thesis at the end of the plan.
5. Find out who the dean of the faculty is.

Site 3: stackoverflow.com.

1. Find out what the icons at “How questions” represent.
2. Find out how can one add a CSS class to an element using JQuery. Vote for the best answer.
3. Search for the top JQuery questions. See what’s the most recent unanswered one.
4. Register to the site.

Group 2 – Heuristics involving DOM elements detection.
Evaluated sites:

• mercadolibre.com

• info.unlp.edu.ar

• stackoverflow.com

• imgur.com

• groups.google.com

• linkedin.com

• paypal.com

• mail.yahoo.com

• mail.live.com

• instagram.com

• aliexpress.com

• clarin.com

• lanacion.com.ar

• infobae.com

• ole.com.ar

• tn.com.ar

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

144

• amazon.com

• aws.amazon.com

• duolingo.com

• despegar.com.ar

• taringa.net

• perfil.com

Smells Experiment – Usability Smells Detection Evaluation (Section 6.2)

Subjects info.

Weekly hours browsing E-commerce usage level Gender Age

Volunteer 1 5 3 M 34
Volunteer 2 12 1 F 36
Volunteer 3 15 4 F 62
Volunteer 4 25 4 M 25
Volunteer 5 20 5 M 29
Volunteer 6 20 1 F 37
Volunteer 7 20 1 M 24
Volunteer 8 18 3 F 36
Volunteer 9 25 3 M 32

Tasks.
Site 1: TA Application.

1. Search for a travel package to a given destination. Find the cheapest one.
2. Contact the agency for more information on the packages.
3. Search for a flight to a given destination.
4. Get prices for traveler assistance for a 14-d trip to Europe.
5. Subscribe to the newsletter.

Site 2: FF Application.

1. Find out the cost of the team’s official football shirt.
2. Check the shirt’s sizes and select the best fit. Add a shirt to the cart and go back home.
3. Find out if the shop sells backpacks. If they do, add one to the cart.
4. Complete the checkout process.
5. Register to the site. (N. it is a step of the checkout process for unsigned users)

Threshold values for individual usability smell finders.
In the cases were thresholds were not bound to proportions (for example, the finder for Unresponsive Element) we used the traffic load as a

reference.
The minimum event count for all smells was set to 50.

Smell Id Usability Smell Thresholds

1 Undescriptive Element 30 Tooltip Attempt in a 5-d window
2 Misleading Link 12 Flash Navigation in a 5-d window
3 No Processing Page 10,000 ms average waiting time
4 Free Input For Limited Values 0.2 min group size rate 0.1 max rate of unique values Levenshtein edit distance < 4
5 Unformatted Input 0.7 min formatted values rate
6 Short Input 0.3 long input values rate
7 Unnecessary Bulk Action 0.8 min single operation rate
8 Overlooked Content 0.4 min events in same y-area rate100 pixels tolerance for y-area
9 Distant Content 20 Navigation Paths in a 5-d window
10 No Client Validation 0.6 reject rate
11 Late Validation 0.6 reject rate
12 Abandoned Form 0.4 drop-off rate
13 Scarce Search Results 0.6 no-results rate
14 Useless Search Results 0.4 unfollowed-results rate
15 Wrong Default Value 0.8 non-default selection rate
16 Unresponsive Element 12 Click Attempts in a 5-d window

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

145

Appendix B. Detection logics for usability smells

Undescriptive Element

• Description: Many users try to get a tooltip from the element.
This may be due to the element not being self-descriptive
enough.

• Associated Usability Event: Tooltip Attempt.

• Detection Process: for each element affected with Tooltip Attempts,
count all events inside the specified time window. If the count
exceeds the minimum threshold, the smell is detected

• Adjustable Parameters:
a. Minimum Events: how many tooltip attempts trigger the smell?
b. Time window: in what timespan are the events counted? E.g.

“one week back from today”.

• Recommended Refactorings
a. Rename Element
b. Change Widget

Misleading Link

• Description: Users frequently visit the linked contents, only to
return shortly after.

• Associated Usability Event: Tooltip Attempt/Flash Navigation.

• Detection Process: for each element affected with Tooltip Attempts
or Flash Navigations, count all events inside the specified time
window. If the count exceeds the minimum threshold, the smell is
detected

• Adjustable Parameters:
a. Tooltip Attempt Minimum Events: how many tooltip attempts

are considered before triggering the smell?
b. Flash Navigation Attempt Minimum Events: how many flash

navigations are considered before triggering the smell?
c. Time window: in what timespan are the events counted? E.g.

“one week back from today”.

• Recommended Refactorings: Rename Anchor

No Processing Page

• Description: A page usually takes long to process, and no
information is presented to the user to indicate there is an
ongoing process.

• Associated Usability Event: Long Request.

• Detection Process: for each page affected with Long Request events,
get the average waiting time, if this time exceeds a time threshold,
the smell is detected.

• Adjustable Parameters:
a. Average Waiting Time: what is the average tolerated time (ms)

before triggering the smell?

• Recommended Refactoring: Add Processing Page

Unformatted Input

• Description: A simple text input asks users to fill in data in a
specific format, instead of offering a more adequate widget.

• Associated Usability Event: Text Input

• Detection Process
1. For each text input affected by Text Input events, collect all

values.
2. Run the regular expressions that represent the preformatted

values (e.g. phones) by the values and count the amount of
matches.

3. If the amount of matched values exceeds a proportion threshold
for a particular regular expression, trigger the smell.

• Adjustable Parameters:
a. Formated Values Proportion: what percentage of values must

match a particular format before triggering the smell?
b. Regular Expressions: what formats should we look for in the

values?

• Recommended Refactorings
a. Change Widget
b. Add an Assistance Activity

Short Input

• Description: An input box is shorter than the values usually
typed on it, often hiding the full typed text.

• Associated Usability Event: Text Input

• Detection Process:

1. For each text input affected by Text Input events, collect all events.
2. Calculate the proportion of events with exceeded text (text values

larger in width than the text box’s width, calculated from the capital
“M” width of the used font).

• Adjustable Parameters
a. Exceeded Values Proportion: how many values must exceed the

text input width before triggering the smell?

• Recommended Refactoring: Resize Element

Unnecessary Bulk Actions

• Description: a form contains a list of items, and each one has a
checkbox. Users can perform different actions over a subset of
those items by first selecting some of them using those check-
boxes, and then selecting an action. However most of the time
users only apply the actions on a single item at a time rather than
many, rendering these mechanics unnecessarily complicated.

• Associated Usability Event: Bulk Action.

• Detection Process:

3. For each form affected with events, take all Bulk Action threats
related to it.

4. For a given form, group the events by the action applied (e.g.
“delete”).

5. For each group related to an action, split the events in two sets: those
where the action was applied on a single item, and those where the
action applied to many.

6. If the set of events with a single item is proportionally larger than the
other set by a given threshold, then the bad smell is detected for that
action.

• Adjustable Parameters:
a. Minimum Single Operation Proportion: what is the minimum

proportion of threats with a single item to consider the presence
of the bad smell?

• Recommended Refactorings:
a. Distribute Menu
b. Replace widget
c. Add Contextual Menu.

Overlooked Content

• Description: Users scroll to an area too quickly. It is possible that
they don’t read the contents between the top of the page and said

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

146

area

• Associated Usability Event: Flash Scrolling

• Detection Process
a. For each page affected with Flash Scrolling, collect the events.
b. Split the events by scrolling direction.
c. For each scrolling direction, group by landing y-position proxi-

mity.
d. For each group, calculate the proportion of Flash Scrolling events

with respect to the total events count.
e. If a group represents a proportion of the total events larger than a

given threshold, then the smell is triggered.

• Adjustable Parameters
a. Min Group Proportion: what is the minimum proportion for a

given y-area landing group over all the events that trigger the
smell?

b. Landing Position Tolerance: how close should 2 given Flash
Scrollings of the same direction land to be considered in the same
group?

• Recommended Refactorings
a. Split Page
b. Remove Redundant Content

Distant Content

• Description: Users often follow a path of many navigation steps
too quickly to get to a point. They do not seem to stop in the
middle nodes and see/interact with their contents.

• Associated Usability Event: Navigation Path

• Detection Process:
a. Group together all Navigation Paths with the same navigation

nodes in the same order.
b. For each group, count all events inside the specified time window.

If the count exceeds the minimum threshold, the smell is detected

• Adjustable Parameters:
a. Navigation Path Minimum Events: how many equivalent navi-

gations are considered before triggering the smell?
b. Time window: in what timespan are the events counted? E.g.

“one week back from today”.

• Recommended Refactoring: Add Link

No Client Validation

• Description: A form lets users submit wrong data and only
informs the issues after the submission.

• Associated Usability Event: Form Submission

• Detection Process: For each affected form, count all Submission
events and calculate the proportion of rejections after a navigation
(server-side validation). If this proportion exceeds a threshold, the
smell is detected.

• Adjustable Parameters:
a. Reject proportion: how many rejects over the total submissions

trigger a smell?

• Recommended Refactorings: Anticipate Validation

Late Validation

• Description: A form lets users submit wrong data and only
informs the issues after they click the submit button.

• Associated Usability Event: Form Submission

• Detection Process: For each affected form, count all Submission
events and calculate the proportion of rejections after submission,
but no navigation ensues (client-side validation). If this proportion
exceeds a threshold, the smell is detected.

• Adjustable Parameters:
a. Reject proportion: how many rejects over the total submissions

trigger a smell?

• Recommended Refactoring: Anticipate Validation

Abandoned Form

• Description: A form is usually abandoned by the users before
being submitted.

• Associated Usability Events: Form Submission/Abandoned
Submission

• Detection Process: For each affected form, calculate the proportion
of abandonments vs. submissions (either failed or successful). If the
drop-off rate exceeds a threshold, the smell is detected.

• Adjustable Parameters:
a. Drop-Off Proportion: how many abandonments over submis-

sions trigger a smell for a given form?

• Recommended Refactorings
a. Split Activity
b. Postpone activity

Useless Search Results

• Description: A search form’s results are rarely followed by users.

• Associated Usability Event: Search

• Detection Process:
a. For each search form, gather all Search events that brought

results.
b. Calculate the proportion of searches that follow a navigation from

one of the results.
c. If the proportion exceeds a threshold, the smell is detected.

• Adjustable Parameters:
a. Unfollowed Results Proportion: how many successful searches, in

proportion, were not followed by a navigation from one of the
results?

• Recommended Refactoring: Add Autocomplete

Wrong Default Value

• Description: A list of values is presented to the user either in a
select box or a list of radio buttons. A particular value is selected
too often but users must explicitly select it anyways.

• Associated Usability Event: Option Selection

• Detection Process: For each affected group of options, compare the
ones with the default selection with the ones that include a different
selection. If the latter are more than the former by a given margin,
the smell is detected.

• Adjustable Parameters:
a. Non-Default Selection Proportion: how many selections of non-

default values with respect to the total should trigger a smell?

• Recommended Refactoring: Set Default Value

Unresponsive Element

• Description: An element is often clicked upon, but it does not
trigger any action.

• Associated Usability Event: Click Attempt

• Detection Process: for each element affected with Click Attempts,
count all events inside the specified time window. If the count
exceeds the minimum threshold, the smell is detected

• Adjustable Parameters:
a. Minimum Events: how many click attempts trigger the smell?

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

147

b. Time window: in what timespan are the events counted? E.g.
“one week back from today”.

• Recommended Refactorings
a. Turn Attribute Into Link
b. Change Widget

References

Ambler, S., Sadalage, P., 2006. Refactoring Databases: Evolutionary Database Design.
Pearson Education, New York, NY, USA.

Apaolaza, A., Harper, S. & Jay, C., 2015. Longitudinal analysis of low-level web
interaction through micro behaviours. In: Proceedings of the 26th ACM Conference
on Hypertext & Social Media - HT ’15. New York, New York, USA: ACM Press, pp.
337–340.

Atterer, R., Wnuk, M. & Schmidt, A., 2006. Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. In Proceedings of
the 15th International Conference on World Wide Web. pp. 203–212.

Basili, V.R., Caldiera, G., Rombach, H.D., 1994. The goal question metric approach.
Encycl. Softw. Eng. 1, 528–532.

Breslav, S., Khan, A. & Hornbæk, K., 2014. Mimic. In: Proceedings of the 2014
International Working Conference on Advanced Visual Interfaces - AVI’14. New
York, New York, USA: ACM Press, pp. 245–252.

Burzacca, P. & Paternò, F., 2013. Remote usability evaluation of mobile web
applications. In: Proceedings of the 15th International Conference on Human-
Computer Interaction. pp. 241–248.

Cabot, J. & Gómez, C., 2008. A catalogue of refactorings for navigation models. In:
Proceedings of the 8th International Conference on Web Engineering, ICWE 2008.
pp. 75–85.

Carta, T., Paternò, F., Santana, V. de, 2011. Web usability probe: a tool for supporting
remote usability evaluation of web sites. Hum.-Comput. Interact.–Interact 2011,
349–357.

Chi, E.H., 2002. Improving web usability through visualization. IEEE Internet Comput. 6
(2), 64–71.

Dig, D., 2011. A refactoring approach to parallelism. IEEE Softw. 28 (1), 17–22.
Distante, D., et al., 2014. Business processes refactoring to improve usability in E-

commerce applications. Electron. Commer. Res. 14 (4), 497–529.
Fernandez, A., Insfran, E., Abrahão, S., 2011. Usability evaluation methods for the web: a

systematic mapping study. Inf. Softw. Technol. 53 (8), 789–817.
Fowler, M., 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional, Boston, Massachusetts, USA.
Garrido, A., Firmenich, S., et al., 2013. Personalized web accessibility using client-side

refactoring. IEEE Internet Comput. 17 (4), 58–66.
Garrido, A., Rossi, G., et al., 2013. Improving accessibility of web interfaces: refactoring

to the rescue. Univers. Access Inf. Soc., 1–13.
Garrido, A., Rossi, G. & Distante, D., 2007. Model refactoring in web applications. In:

Proceedings of the 9th IEEE International Symposium on Web Site Evolution, WSE
2007, pp. 89–96.

Garrido, A., Rossi, G., Distante, D., 2011. Refactoring for usability in web applications.
IEEE Softw. 28 (3), 60–67.

Gregg, D.G., Walczak, S., 2010. The relationship between website quality, trust and price
premiums at online auctions. Electron. Commer. Res. 10 (1), 1–25.

Grigera, J., et al., 2016. Assessing refactorings for usability in e-commerce applications.
Empir. Softw. Eng. 21 (3), 1224–1271.

Grigera, J., Garrido, A., Rivero, J.M., 2014. A tool for detecting bad usability smells in an

automatic way. In: International Conference on Web Engineering. Springer
International Publishing, pp. 490–493.

Harms, P., Grabowski, J., 2014. Usage-based automatic detection of usability smells.
Proc. Hum.-Cent. Softw. Eng., 217–234.

Harold, E.R., 2012. Refactoring HTML: Improving the Design of Existing Web
Applications. Addison-Wesley Professional, Boston, Massachusetts, USA.

Hilbert, D.M., Redmiles, D.F., 2000. Extracting usability information from user interface
events. ACM Comput. Surv. 32 (4), 384–421.

Hong, J.I., et al., 2001. WebQuilt: a proxy-based approach to remote web usability
testing. ACM Trans. Inf. Syst. 19 (3), 263–285.

Hornbæk, K., 2006. Current practice in measuring usability: challenges to usability
studies and research. Int. J. Hum. Comput. Stud. 64 (2), 79–102.

ISO/IEC 25010, 2011. Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models

Ivory, M.Y., Hearst, M. a, 2001. The state of the art in automating usability evaluation of
user interfaces. ACM Comput. Surv. 33 (4), 470–516.

Lanza, M., Marinescu, R., 2006. Object-Oriented Metrics in Practice. Springer, Berlin,
Heidelberg, New York.

Levenshtein, V., 1966. Binary codes capable of correcting deletions, insertions and
reversals. Sov. Phys. Dokl. 10, 707–710.

Nah, F.F.-H., 2004. A study on tolerable waiting time: how long are Web users willing to
wait? Behav. Inf. Technol. 23 (3), 153–163.

Nebeling, M., Speicher, M. & Norrie, M., 2013a. CrowdStudy: General toolkit for
crowdsourced evaluation of web interfaces. In: Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, EICS, pp. 255–264.

Nebeling, M., Speicher, M. & Norrie, M., 2013b. W3touch: metrics-based web page
adaptation for touch. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems - CHI'13, p. 2311.

Nielsen, J., Loranger, H., 2006. In: Peri, C. (Ed.), Prioritizing Web Usability. Pearson
Education.

Okada, H., Fujioka, R., 2008. Automated methods for webpage usability & accessibility
evaluations. In: Pinder, In.S. (Ed.), Advances in Human Computer Interaction.
InTech, 351–364.

Opdyke, W., 1992. Refactoring Object-Oriented Frameworks. University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA.

Paternò, F., Schiavone, A.G. & Pitardi, P. 2016. Timelines for mobile web usability
evaluation. In: Proceedings of the International Working Conference on Advanced
Visual Interfaces - AVI ’16. New York, New York, USA: ACM Press, pp. 88–91

Reis, D.C. et al., 2004. Automatic web news extraction using tree edit distance. In:
Proceedings of the 13th Conference on World Wide Web WWW 04, p. 502.

Rubin, J., Chisnell, D., 2008. Handbook of Usability Testing: How to Plan, Design, and
Conduct Effective Tests. Wiley, Hoboken, New Jersey, USA.

Santana, V.F. de, Baranauskas, M.C.C., 2015. WELFIT: a remote evaluation tool for
identifying Web usage patterns through client-side logging. Int. J. Hum.-Comput.
Stud. 76, 40–49.

Seffah, A., et al., 2006. Usability measurement and metrics: a consolidated model. Softw.
Qual. J. 14 (2), 159–178.

Seckler, M. et al., 2014. Designing usable web forms. In: Proceedings of the 32nd Annual
ACM Conference on Human Factors in Computing Systems - CHI ’14, pp. 1275–
1284.

Speicher, M., Both, A. & Gaedke, M., 2015. S.O.S.: Does your search engine results page
(SERP) need help? In: Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems - CHI’15. New York: ACM Press, pp. 1005–1014.

van Duyne, D.K., Landay J.A., Hong, J.I. The Design of Sites 2006
Wroblewski, L., 2008. Web form design: filling in the blanks. Interactions, 226.

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

148

	Automatic detection of usability smells in web applications
	Introduction
	Related work
	Background on usability and refactoring-based tools
	Usability evaluation methods
	Logs analysis and visualization methods
	Remote user testing
	Automated log analysis and evaluation

	Usability smells of user interaction
	The process
	Events logging
	Usability smell detection
	Reporting and refactorings suggestion

	The tool
	Event logging mechanics
	Smell detection mechanics
	Reporting mechanics

	Assessing the approach
	Usability events validation
	Experiment definition and planning
	Results
	Discussion
	Threats to validity

	Evaluation of automated usability smells detection
	Experiment definition and planning
	Results
	Discussion
	Threats to validity

	Concluding remarks and further work
	Experiments' details
	Events experiment – Usability Events (Section 6.1)
	Smells Experiment – Usability Smells Detection Evaluation (Section 6.2)

	Detection logics for usability smells
	Undescriptive Element
	Misleading Link
	No Processing Page
	Unformatted Input
	Short Input
	Unnecessary Bulk Actions
	Overlooked Content
	Distant Content
	No Client Validation
	Late Validation
	Abandoned Form
	Useless Search Results
	Wrong Default Value
	Unresponsive Element

	References

