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Abstract—In recent years Semantic Web technologies and the
Linked Data paradigm have allowed the emergence of large
interlinked knowledge bases as Linked datasets. These databases
contain information that associates Web entities (called resources)
with a well-defined semantics that specifies how these entities
should be interpreted. A way to perform this task is through
a class assignment process where resources are identified as
members of certain classes described in ontologies. In order to
improve the quality of the “meaning” of the data contained in
Linked datasets a key challenge in the Linked Data community
is to detect, assess and eventually fix wrong class assignments.
In this sense, this work proposes an interpretation for adequate
class assignments considering three quality dimensions from a
semantic perspective: redundancy, consistency and accuracy. For
each dimension, a formal definition is presented, then applied
to class assignments and finally used as guideline to show how
quality metrics and data curation strategies can be defined.

I. INTRODUCTION

In recent years, Semantic Web technologies and the Linked
Data paradigm [1] have allowed the emergence of large

interlinked knowledge bases (also known as Linked datasets)

conforming what is known as the Web of Data. These datasets

contain information about Web entities (called resources) iden-

tified by unique HTTP URIs to which a well-defined semantics

has been associated. This semantics specifies how resources
should be interpreted and allows automatic knowledge dis-

covering through inference techniques. Adding semantics to

Web entities can be seen as a classification process: given a

set of resources and classes (concepts) usually described in

ontologies, class assignment assertions are created to specify

resources as member of certain classes. This class assignment
process forms part of the Linked Data life cycle [2] which,

from an overall perspective, includes phases to: process data

from a variety of unstructured or semi-structured data sources,

identify entities as resources, define (or reuse) classes to model

these resources, generate class assignment assertions and

publish these data according to the Linked Data principles1.

In this sense, class assignments information is essential in

most Linked datasets and its quality analysis is a current

challenge in the Linked Data community. From a semantic

perspective, quality assessment in Linked datasets involves

the development of mechanisms to detect, measure and fix

errors in the “meaning” of the data. In this way, three related

dimensions can be found in the Linked Data literature: seman-
tic redundancy, semantic consistency and semantic accuracy.

Although these dimensions have been addressed separately

1https://www.w3.org/DesignIssues/LinkedData.html

in different works, there are no techniques that consider all

of them together. In contrast, our approach interpret them as

complementary concepts that can be used together to achieve

semantically adequate class assignment assertions in Linked
datasets. The following sections are organized as follows: in

section II some background definitions about Semantic Web
and Linked Data are given. In section III related work is de-

scribed. In section IV we explain our approach by interpreting

redundancy, consistency and accuracy for class assignments
in Linked datasets. In section V some brief discussions related

to the addressed concepts are introduced. Finally, conclusions

and future work are given in section VI.

II. BACKGROUND

The Linked Data paradigm allows us to describe everything

that can be identifiable with HTTP URIs, from real world enti-

ties to intangible concepts. For example, in DBpedia (a Linked
data version of Wikipedia), the URI dbo:SoccerPlayer2

is used to identify the concept of soccer player, whereas the

URI dbr:Lionel_Messi3 is used to identify a real person.

Everything identified by a URI is considered a resource
and the information about it is described using the RDF4

language. This information is stored following a triple pattern

of the form “subject, predicate, object” conforming a large

graph structure. Knowledge representation mechanisms like

RDFS5 and OWL6 are layered on top of RDF and allow

to augment these structure with more expressive semantics.

For example, it is possible to define classes and relation-

ships between them in ontologies (e.g. dbo:SoccerPlayer,

rdfs:subClassOf, dbo:Atlhete) and to specify resources
as member of that classes (e.g. dbr:Lionel Messi, rdf:type,

dbr:SoccerPlayer). Each mechanism has its own semantics

which determines its inference capabilities and its complexity.

From an overall perspective, a Linked dataset is a knowledge

base of RDF triples which has been built following the

Linked Data principles. The information contained in these

datasets can be divided into two levels: schema level and

instance (or data) level. Schema level refers to terminological
knowledge (TBox), for example, classes, properties and their

relationships normally defined through ontologies. In the other

hand, instance level refers to assertional knowledge (ABox),

2dbo: prefix for DBpedia ontology definitions http://dbpedia.org/ontology/
3dbr: prefix for DBpedia resources http://dbpedia.org/resource/
4https://www.w3.org/RDF/
5https://www.w3.org/TR/rdf-schema/
6https://www.w3.org/standards/techs/owl#w3c all
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that is, propositions about entities of a specific domain of

interest like class assignment assertions. From a mathematical-

logic perspective schema and instance level assertions are

RDF triples considered as propositions and conform the basic

elements of any Semantic Web reasoning process. For example,

the notation {p1, p2} |= {p3, p4}, where |= is called entailment
relation, states that propositions p3 and p4 (also p1 and p2)

are logical consequences of propositions p1 and p2 obtained

under a certain set of rules. In the following sections we will

use these definitions to explain our approach.

III. RELATED WORK

Regarding redundancy, most of the work focused on RDF

compression techniques from a syntactic aspect and only a few

of them addressed this issue from a semantic perspective. In

[3], the proposed compression technique is based on logical

rules which are used to prune triples that then are inferred

applying those rules during decompression. In [4], a systematic

approach based on graph analysis strategies is proposed to

make redundancy information explicit and available to Linked
Data users. With respect to consistency, although there are

several tools (such as reasoners) to check the validity of a

knowledge base with respect to a formal specification, apply

them to large datasets will require scalable solutions due to the

complexity of the algorithms. For this reason, some works ad-

dressed consistency considering just a restricted problem like

detecting resources as member of classes defined as disjointed

using pattern-based techniques [5], [6]. Regarding semantic
accuracy, relevant approaches used restrictions defined over

a specific dataset to detect wrong data. These restrictions

are basically conditions that data must meet and can be

defined manually or detected automatically. To achieve this,

some works implemented constraint rules (such as functional

dependency rules) [7], [8] while others performed this task by

developing techniques based on users evaluations [9], [10],

statistical analysis [11] or schema enrichment [6]. Inspired

in some ideas proposed on the mentioned works we restrict

the study of redundancy, consistency and accuracy to a class
assignment perspective. The aim of this limitation is to easily

understand how these dimensions are related and facilitate the

quality assessment in the meaning of the data.

IV. CLASS ASSIGNMENTS

A class assignment (CA) is an instance level proposition

that states that a resource belongs to a certain class (e.g.

dbr:Lionel Messi, rdf:type, dbo:SoccerPlayer). A class
assignment set for a resource r (CASr) is then the set of

all class assignments propositions in a Linked dataset that

specifies the classes for r. From a semantic data quality

perspective, it would be desirable that these CASs be non-

redundant, consistent and accurate. In this way, we define an

adequate class assignments set for r to those CASs that meet

the mentioned conditions. In the following subsections we will

show how redundancy, consistency and accuracy concepts can

be interpreted in class assignments and how they can be used

to evaluate, detect or even fix some errors in the data.

A. Non-redundant class assignments

The concept of data redundancy can be associated to what

is known in mathematical logic literature as independence,

that is, the ability to deduce a proposition from other

propositions (or not). Formally, a set of propositions P is

defined as independent if for all proposition pi ∈ P does

not hold that P − {pi} |= pi. This means that if P is

independent, each pi ∈ P can not be obtained from the

remaining propositions of P . Furthermore, given a set of

proposition P there is an independent set Q ⊆ P such that

Q |= P . This means that given a set of propositions P , a

set Q can be obtained by reducing the elements of P but

without missing information since both P and Q have the

same logical consequences.

In the Linked Data context, redundancy has been considered

as “wasted space to represent certain meaning in the Web of
Data environment” [4] and it is related with the concept of

conciseness [12]. From a semantic perspective this means that

certain data can be removed without causing any changes in

its meaning. Considering the above, the following definition

is proposed:

Definition 1 (Non-redundant class assignments set -
NRCAS): given a resource r and its class assignment set
(CASr), it is non-redundant if it is independent.

Example 1. Consider the following schema level propo-

sitions extracted from the DBpedia ontology7 about classes

dbo:Person, dbo:Athlete and dbo:SoccerPlayer:

• p1: dbo:Athlete rdfs:subClassOf dbo:Person,

• p2: dbo:SoccerPlayer rdfs:subClassOf dbo:Athlete,

Then, consider the following CAS for a given resource r:

• p3: r rdf:type dbo:Person
• p4: r rdf:type dbo:Athlete
• p5: r rdf:type dbo:FootballPlayer
As we can see, the given CASr is redundant because if

we remove propositions p3 and p4 from CASr, it can be

deduced from the remaining proposition p5 if transitivity

of rdfs:subClassOf predicate is considered (e.g. if

r belongs to class C and C is a subclass of B then r
belongs to B). But if p5 is removed, it can not be obtained

from propositions p3 and p4. Thus, a non-redundant class
assignment set for the resource r (NRCASr) would be {p5}.

Example metric 1. Given a resource r, a redundancy score

RSr can be computed as follows:

RSr = 1− #NRCASr

#CASr

For the given example, our RSr would be 0,66 (1 − 1
3 ),

which can be interpreted as 66% of class assignment for

resource r are redundant. The symbol # specifies cardinality.

7http://mappings.dbpedia.org/server/ontology/classes/

470



Data curation strategy: in order to achieve a non redundant
class assignment for a resource r, we can get the CASr, then

compute the NRCASr and finally set up this set as the new

CASr. Note that to recover the complete class assignment
information related to r inference techniques must be applied.

B. Consistent class assignments

From a model-theoretics semantics perspective, a set

of propositions P of a knowledge base is consistent (or

satisfiable) if it has at least one model. Besides, a set of

propositions has a model if and only if every finite subset

of it has a model (compactness property). In the other hand,

it is inconsistent (or contradictory), if it is not satisfiable

[13]. Furthermore, P is considered maximal consistent if P
is consistent and for any other set R, if P is a proper subset

of R (P ⊂ R) then R is inconsistent.

In the Linked Data context, consistency means that “a

knowledge base is free of logical contradictions with respect

to a particular knowledge representation and inference

mechanisms” [12]. In Linked datasets, one of the most

common forms of inconsistencies comes from the use

of disjoint classes [14]. In this case, the OWL predicate

owl:disjointWith is used to relate classes whose

intersection is empty and inconsistencies at instance level
occur when a resource is defined as member of classes that

should not have elements in common. Considering this, the

following definition is proposed:

Definition 2 (Consistent class assignments set - CCAS):
given a resource r and its class assignment set (CASr) it

is consistent (CCASr) if contains the maximal amount of

propositions from CASr and for each pair of them (pj , pk)
does not hold that (cj , owl:disjointWith, ck) where

ck and cj are the classes specified in proposition pk and pj ,

respectively.

Example 2. Consider the following knowledge base frag-

ment with one resource r and three classes dbo:Person,

dbo:Athlete and dbo:Place:

• p1: dbo:Person owl:disjointWith dbo:Place
• p2: r rdf:type dbo:Person
• p3: r rdf:type dbo:Athlete
• p4: r rdf:type dbo:Place
Proposition p1 corresponds to a schema level assertion

meanwhile the last three conform the class assignments set
of r (CASr). As dbo:Person and dbo:Place are defined as

disjointed classes, CASr is an inconsistent set. Note, for

example, that if we leave out proposition p4 (or p2 and

p3), the resulting set would be consistent. Thus, the sets of

propositions {p2},{p3},{p4} and {p2,p3} are CCASs for r
but only the last two are maximal consistent sets (CCASr

does not include the inferred propositions).

Example metric 2. Given a resource r, a consistency score

CSr can be computed as follows:

CSr = 1− #CCASr

#CASr

For the given example, if we take {p2,p3} as the CCASr

our CSr would be 0,33 (1 − 2
3 ), which can be interpreted

as 33% of class assignment for resource r are inconsistent.

Note that we may have more than one maximal CCASr and

the score value will depend on the strategy selected to choose

the most appropriate of these sets.

Data curation strategy: in order to achieve a consistent
class assignment for a resource r, we can get the CASr,

compute consistent subsets of CASr, determine which of

them are maximal consistent and finally set up one of these

sets as the new CASr. Determining which maximal CCAS
is the most appropriate for a given resource may require

additional analysis that includes some extra information about

the resource context.

C. Accurate class assignments

In contrast to the concepts of redundancy and consistency,

accuracy can not be formally described without considering

the data context. In Linked datasets, semantic accuracy refers

to “the degree to which data correctly represent real world

facts” [12]. To describe what a “real world fact” is we need

to consider a specific Linked dataset scenario and define

some restrictions. These restrictions could be, for example,

constraint rules predefined manually or temporal axioms

detected automatically by enrichment strategies. For class
assignments, restrictions must describe the conditions or

requirements that a class assignment for a given resource

must meet to be valid. Considering this, the following

definition is proposed:

Definition 3 (Accurate class assignments set - ACAS):
given a resource r and its class assignment set (CASr) it is

accurate if each p ∈ CASr meets a set of predefined class
assignment restrictions.

Example 3. Consider the following knowledge base frag-

ment with classes dbo:Artist, dbo:Athlete, dbo:SoccerPlayer
and dbo:Book, and some class assignments for a resource r:

• p1: r rdf:type dbo:Artist
• p2: r rdf:type dbo:Athlete
• p3: r rdf:type dbo:SoccerPlayer
• p4: r rdf:type dbo:Book
The above four propositions conform the class assignments

set for r (CASr) and we want to detect which subsets are

accurate class assignments and which are not. A simple

strategy consists on grouping and counting similar classes

to detect outliers. In the mentioned example, dbo:Artist,
dbo:Athlete and dbo:SoccerPlayer can be considered as

similar classes and conform a group meanwhile dbo:Book
is not semantically related with them. As the first group

contains more elements than the second one, we can take it
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as the accurate class assignments set for r (ACASr). This

simple technique not ensures that class dbo:Book will be

inaccurate for r but shows how restrictions can be defined

to detect it: we first detect a group of prevalent classes and

define a restriction that states that a class assignment is valid

if the class involved belongs to that group.

Example metric 3. Given a resource r, an accuracy score

ASr can be computed as follows:

ASr = 1− #ACASr

#CASr

For our example, if the ACASr have the propositions

{p1, p2, p3}, the CSr value would be 0,25 (1− 3
4 ) which can

be interpreted as 25% of class assignment for resource r are

inaccurate with respect to certain class assignment restrictions.

Data curation strategy: computing accurate class assign-
ment for a resource r implies that restrictions must be prede-

fined. These restrictions can be defined manually by users or

automatically discovered using different techniques. Then, we

can get the ACASr from CASr by applying these constraints

and set it up as the new CASr.

V. DISCUSSION

In previous sections we have seen that redundancy and

consistency are intrinsic dimensions (can be defined regardless

data context) meanwhile accuracy is a dependent data context

dimension. Although quality levels related to these dimensions

may vary widely and its relevance depends on the application

at hand, the main challenge is to make this information explicit

to users. Considering this, some issues need to be taken into

consideration:

• Linked databases are huge heterogeneous knowledge

bases. This implies that to check consistency and re-
dundancy it is necessary to take into account scalable

reasoning techniques [15]. The challenge is to find a

balance between the expressiveness of the underlying

semantics and the complexity of the reasoning algorithm.

• Inconsistency does not necessary means wrong data. As

we are working with interlinked heterogeneous data,

information about a same resource in different datasets

can be inconsistent if it is integrated [5]. The challenge

is to detect which class assignments need to be removed

in order to achieve an acceptable level of consistency.

• Redundancy does not necessary implies wasted space.

In some cases, additional data can be used to improve

performance of knowledge bases in query response times

or it can be useful to detect inaccurate class assignments.

The challenge is to detect when redundancy is desirable

and when it cause negative effects in our datasets.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a semantic interpretation of

accuracy, consistency and redundancy quality dimensions in

order to achieve adequate class assignments in Linked Data

knowledge bases. Addressing these dimensions together as

complementary concepts allowed us to cover a range of quality

problems related to the “meaning” of the information at

instance level. The quality assessment from a class assignment
perspective may facilitate the definition of quality metrics and

the development of mechanisms to detect and eventually fix

wrong data. In future work, we plan to implement these mech-

anisms and evaluate our approach in real use case scenarios

with the aim of improve the existing metrics and understand

how they correlate with each other. Furthermore, we will

study how the addressed quality dimensions are related with

schema level characteristics of class hierarchies (e.g. number

of classes, class specificity, etc.).
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