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ABSTRACT. In this paper we propose an algorithm that correctly discards a
set of numbers (from a previously defined sieve) with an interval of integers.
Leopoldo’s Theorem states that the remaining integer numbers will generate
and count the complete list of primes of absolute value greater than 3 in the
interval of interest. This algorithm avoids the problem of generating large lists
of numbers, and can be used to compute (even in parallel) the prime counting
function = (h).
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1. INTRODUCTION
In [1I] we reviewed some properties of numbers of the form

(1.1) N, =6n+1

(o numbers [5]) and proved that every prime number of absolute value greater than
3 can be written in that form considering negative values of n. The set of all this
prime generating integers was called G,. We also introduced the infinite matrix A
whose element a (4, j)% is

(1.2) a(i,j)=1i+7(6i+1)
where ¢,j € Z.
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-96 —-71 —46 —-21 4 29 54 79 104
-73 —-54 =35 —-16 3 22 41 60
-50 —-37 -—-24 -11 2 15 28

-27 =20 -13 -6 1

-4 -3 -2 -1 0

19 14 9 4 -1

42 31 20 -2
65 48 -3
88 —4

We also proved it to be symmetrical and saw the behavior of its signs depending
on the counterclockwise quadrant (axis not considered):

e In quadrant I (¢ > 1, j > 1) all elements are positive
e In quadrant IT (: < —1,j > 1): a(i,5) <0 Vi, j.
e In quadrant IV (i < —1, j < —1) all elements are positive.

2. LEOPOLDO’S THEOREM AND THE 7 FUNCTION

2.1. Leopoldo’s Theorem. Later we defined the A set as a list of all the non
repeated off-axis elements of A. A simple expansion sowed that the elements of A
do not generate prime numbers by (LI). Finally, we stated and proved Leopoldo’s
theorem:

Theorem 2.1. (Leopoldo’s Theorem) Go = Z — A.

This means that all integers not generated by (I2)) will generate all primes of
absolute value greater than 3 by (ILI)) (and thus, this would work as a sieve). Some
level sets of A are shown in Figure [3.1 on the following page

Now, suppose you wish to calculate all prime numbers of absolute value greater
than 3 up to a certain value h = 6¢+ 1 (¢ > 0), this means computing 7 (h) using
Leopoldo’s Theorem. At first sight, one would have to

(1) generate all elements of A up to |a(i,5)| =(h—1) /6
(2) discard the axis elements

(3) sort the rest

(4) discard repetitions

(5) remove them from the interval [—c, c]

(6) count the remaining numbers

(7) apply (II) to show the primes in the interval

With large numbers, this computation would become quickly time and memory
prohibitive. A closer look at the distribution of elements in the sieve gives the
answer to this problem.
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3. LEoPOLDO’S THEOREM AND THE 7 FUNCTION
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FIGURE 3.1. Several level sets of f (z,y) = = +y (6z + 1).

In Figure [3.2 on the next page] we show the representation of the level sets
f(z,y) = ¢ (¢ > 0). We must only consider non-repeated elements of A orig-
inally from within the “star” delimited by

(3.1) fz,y)=xc=x(h—1)/6

3.1. An algorithmic approach. An exploration of the level sets allows algorith-
mic approach to 7 (h).

Algorithm 3.1. We define the A algorithm of arguments ¢1 and co (co > ¢1 > 8),
as the procedure that

(1) Declares a natural variable L =0
(2) For ¢ taking every integer value from ¢; to ¢

(a) For integers x from z = — [(c+1) /5] to . = — [(V1+6¢c+1) /6]

sees if
c—x

6x +1

takes an integer valudd.
(i) if it finds one, adds 1 to L and goes to step 2d
(i) if it doesn’t find any, goes to step
(b) For integers x from z = 1 to x = | (/1 +6¢c—1) /6] sees if
c—x
6r +1

takes an integer value.
(i) if it finds one, adds 1 to L and goes to step 2d

2This means, (c — ) = 0 (modulo 6z + 1).
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3d b y=x

flxy)=1666.5 || 10000

f,)=166.5 1000
f@,)=16.5 100
. flx,y)=1.5 10
= , ; s § Hag)=1.5 10
! \ flz,y)=-16.5 -100
f(z,y)=-166.5 -1000
o . f(@,y)=-1666.5 || -10000

FIGURE 3.2. Level sets of f (z,y) =2 +y (6z + 1) = +ec.

(ii) if it doesn’t, prints ¢ and 6¢ + 1, and goes to step 2d
(c) For integers from z = — [(c+1) /7] to z = —1 sees if
—c—z
6z +1

takes integer values.
(i) if it finds one, adds 1 to L and goes to the next value of c.
(ii) if it doesn’t find any, prints —c¢ and —6¢ + 1, and goes to the
next value of c.
(3) Once the process has been completed up to ¢z, reports the accumulated
value of L:

A (c1,¢2) = Linal
This algorithm tells the amount of numbers that do not generate prime numbers
by 6¢ + 1 in the interval [c1,c2], and also gives the list of the missing values as
well as the primes generated by them. So, the amount of prime numbers between
h1 =6c1 — 1 and hg = 6¢a + 1 (c1 > 8) is:

(3.2) A7T:2(CQ _Cl)—A(Cl,CQ)+1
In the particular case of ¢; = 8 (hy =47) and h = 6¢g + 1:
(33) s (h) = 202 —A (8,02)

4. RESULTS AND CONCLUSIONS

In Table [ it may be seen that the the proposed algorithm for the 7 function
agrees with known results for several testing values. Equations B2) and (B3]
enable a parallelization of the computation of the 7 function with the A algorithm.

Calculation time grows with the parameter ¢. The last value in the table took
nearly an hour to be computed with an AMD Athlon 64 X2 Dual Core 4200-+.
All values were calculated using (3:3)). The memory used remains stable, since it
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doesn’t take more than it needs to store the variables and operations in steps 2al
2Hl and ¢ on the preceding pagel

h 7 (h) 7 (h) m(h—3)
(Mathematica 5) | (A Algorithm) [4]
102 +3 27 27 25
10°+ 3 168 168 168
10* + 3 1229 1229 1229
10° +3 9593 9593 9592
10°+3 78499 78499 78498
107+ 3 664579 664579 664579

TaBLE 1. A algorithm based results versus several known values of 7 (h).

Given the fact that this algorithm evaluates all values between ¢; and cq, as
well as the independence of the obtained value A7 with other intervals, a parallel
expression of the Algorithm is possible using n independent processors where the
range of values ¢ for each acting processor is

Clpzcl+(02_01)Pn

4P

o — ¢
02P201P+< 2 P1>Pn
and so on, where #P is the total number of processors and P, is the number of a

given processor in the cluster.

5. FUTURE WORKS

Since the computing load is equally divided between computing nodes, the effi-
ciency of the process asymptotically approaches 1 (each computing node uses nearly
100% of itself to calculate). The speedup tends to #P as new computing nodes
are added whenever (ca — ¢1) > #P. In a future paper we will deal with the case
(c2 —c1) < #P
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