
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/282931010

Variable-based	analysis	for	traceability	in	QVT-
R	model	transformations

Article	·	January	2015

CITATIONS

0

READS

17

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

CBMDD-	Desarrollo	Dirigido	por	Modelos	Basado	en	Componentes	View	project

Claudia	F	Pons

National	University	of	La	Plata

98	PUBLICATIONS			302	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Claudia	F	Pons	on	26	October	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/282931010_Variable-based_analysis_for_traceability_in_QVT-R_model_transformations?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/282931010_Variable-based_analysis_for_traceability_in_QVT-R_model_transformations?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CBMDD-Desarrollo-Dirigido-por-Modelos-Basado-en-Componentes?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudia_Pons?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudia_Pons?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_La_Plata2?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudia_Pons?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudia_Pons?enrichId=rgreq-2b348084f44d5408d9405143a1cbc3d6-XXX&enrichSource=Y292ZXJQYWdlOzI4MjkzMTAxMDtBUzoyODg4NDQ1MjA5MzU0MjRAMTQ0NTg3NzMwODI0Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Variable-Based Analysis for Traceability in QVT-R

Model Transformations

Omar Martínez Grassi, Claudia Pons, Gabriel Baum

LIFIA, Facultad de Informática, UNLP, CAETI - Universidad Abierta Interamericana (UAI),

CIC (Comisión de Investigaciones Científicas de la Provincia de Bs.As.), La Plata, Bs. As, Argentina.

omartinez@rionegro.com.ar, cpons@lifia.info.unlp.ed u.ar, gbaum@info.unlp.edu.ar

Abstract Model-driven software development promotes models as the primary

artifacts in software development. During all development phases, different

models of the system are created, refined, and linked, such that from the re-

quirements to the implementation a whole network of models is built. OMG's

“Model-driven Architecture" (MDA) is one important instance of this general

paradigm, with a particular stress on automation of model creation and linkage.

Models are complemented by model transformations written in the QVT lan-

guage, describing how one model can be derived from another one. Traceability

data in the MDA can be understood as the runtime footprint of model transfor-

mations. It has many applications: to perform change impact analysis, to keep

consistency between models, to carry out requirement coverage analysis, etc. In

this paper we present a proposal to enhance the retrieval of traceability informa-

tion in MDA. The contributions of our work include the minimization of man-

ual efforts to achieve traceability, as error-prone and time-consuming activity,

and the attainment of independence regarding the QVT engine implementation.

1 Introduction

Model-Driven software development (MDSD) [7] promotes models as the primary

artifacts in software development. During all development phases, different models of

the system are created, refined, and linked, such that from the requirements to the

implementation a whole network of models is built. OMG's “Model-driven Architec-

ture" (MDA) [9] is one important instance of this general paradigm, with a particular

stress on automation of model creation and linkage. Models are complemented by

model transformations, describing how one model can be derived from another one.

Thus, the linkage between models can be obtained automatically and repeatedly. A

common basis for describing modeling and transformation languages is used: the

“Meta-Object Facility" (MOF). For expressing model transformations, MDA provides

the MOF-based “Query/View/Transformations" language (QVT) [10]; in this lan-

guage, translations from models of one MOF-based modeling language into models of

the same or another MOF-based modeling language can be specified.

The IEEE Standard Glossary of Software Engineering Terminology [12] defines

traceability as the degree to which a relationship can be established between two or

more products of the development process, especially products having a predecessor-

successor or master-subordinate relationship to one another or the degree to which

each element in a software development product establishes its reason for existing.

This early definition is strongly influenced by the originators of traceability, i.e. re-

quirements management community. However, it is possible to find a much broader

one, more useful for the purposes of model-driven development. In [1], Aizenbud

defines traceability as “any relationship that exists between artifacts involved in the

software engineering life cycle”. So traceability is achieved by defining and maintain-

ing relationships between artifacts involved in the software-engineering life cycle

during system development.

Traceability data in the model-driven development can be understood as the run-

time footprint of model transformations [3]. Trace links can provide this information

by associating source and target model elements with respect to the execution of a

certain model transformation. Trace links have many applications [3]: performing

impact analysis (i.e., analyzing how changing one model would affect other related

models), determining the target of a transformation as in model synchronization, at

model-based debugging (i.e., mapping the stepwise execution of an implementation

back to its high-level model), and in debugging model transformations themselves. In

the context of specific scenarios of MDSD, there are even more use cases for trace

links [14]: supporting design decisions by consulting traceability links, providing vali-

dation by analyzing traceability links transitively through the different models to ana-

lyze if a requirement is fulfilled and if an artifact is up to date, understanding and

managing MDSD artifacts by the many dependencies that exist between them, under-

standing and debugging transformations, and carrying out model synchronization.

Furthermore, trace links can be useful to implement change impact analysis, by simu-

lating changes to an artifact and exploring their effects on other artifacts. Finally,

traceability information can be used both in coverage analysis, to determine whether

all requirements were covered by test cases in the development life cycle, as in orphan

analysis, to find orphaned model elements with respect to an specific trace link.

Model transformation approaches allow either implicit or explicit trace link genera-

tion [3]. In the former case, dedicated support for tracing is provided, while in the

latter one, developers have to manually encode the creation of traceability links in the

transformation rules, as a regular output model. Although QVT provides dedicated

support for tracing, it has significant limitations [2]. Explicit trace link generation

must rely on human effort, an error-prone and time-consuming activity. In this paper

we propose a schema for traceability support in QVT model transformations, based on

QVT code analysis, which allows the inference of traceability information between

the source and target models from the model transformation specification, systemati-

cally, without requiring any additional code or intervention from the developer.

The remainder of this paper is structured as follows: in Section 2 we describe the

background and motivation of our work. Then in Section 3 we present our proposal

for obtaining traceability information automatically. In Section 4 we evaluate the

proposal and make a comparison to related works. Finally, in Section 6, we present

our conclusions and future works.

2 Background and motivation

Some years ago, the OMG adopted QVT (Query/View/Transformation) language

as a standard for model transformation specification. QVT is a hybrid declara-

tive/imperative language [10], which integrates the standard OCL 2.0 and extends its

imperative version, defining three specific domain languages (DSL) called Relations,

Core (both declarative) and Operational Mappings (imperative). The QVT standard

describes a trace which is recorded all along the transformation execution, and can be

serialized at the end of the transformation execution in order to be inspected later.

However, its main purpose is to support the object resolution mechanism, indispensa-

ble to perform the transformation. The trace provided by QVT is thus mainly inter-

nally used by the engine and is not well adapted to the traceability purposes. In [2]

several scenarios are described where the basic information required by most activi-

ties based on trace exploitation is not provided by the QVT trace. Moreover, the in-

formation contained in the trace is relative to some kind of elements (Class and not

Property). Thus, trace links are only one-to-one links between elements of the root

pattern of the rules (i.e., elements defined at rule's signature).

To overcome these limitations we propose a different novel approach: to get trace-

ability information directly from the transformation program, i.e., the QVT code.

While there are several approaches that allow getting traceability information implic-

itly, what is new in the mechanism we propose here is the possibility to obtain not

only trace links between source and model elements, but the traceability relationships

as well. The traceability relationships are those that are defined between types (e.g.,

metamodel elements); trace links are instances of these relationships (e.g., between

model elements). While the trace links allow us to know the origin of target model

elements in a transformation of a given instance of source and target models, the

traceability relationships allow us to predict the trace links for every source and target

models submitted to this transformation.

Essentially, our goal is to develop a solution to enhance the attainment of traceabil-

ity information in QVT. The contribution of our work includes minimizing the man-

ual efforts to achieve traceability, as error-prone and time-consuming activity, and

obtaining independence regarding the QVT engine implementation.

3 Variable-based analysis

This work addresses the problem of obtaining traceability information automati-

cally, i.e. without having to depend on someone to specify how the trace information

will be obtained. Our work shows that inferring traceability relationships by analyzing

the QVT model transformation source code is a feasible task. This analysis is based

on the recognition of certain patterns in the use of variables within the specification of

a model transformation written in QVT Relations language (QVT-R), which can be

used to discover trace links between source and target model elements. We call this

approach “variable-based analysis”.

In order to understand our proposal some QVT language background is necessary.

In the first part of this section we will introduce the reader to some of the basic con-

cepts of the QVT-R language.

3.1 The QVT Relations language (QVT-R)

In the QVT-R language, a transformation between candidate models is specified as

a set of relations (or rules) that must hold for the transformation to be successful. A

candidate model is any model that conforms to a model type. A transformation in-

voked for enforcement is executed in a particular direction by selecting one of the

candidate models as the target. The target model may by empty, or may contain exist-

ing model elements to be related by the transformation. The execution of the trans-

formation proceeds by first checking whether the relations holds, and for relations for

which the check fails, attempting to make the relations hold by creating, deleting, or

modifying only the target model, thus enforcing the relationship [10].

Every relation in a transformation declares constraints that must be satisfied by the

elements of the models. A relation is defined by two or more domains and a pair of

when and where predicates. A domain is a typed variable that can be matched in a

model of a given model type. The when clause specifies the condition under which

the relationship needs to hold, while the where clause specifies the condition that

must be satisfied by all model elements participating in the relation. A relation in a

QVT program can be a top-level relation or a non-top-level relation. The execution of

a transformation requires that all its top-level relations hold, whereas non-top-level

relations are required to hold only when they are invoked directly or transitively from

the where clause of another relation.

Domains can be marked as checkonly or enforce. When a transformation is exe-

cuted in the direction of a checkonly domain, the existence of a valid match satisfying

the relationship is simply checked. On the other hand, when a transformation executes

in the direction of an enforced domain, if the check fails, the target model is modified

so as to satisfy the relationship [10].

3.2 Variable-based analysis concepts

Variables in a QVT transformation play a major role in the matching mechanism at

the time of performing the transformation from one model (source) to another model

(target). Essentially, the variable-based analysis (VBA) proposed in this paper con-

sists in the identification of each variable in every rule of a transformation, and the

determination of the role it plays within the statement and the context where it is used.

Indeed, we have observed that certain patterns of variables usage within a QVT-R

program allow us determining the relationships between the source and target model

elements and therefore inferring the trace relationships between them. The VBA is

based on the recognition of these patterns within a QVT-R program, and the subse-

quent building of the traceability information.

The basic steps that conforms the variable-based analysis are the following: 1)

code inspection, 2) pattern matching process and 3) generation of trace links. The

flow proposed by VBA is straightforward: the QVT-R code inspection is performed

to find out one or more pattern-matching instances. If this happens, the traces are

generated.

(a) MM1 Metamodel (b) MM2 Metamodel

Fig. 1. MM1 and MM2 metamodels

We present a simple scenario to illustrate how these “patterns” can help us to find

the relationships between candidate models in a QVT-R transformation. Let MM1

and MM2 be two metamodels with a single class each one, named M1 and M2 re-

spectively, which in turn contains a single name attribute (Figure 1), and consider a

transformation from MM1 to MM2 that translates every instance of M1 into a new

instance of M2 with the same name (Figure 2a).

 1. transformation MM1_to_MM2(m1:MM1,m2:MM2) { 1. transformation T .. {
 2. top relation classM1_to_classM2 { 2. top relation R {
 3. cname : String; 3. x : VarType;
 4. checkonly domain m1 a : MM1::M1 { 4. checkonly domain source {
 5. name = cname 5. s = x
 6. }; 6. };
 7. enforce domain m2 b : MM2::M2 { 7. enforce domain target {
 8. name = cname 8. t = x
 9. }; 9. };
10. } 10. }
11. } 11. }

(a) MM1_to_MM2 trasformation (b) Pattern No.1

Fig. 2. QVT-R transformation code and Pattern No.1

The transformation contains a single mandatory (top-level) relation,

classM1_to_classM2, which defines the following constraint: for every instance of

M1, whatever its name, there must exists an M2 instance with the same name. As you

can see, the cname variable acts as a pivot between both model elements “name” of

M1 and M2, determining the constraint of the relationship. This, in turn, allows us to

obtain traceability information: in the context of the MM1_to_MM2 transformation,

the name of every M2 instance is defined by the name of the M1 instance. We can be

sure of that because this relationship is enforced: when the transformation runs in the

direction of the model of the enforced domain, if check fails, the target is modified to

satisfy the relationship.

To describe the conditions that allow us to get the traceability information from a

relation we have chosen the word “pattern”. In the context of our work, a trace pattern

stated a consistent, characteristic usage of variables within a QVT program that leads

to traceability data attainment. It is a textual description that includes the conditions

which allow obtaining the traceability relationship between candidate model ele-

ments. We have identified six patterns that can be found in QVT-R programs. In the

following section we will describe them in detail.

3.3 Trace patterns

The first pattern we observed is based in the usage of a variable as a pivot between

two source and target model elements, as we described in the example above.

Pattern No.1 The use of a variable in both checkonly and enforce domains.

When a top-level rule or a non-top-level rule invoked from a statement of a when,

or where, clause of a top-level rule, assigns a value to a target model element t de-

fined in the scope of an enforce domain, by using a variable previously used on a

source model element s defined in a checkonly domain, then we say that the source

model element s will map directly to the target model element t. This leads to the

derivation of the trace relationship T: s→t. The operator → stands for “determine”,

meaning that the value of element s will determine the value of element t. In other

words, the value of element t depends on the value of element s at the moment of

perform the transformation.

Following our example of Figure 2a, we can see that variable cname is used in both

checkonly and enforce domains. The relation classM1_to_classM2 will be satisfied

only when there is an M1 instance with the same name of an M2 instance, so we can

get the trace M1::name→M2::name. This result says that for every M1 and M2 in-

stances satisfying the relation classM1_to_classM2, the name of M2 will be exactly

the same as the name of M1. The Figure 2b describes our first pattern. It consists of

the following conditions:

1. A source model element in the scope of a checkonly domain of a relation, which is

set equal to a typed variable, says x (line 5).

2. A target model element in the scope of an enforce domain of a relation, which is

set equal to the same x variable (line 8).

3. The relation R is a top-level relation, or is a non-top-level relation being invoked

from a statement of either a when or where clause of a top-level relation.

So the pattern allows us to get the trace relationship s→t. In other words, the pat-

tern says that the value of the target model element will be determined by the value of

the source model element.

Pattern No.2 The use of a function in the enforce domain

To understand our second pattern let us consider a slightly modification in the

QVT program presented above. Suppose now we want that the name of the translated

instance of M2 be the name of M1 instance plus the suffix “in M2”. The Figure 3a

shows the new version of relation classM1_to_classM2.

In this case we have not only a pivot variable: now the expression of the matching

value of the M2 element (line 8) is given by a function F on the variable defined in

the checkonly domain (line 5). In this case F(variable) = variable + ‘in M2’, where

operator ‘+’ represents string concatenation operation. The trace relationship obtained

in this case will be F(M1::name)→M2::name. The Pattern No.2 consists of the fol-

lowing conditions (Figure 3b):

1. A source model element in the scope of a checkonly domain of a relation, which is

set equal to a typed variable, says x (line 5).

2. A target model element in the scope of an enforce domain of a relation, which is

set equal to a function F of the x variable (line 8).

3. The relation R is a top-level relation, or is a non-top-level relation being invoked

from a statement of either a when or where clause of a top-level relation.

 1. transformation MM1_to_MM2(m1:MM1,m2:MM2) { 1. transformation T .. {
 2. top relation classM1_to_classM2 { 2. top relation R {
 3. cname : String; 3. x : VarType;
 4. checkonly domain m1 a : MM1::M1 { 4. checkonly domain source {
 5. name = cname 5. s = x
 6. }; 6. };
 7. enforce domain m2 b : MM2::M2 { 7. enforce domain target {
 8. name = cname + 'in M2' 8. t = F(x)
 9. }; 9. };
10. } 10. }
11. } 11. }

(a) The new classM1_to_classM2 relation (b) Pattern No.2

Fig. 3. Using a function in an enforced domain.

So, the pattern allow us to get the trace relationship F(s)→t. In other words, the

pattern says that the value of the target model element will be determined by a func-

tion F of the value of the source model element. Note that Pattern No.1 is equal to

Pattern No.2 when F(variable) = variable. So we say that Pattern No.2 is a generali-

zation of Pattern No.1.

Pattern No.3 The use of a constant value assigned to a target model element

The third pattern is defined for those cases in which a target model element defined

in the scope of the enforced domain of a relation is set equal to a constant value. So

the content of this element will be always the same, no matter the conditions under

which the transformation be executed.

Suppose we modify our M2 class, adding a new attribute max_length, meaning that

every instance of M2 has a restricted size name, e.g., 30 characters long. So we modi-

fied the relation classM1_to_classM2 to set up this constant value (Figure 4a). The

Pattern No.3 then consists of the following conditions (Figure 4b):

1. A target model element in the scope of an enforced domain, which is set equal to a

constant k (line 8).

2. The relation R is a top-level relation, or is a non-top-level relation being invoked

from a statement of either a when or where clause of a top-level relation.

As you can see, no matter what checkonly domain definition was there, this pattern

allow us to derive the trace k→t.

 1. transformation MM1_to_MM2(m1:MM1,m2:MM2) { 1. transformation T .. {

 2. top relation classM1_to_classM2 { 2. top relation R {
 3. cname : String; ..
 4. checkonly domain m1 a : MM1::M1 { 7. enforce domain target {
 5. name = cname 8. t = k
 6. }; 9. };
 7. enforce domain m2 b : MM2::M2 { 10. }
 8. name = cname + 'in M2', 11. }
 9. max_length = 30
10. };
11. }
12. }

(a) Setting up a constant in an enforced domain (b) Pattern No.3

Fig. 4. Trace inference from a constant value

Pattern No.4 The use of an variable defined as a function in the where clause

Sometimes more complex matching expressions need to be expressed, for example

when additional model elements are involved in the relation. These complex expres-

sions must be defined in the where clause of the relation. The where clause specifies

the conditions that must be satisfies by all model elements participating in the rela-

tion, and it may constrain any of the variables in the relation and its domains. In this

case, it is possible to get traceability information as well. The Pattern No.4 stated how

to get a trace relationship from an expression in a where clause.

 1. transformation MM1_to_MM2(m1:MM1,m2:MM2) { 1. transformation T .. {
 2. top relation classM1_to_classM2 { 2. top relation R {
 3. cname : String; 3. x, y : VarType;
 4. checkonly domain m1 a : MM1::M1 { 4. checkonly domain source {
 5. name = cname 5. s = x
 6. }; 6. };
 7. enforce domain m2 b : MM2::M2 { 7. enforce domain target {
 8. name = cname + 'in M2', 8. t = y
 9. max_length = 30 9. };
10. }; 10. where {
11. where { 11. y = F(x);
12. fullname = cname + 'in M2' 12. }
13. } 13. }
14. } 14. }
15. }

(a) The use of a function in a where clause (b) Pattern No.4

Fig. 5. Trace inference from a function in a where clause.

Suppose we rewrite our relation classM1_to_classM2 adding a new string variable

fullname, which contains the full name of the M2 instance after the transformation

finishes (Figure 5a).

In this case, the variable fullname acts as a pivot between the attribute name (line

8) of the M2 class and the attribute name of the M1 class (line 5). The value of the

M1 class name is given by the variable cname in the expression of the where clause

(line 12). The Pattern No.4 then consists of the following conditions (Figure 5b):

1. A source model element in the scope of a checkonly domain of a relation R, which

is set equal to a typed variable, says x (line 5).

2. A target model element in the scope of an enforce domain of the relation R, which

is set equal to another typed variable, says y (line 8).

3. A statement within the where clause of relation R, where the variable y is set equal

to a function F of the x variable (line 11).

4. The relation R is a top-level relation, or is a non-top-level relation being invoked

from a statement of either a when or where clause of a top-level relation.

This pattern allows us to obtain the trace F(s)→t. Furthermore, the function F may

include many variables, each of them associated with different source model element.

In this case, the derived trace will be F(s1,..,sn)→t.

Pattern No.5 Trace inference from an If-Then-Else statement

The statements used in a QVT-R program has usually the form x = y, where x can

be a variable (e.g. within a where clause) or a model element (e.g. in the context of a

checkonly or enforce domain), and y is an OCL expression. The Object Constraint

Language (OCL) [11] is a formal language traditionally used to describe expressions

on UML models. In this case, the OCL expressions are used to describe matching

expressions in domains, when or where clauses within relations of a QVT program.

The OCL language provides a conditional statement If-Then-Else as many other lan-

guages. A trace relationship can be obtained from this kind of structure. The Pattern

No. 5 specifies the conditions to do so.

Suppose we modify our M1 class, adding a new attribute alias. So the M1 class has

now two properties: a name and an alias. Then we redefine our classM1_to_classM2

relation to change the translation rule of an M1 class into an M2 class, meaning that

the name of the M2 class be the name of the M1 class, if and only if the name of M1

class is not blank. If so, then the name of the M1 class will be the alias of the M1

class.

Figure 6a shows the new version of classM1_to_classM2 relation. The name of the

M2 class (line 9) is given now by a conditional If-Then-Else statement (line 13). In

this example two source model elements (name and alias) are involved, but this is not

a mandatory constraint for the pattern. Instead, there could be just a single variable

within the Then or Else expressions, or the same variable in both. The Pattern No.5

then consists of the following conditions (Figure 6b):

1. At least one source model element in the scope of a checkonly domain of a relation

R, which is set equal to a typed variable, says x (line 5).

2. A target model element in the scope of an enforce domain of the relation R, which

is set equal to another typed variable, says z (line 9).

3. A statement within the where clause of relation R, where the variable z is set equal

to an If-Then-Else statement (line 12).

4. An expression expr1 in the Then condition, and an expression expr2 in the Else

condition which contains, at least one of them, a variable defined in the scope of

the checkonly domain of R, e.g., variable x (line 5) or variable y (line 6).

5. The relation R is a top-level relation, or is a non-top-level relation being invoked

from a statement of either a when or where clause of a top-level relation.

 1. transformation MM1_to_MM2(m1:MM1,m2:MM2) { 1. transformation T .. {
 2. top relation classM1_to_classM2 { 2. top relation R {
 3. cname, aname, fullname : String; 3. x, y, z : VarType;
 4. checkonly domain m1 a : MM1::M1 { 4. checkonly domain source {
 5. name = cname 5. s1 = x
 6. alias = aname 6. s2 = y
 7. }; 7. };
 8. enforce domain m2 b : MM2::M2 { 8. enforce domain target {
 9. name = fullname 9. t = z
10. max_length = 30 10. };
11. }; 11. where {
12. where { 12. z = if condition()
13. fullname = if cname <> '' 13. then expr1
14. then cname 14. else expr2
15. else aname 15. endif;
16. endif; 16. }
17. } 17. }
18. } 18. }
19. }

(a) A conditional statement in a where clause (b) Pattern No.5

Fig. 6. Trace inference from an If-Then-Else statement.

This pattern allows us to obtain the trace expr1| expr2→t, where expr1 and expr2

are expressions that contain one or more references to source model elements. In our

example of Figure 6a, the trace obtained is M1::name| M1::alias→M2::name, i.e., the

name of the M2 class is given by the name of the M1 class or by the alias of M1. The

symbol “|” represents the “OR” logical operation.

We have categorized these kinds of traces as “conditional” traces. A conditional

trace is a trace that has been obtained from a conditional expression like an If-Then-

Else statement, so we can not determine the relationship accurately until transforma-

tion finishes. However, a conditional trace shows all the possible relationships among

the involved model elements.

Pattern No.6 Trace inference from a query

One of the features of the QVT language is the possibility of evaluating expres-

sions over a model through queries. A query is just a function that carries out some

processing and returns a value. The Pattern No.6 is about getting traceability data

from a QVT query.

In our example of Pattern No.3, we define the attribute max_length to restrict the

size of a M2 class instance name. Now we create a query N1ToN2() that receives the

name of the M1 class instance and a limit as parameters and returns the name of the

M2 class instance. Figure 7a shows the new version of the classM1_to_classM2 rela-

tion and the query N1ToN2(). The name of the M2 class instance after translation (line

8) now depends on the M1 class instance name (line 5) and the result of the query

N1ToN2() defined at line 15.

 1. transformation MM1_to_MM2(m1:MM1,m2:MM2) { 1. transformation T .. {
 2. top relation classM1_to_classM2 { 2. top relation R {
 3. cname, fullname : String; 3. x, y : VarType;
 4. checkonly domain m1 a : MM1::M1 { 4. checkonly domain source {
 5. name = cname 5. s = x
 6. }; 6. };
 7. enforce domain m2 b : MM2::M2 { 7. enforce domain target {
 8. name = fullname 8. t = y
 9. max_length = 30 9. };

10. }; 10. where {
11. where { 11. y = Q(x);
12. fullname = N1toN2(cname,max_length); 12. }
13. } 13. }
14. } 14. query Q(params) : VarType {
15. query N1toN2(n:String,l:Int):String { 15. ..
16. if (n.size() > 1) 16. }
17. then n.substring(1,l) 17. }
18. else n
19. endif;
20. }
21. }

(a) Trace inference from a query (b) Pattern No.6

Fig. 7. Trace inference from a query.

The Pattern No.6 then consists of the following conditions (Figure 7b):

1. At least one source model element in the scope of a checkonly domain of a relation

R, which is set equal to a typed variable, says x (line 5).

2. A target model element in the scope of an enforce domain of the relation R, which

is set equal to another typed variable, says y (line 8).

3. A statement within the where clause of relation R, where the variable y is set equal

to a query expression Q (line 11).

4. A query Q defined in the QVT program which carries out some processing and re-

turns a value (line 14).

5. The relation R is a top-level relation, or is a non-top-level relation being invoked

from a statement of either a when or where clause of a top-level relation.

This pattern allows us to obtain the trace relationship Q(s)→t. Although the result

of the query Q depends on the execution of the transformation, the trace reveals the

relationship between both source and target model elements. Considering the QVT

program excerpt of Figure 7a, the Pattern No.6 allows us to get the traceability rela-

tionship N1ToN2(M1::name)→M2::name. So we can derive that M2::name =

N1ToN2(M1::name), i.e., the name of the M2 instance will be determined by the

processing of the name of the M1 class instance (source), carried out by the query

N1ToN2().

4 Evaluation

In order to understand the advantages of the technique that we present in this pa-

per, several aspects that differentiate it from other approaches are evaluated. In this

section we compare VBA from two different dimensions: the VBA technique versus

the QVT dedicated tracing support; and the VBA technique versus other traceability

techniques.

4.1 The VBA trace vs. the QVT trace

As we said earlier, QVT provides dedicated support for tracing. So after a QVT

transformation finishes, a set of obtained traces are recorded, and can be serialized to

a post-mortem inspection. The main limitation of the QVT trace is that the informa-

tion contained in the trace is relative to some kind of elements (Class and not Prop-

erty). In the first example of Figure 2, the QVT implicit trace will be a→b, indicating

that a model MM1::M1 (variable a refers to the M1 class of metamodel MM1, and

variable b refers to the M2 class of metamodel MM2) is related with a model

MM2::M2 in some way. Instead, the VBA trace will contain the traceability relation-

ship among the elements (attributes) of the two models involved in the transforma-

tion. Following the QVT code excerpt in Figure 2 the VBA trace will be M1::name→

M2::name, indicating that the name of the M1 class is related to the name of the M2

class.

4.2 The VBA trace vs. other traceability techniques

The automatic generation of traceability information has been the subject of sev-

eral research papers. One of the first studies of traceability in model transformations

can be found in [6]. It is based on traces generation through a loosely coupled process,

without altering the definition of model transformations in the context of the ATL

language (ATLAS Transformation Language). The attainment of traceability informa-

tion is performed at the transformation level, so it requires the execution of the trans-

formation to generate the traces. The proposed approach, does not affect the logic of

the definition, but adds additional information that blurs the legibility of the original

transformation. In contrast, the proposed VBA technique does not pollute either mod-

els or transformation specification to get traceability information. Moreover, the VBA

approach does not depends on the QVT engine implementation.

Grammel et al. [5] proposes a generic traceability framework for augmenting arbi-

trary model transformation approaches with a traceability mechanism. This generic

traceability framework is based on a domain-specific language for traceability (Trace-

DSL), presenting the formalization on integration conditions needed for implementing

traceability. This work proposes a generic solution for different model transformation

languages. This mechanism operates at transformation level, i.e. requires the execu-

tion of the transformation to generate the traces, and it allows the interaction with an

arbitrary set of model transformation languages, but depends strongly on the connec-

tor that enables association to the transformation engine. Our VBA approach does not

depend on the transformation execution. Furthermore, it allows obtaining the trace-

ability relationship among the involved models, not being limited to the trace links

generation.

In [4], Drivalos et al. introduce a dedicated mechanism on the Traceability Meta-

modelling Language (TML) for detecting and evolving problematic trace links, focus-

ing on the reduction of manual effort incurred in traceability maintenance tasks. In

this approach, the traceability relationships are not inferred by a specific automated

process. Instead, they are explicitly defined during the model definition.

Aranega et al. [2] propose an alternative trace to overcome the limitations of the

trace provided by QVT implicit traceability mechanism. This approach, named Local

Trace, allows gathering information not provided by the QVT trace, and it is lan-

guage-independent. Moreover Local Trace can be used without perturbing the QVT

transformation execution, or the trace generation/exploitation by the engine.

In [15], Wimmer et al. propose a debugging support for the QVT Relation language

based on an alternative traceability approach. They convert a QVT Transformation to

a colored Petri nets transformation using TROPIC, a model transformation framework

based on colored Petri nets. Once again, this mechanism produces data only after

transformation execution or simulation.

5 Conclusions and future work

In the context of Model-Driven Development traceability is an important topic due

to the many applications and benefits it can provide: impact analysis, coverage analy-

sis, and so on.

We have addressed in this work a novel technique to get traceability information

from a QVT Relation transformation. The proposed approach is based on the analysis

of variables within a QVT-R program to identify certain patterns in the structure of a

QVT-R transformation definition. These patterns, in turn, allow us to infer trace rela-

tionships among the elements of the models involved in the transformation. Our tech-

nique was implemented to be fully automated, and it is completely independent of the

transformation execution since it works on the transformation definition. In fact, the

VBA approach allows us to decouple the process of obtaining traceability information

from the transformation execution.

To evaluate our work, we have compared the QVT implicit trace against our VBA

trace. The VBA trace provides enhanced traceability information, including the trace

relationship among the elements within the transformation. This could be a key issue

in a traceability information high-demand scenario like impact analysis or model syn-

chronization.

The automatic generation of traceability information has been the subject of sev-

eral research works, we reviewed them. Our variable-based analysis offers a novel

approach: no other work is based on code analysis to getting traceability information.

This gives us two major benefits: independence from the QVT engine and the possi-

bility to obtain traceability relationship between the models involved in the transfor-

mation.

The proposed technique has been implemented as an Eclipse plug-in, and has been

tested in two well-known scenarios: UML2Java and BibTeXML2DocBook [8]. Our

future research is directed to the identification of new trace patterns that allow us

inferring traceability information so far unidentified. Another point of interest for

future work is the determination of the whole kind of traces this technique can gener-

ate, i.e. the scope of the VBA approach.

References

1. N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model Trace-

ability. IBM System Journal, 45(3):515–526, 2006.

2. Vincent Aranega, Anne Etien, and Jean-Luc Dekeyser. Using an Alternative

Trace for QVT. In Workshop on Multi-Paradigm Modeling, Olso, Norway, Octo-

ber 2010.

3. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-

proaches. IBM System Journal, 45(3):621-645, July 2006.

4. Nikolaos Drivalos-Matragkas, Dimitrios S. Kolovos, Richard F. Paige, and Kiran

J. Fernandes. A state-based approach to traceability maintenance. In Proceedings

of the 6th ECMFA Traceability Workshop, pages 23-30, NY, USA, 2010.

5. Birgit Grammel and Stefan Kastenholz. A Generic Traceability Framework for

Facet-based Traceability Data Extraction in Model-Driven Software Develop-

ment. In Proceedings of the 6th ECMFA Traceability Workshop, pages 7–14,

Paris, 2010.

6. Frédéric Jouault. Loosely Coupled Traceability for ATL. In Proceedings of the

European Conference on Model Driven Architecture (ECMDA) workshop on

traceability, pages 29–37, Nuremberg, Germany, November 2005.

7. Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2003.

8. Omar Martínez Grassi. Soporte de trazabilidad en el proceso de transformación de

modelos. Master's thesis, Universidad Nacional de La Plata (UNLP), Dec. 2014.

http://hdl.handle.net/10915/43494.

9. Object Management Group. MDA Guide Version 1.0.1.

http://www.omg.org/cgibin/doc?omg/03-06-01.pdf, June 2003.

10. Object Management Group. Meta object facility (MOF) 2.0

Query/View/Transformation specification version 1.0.

http://www.omg.org/spec/QVT/1.0/PDF/, April 2008.

11. Object Management Group. Object Constraint Language - version 2.4. Technical

Report formal/2014-02-03, 2014.

12. The Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of

Software Engineering Terminology. New York, USA, September 1990.

13. Manuel Wimmer, Angelika Kusel, Johannes Schoenboeck, Gerti Kappel, Werner

Retschitzegger, and Wieland Schwinger. Reviving QVT Relations: Model-Based

Debugging Using Colored Petri Nets. In Model Driven Engineering Languages

and Systems, Lecture Notes in CS, pages 727-732. Springer Berlin, 2009.

14. Stefan Winkler and Jens Pilgrim. A Survey of Traceability in Requirements Engi-

neering and Model-Driven Development. Software System Model. 9(4):529-565,

September 2010.

View publication statsView publication stats

https://www.researchgate.net/publication/282931010

