
B. Benatallah et al. (Eds.): WISE 2007, LNCS 4831, pp. 573–582, 2007.
© Springer-Verlag Berlin Heidelberg 2007

From Crosscutting Concerns to Web Systems Models

Pedro Valderas1, Vicente Pelechano1, Gustavo Rossi2, and Silvia Gordillo2

1 Department of Information Systems and Computation
Technical University of Valencia, Spain

{pvalderas, pele}@dsic.upv.es
2 LIFIA, Facultad de Informática, UNLP, La Plata

{gustavo, gordillo}@lifia.info.unlp.edu.ar

Abstract. In this paper we present a novel approach for dealing with cross-
cuting concerns in Web applications from requirements to design. Our approach
allows to clearly decoupling requirements that belong to different concerns;
these concerns are separately modeled and specified by using the task-based no-
tation proposed by OOWS Web Engineering approach to specify requirements;
we next show how we integrate task descriptions corresponding to different
concerns to obtain a unified requirements model that is the source of a model-
to-model and model-to-code generation process that allows us to obtain fully
operative web application prototypes that are built from tasks descriptions.

1 Introduction

Even simple Web applications must deal with a myriad of concerns (functional and
non-functional), each one of them encompassing multiple requirements. Some of
these concerns crosscut and consequently the corresponding software artifacts may be
tangled. This problem has been addressed in the field of Aspect-oriented software
development (AOSD) [7,13] which encapsulate crosscutting concerns in separate
modules, known as aspects, and composition mechanisms are later used to weave
them back with other core modules, at loading time, compilation time, or run-time.

In our research we are interested however in the fact that crosscutting concerns are
present well before the implementation, such as in requirements engineering as shown
in [3]. Separating concerns from requirements allows modularizing those concerns
that can not be easily specified as a single use case or task. Composition, on the other
hand, apart from allowing the developers to picture the whole system, allows them to
identify conflicting situations whenever a concern contributes negatively to others.
Unfortunately so far mature Web engineering methods such as [5,14,8] do not offer
primitives and composition mechanisms for advanced separation of concerns.

In [9] we presented an approach for identifying and composing navigational con-
cerns in Web applications using concepts borrowed from aspect-oriented software.
Using our approach we can detect cross-cuttings among concerns early in the devel-
opment process and assess the impact of the crosscutting in the corresponding design
models. Though our research was performed in the context of the OOHDM [12] de-
sign framework and uses UIDs [10] to describe application requirements, the ideas
can be applied with other design methods as is the OOWS method. The OOWS

574 P. Valderas et al.

method introduces a notation to capture Web application requirements which is based
in the task metaphor. Task descriptions are enriched with information about the inter-
action between the user and the system. It also includes a method to derive a OOWS
navigational model automatically from these task based descriptions. In this way, the
OOWS models can be further transformed into fully operative Web applications
therefore allowing to completely bridging the gap between requirements elicitation
and web application development.

In this paper we present a result of our research work combining techniques for
separation of concerns in requirements engineering [16], with approaches for auto-
matic derivation of Web design models from requirement models. The main contribu-
tions of the paper are the following:

• We present a novel approach to model requirements of Web applications
as task-based representations of different concerns.

• We show how to obtain an integrated representation that can be later
transformed into a unified design model.

Section 2 introduces the re-interpretation that we have done of the task-based me-
thod for Web application requirements specification in order to be used as technique
for the description of concerns. Furthermore, an overview of the strategy proposed to
automatically obtain Web application prototypes from task descriptions is also pre-
sented. Section 3 explains how the techniques for the integration of concerns are ap-
plied in the tasks-based method. Section 4 explains the different strategies that can be
followed to support the integration of concerns in the generation of Web application
prototypes. Finally, conclusions and further work are presented in Section 5.

2 Background: The Task Based Approach of OOWS

Section 2.1 introduces a technique for describing concerns by using the OOWS task-
based notation for specifying requirements. Section 2.2 presents an overview of the
strategy that allows us to obtain Web application prototypes from task descriptions.

2.1 Using Tasks for Describing Concerns

Following [1] we consider a concern to be a cohesive set of requirements which deal
with the same application theme. Considering the interactive nature of Web applica-
tions, we model each concern by modeling the underlying tasks of the concern’s
requirements. We focus particularly on those functional concerns which involve inter-
action and navigation (called navigational concerns in [9]), because they define the
skeleton of a Web information system.

Each concern is described by following three main steps: (1) Definition of a task
taxonomy, (2) description of task performance and (3) specification of information
requirements. Next, we introduce a brief description of each step. See [11] for more
detailed information.

Step 1: Definition of a Task taxonomy. We define the different tasks that support
the requirements of a concern in a task taxonomy. To do this, we consider a concern
to be a task and then we perform a progressive refinement in order to obtain more
specific tasks (see the upper left side of Figure 1). Furthermore, we can specify

 From Crosscutting Concerns to Web Systems Models 575

temporal relationships between subtasks for ordering them according to a specific
logic. To represent these temporal relationships, we use those ones introduced by the
CTT approach [15]. The upper left side of Figure 1 shows the task taxonomy which
supports the requirements of the concern Collection of CDs. According to this taxon-
omy, in order to collect products (root task Collect CD) users must search them (sub-
task Search CD) and next (the temporal relationship []>> implies a sequence of tasks)
user must add them to the shopping cart (subtask Add CD).

Step 2: Description of Tasks Performances. We describe how users must perform
each task defined as a leave node in the task taxonomy. To do this, we propose a tech-
nique based on the description of the interaction that users require from the system to
perform each task. This type of description is done by using UML activity diagrams. In
each activity diagram we specify (see the lower left side of Figure 1): (1) the actions that
the system must perform in order to correctly support the task (nodes depicted by
dashed lines). And (2) a set of Interaction Points (IPs) (nodes depicted by solid lines)
that represents the moments during a task where the system and the user interact to each
other. In each of these interactions, either the system provide the user with both infor-
mation and access to operations (IPs stereotyped with the keyword «output») or the user
introduce information into the system (IPs stereotyped with the keyword «input»). The
information and operations that are provided in each IP are related to a specific entity.
Furthermore, for each Output IP, the number of information instances that it includes
(cardinality) is depicted as a small circle in the top right side of the primitive.

Figure 1 shows (in the lower left side) the description of the task Search CD. The
task Search CD starts with an Output IP where the system provides the user with a list
(cardinality *) of music categories. From this list, the user can select a category. If
the category has subcategories, the system provides again the user with a list of (sub)
categories. If the selected category does not have subcategories the system informs
about the CDs of the selected category by means of another Output IP. From this IP,
the user has two possibilities to continue the task: (1) to select a CD, and then the
system provides the user with a description of the selected CD or (2) to activate a
system action which searches for the CDs of an artist. To do this search, the user must
introduce the artist (the search criterion) by means of an Input IP. If the search returns
only one CD, the system provides the user with its detailed description. Otherwise,
the system provides the user with a set of CDs.

Step 3: Specification of Information Requirements. We describe the information
that the system must store in order to correctly support the requirements associated to
each concern (e.g. the information that the system must store to allow users to cor-
rectly collect CDs). To do this, we associate an information template to each entity
identified in the task performance descriptions. These information templates are in-
spired by techniques such as CRC Cards [4]. In each template, we indicate an identi-
fier, the entity, and a specific data section. In this section, we describe the information
in detail by means of a list of specific features associated to the entity. We provide a
name and a description for each feature. In addition, we use these templates to indi-
cate the information exchanged in each IP. We indicate the IP/s (if there are any)
where each feature is shown (Output) or requested (Input). To identify an IP, we use
the following notation: Output (Entity, Cardinality) for Output IPs, and Input (Entity,
System Action) for Inputs IPs.

576 P. Valderas et al.

Fig. 1. Partial Description of the concern Collection of CDs

For instance, according to the template in Figure 1, the information that the system
must store about a CD is (see the specific data section): the CD title, the artist’s name,
the front cover, and the price which are shown in the IPs Output(CD,1) and Out-
put(CD,*); the recording date, some comments about the CD and the list of songs
which are only shown in the IP Output(CD,1); and finally, the number of times that a
CD has been bought and the profiles of the customer which usually purchase it are
also stored. These two last features are not shown in any IP.

2.2 Obtaining Web Application Prototypes from Task Descriptions

In this section, we describe the OOWS strategy that allows us to automatically obtain
Web application prototypes from task descriptions (see Figure 2).

According to Figure 2, a model-to-model transformation is applied first in order to
derive a Web application conceptual model from the task-based requirements specifi-
cation [11]. These transformations are defined by means of graph transformations.
Graph transformations are rewriting rules that are made up of a Left Hand Side (LHS)
and a Right Hand Side (RHS). They are applied as follow: When the LHS is found in
a host graph, it is replaced by the RHS.

The obtained conceptual model is defined by means of the OOWS method [8]. The
OOWS method proposes several models in order to describe the different aspects of a
Web application: The system static structure and the system behaviour are described

Fig. 2. The OOWS development process

 From Crosscutting Concerns to Web Systems Models 577

in three models (class diagram and dynamic-and functional models) that are borrowed
from an object-oriented software production method called OO-Method [2]. The
navigational aspects of a Web application are described in a navigational model.

Next, a strategy of automatic code generation is applied to the conceptual model in
order to obtain code. By following directives specified in design templates [8] a Web
application prototype is automatically generated by the OOWS case tool [6].

3 Our Approach in a Nutshell

In this section, we explain how requirements of crosscutting concerns can be inte-
grated. Three kinds of integration are proposed according to the elements used to
perform it: (1) Integration at task taxonomy level, (2) Integration at task performance
level and (3) Integration at task information level.

3.1 Integration at Task Taxonomy Level

We use the task taxonomy to perform the integration. To do this, we consider con-
cerns to be tasks that can be connected to the task taxonomy of other concerns. For
instance, let’s consider the concern Inspection of the Shopping Cart which involves
those requirements that allow users to inspect their shopping cart. We want to inte-
grate the requirements involved in this concern with the requirements involved in the
concern Collect CDs. In particular, we want that when users are collecting CDs they
have always the possibility of inspecting the shopping cart. In order to do this integra-
tion, we connect the concern Inspection of the Shopping Cart (considering it to be a
task) to the task Collect CD defined in the task taxonomy of the concern Collect CDs.

Fig. 3. Example of integration at task taxonomy level

Figure 3 shows this integration. As we can see in Figure 3, the temporal relation-
ship that has been used to perform this integration is Suspend/Resume (|>). We use
this relationship because its semantics (see step 1 explanation in Section 2.1) allows
us to perform the integration in the way that we need: according to the relationship
semantics, users can interrupt the task Collect CD at any time in order to perform the
task-considered concern Inspection of the Shopping Cart. Thus, while users are col-
lecting CDs they are always able to inspect the shopping cart. The implementation
results of the integration presented in Figure 3 are shown in Figure 4. We can see how
the Web pages that support the task Search CD (subtask of the task Collect CD) allow
users to inspect the shopping cart.

578 P. Valderas et al.

Fig. 4. Example of concern integration implementation

3.2 Integration at Task Performance Level

In this case, we use the description of a task performance in order to do the integra-
tion. This type of integration is based on the one presented in [9]. This type of inte-
gration allows us to connect an activity diagram node defined in the task performance
description of a specific concern with a node defined in the task performance descrip-
tion of another concern. To do this, we propose the use of a set of composition rules
which has the form:

Compose <Task_Base> with <Task1, …, Taskk>
{
 <Task_Base.Node>
 [Merge | AddConnection] [to | with]
 < Taski.Node>
}

By means of this type of rules we can indicate a base node defined in a task per-
formance description of a specific concern (<Task_Base.Node>) and: (1) connect it to
(AddConnection to) one or more nodes defined in the task performance description
of other concern (< Taski.Node>) or (2) merge it with (Merge with) one node defined
in the task performance description of other concern.

For instance, Figure 5 shows the integration of the concept Collection of CDs
with the concern Playing of Video Clips. This new concern involves those require-
ments that allow users to search the video clip of a song. Its description (task taxon-
omy and task performance description) is shown in the bottom left side of Figure 5.
The task taxonomy of this concern is defined by an only one task. This task must be
performed as follow: Users first access a list of video clips (IP Output(Video
Clip,*)). From this list users can either select one an then access its description (IP
Output (Video Clip,1)) or perform a search. The criterion of the search is introduced
by the user throughout the Input IP. The results of this search are shown to users in
a list.

The integration performed between these two concerns is the following: When us-
ers are collecting CDs and they access the list of CDs, users must have the possibility
of search video clips. This integration is performed (see composition rule in the top
left side of Figure 5) by connecting the IP Output(CD,*) defined in the description of

 From Crosscutting Concerns to Web Systems Models 579

the task Search CD (concern Collection of Products) with the search system action
defined in the description of the task Play Video Clip (concern Playing of Video
Clips). The solid arrow in Figure 5 graphically shows the connection that the compos-
ite rule is defining. Figure 6 shows the implementation results of the integration pre-
sented in Figure 5. As we can see in Figure 6, the page that provides users with a list
of CDs (which support the concern Collection of CDs) also provides users with the
possibility of search vide clips. If users use this search, results will be shown in the
Web pages that support the concern Playing of Video Clips.

Fig. 5. Example of concern integration at task performance level

Fig. 6. Implementation result of the integration at task performance level

3.3 Integration at Task Information Level

We use this kind of integration when we want to extend some Output IP defined in a
task performance description of a specific concern with information defined in infor-
mation templates that belong to other concerns.

To do this, we use information integration templates. These templates are associated
to an Output IP. They allow us to indicate that the IP must provide users with additional
features that have been defined in an information template of other concern. In each
information integration template (see Figure 7), we indicate an identifier, the IP that is

580 P. Valderas et al.

extended, and a feature section. In this section, we describe the new features that are
incorporated to the IP. For each feature, we indicate the name, the feature’s entity and
the identifier of the information template associate to the entity, and the concern in
which the information template is defined. Figure 7 shows an information integration
template that allows us to integrate the concern Collection of CDs with the concern
Playing of Video Clips. According to this template, the information that is shown in the
IP Output(CD,1), which is defined in the performance description of the task Search CD
in the concern Collection of CDs, is extended with the feature media file, which is de-
fined in an information template of the concern Playing of Video Clips.

Fig. 7. Example of information integration template

Fig. 8. Example of concern integration implementation at information task level

Furthermore, in each information integration template we can indicate a population
filter (see the Population Filter field in the Figure 7 template). This filter allows us to
restrict the information that is attached to the Output IP. It is defined by means of an
OCL condition. The element self is used in this case to refer to the entity associated to
the extended IP (CD in the example presented in Figure 7). The dot notation is used to
access the different features defined for an entity. For instance, the information tem-
plate in Figure 7 indicates that when users access the IP Output(CD,1), if the accessed
CD is by the artist “Melendi”, then the video clip of his song “Calle la Pantomima”
must be shown. Figure 8 shows the implementation result of this integration. This
figure shows three Web pages. Page A and Page B show information about two dif-
ferent CDs by the artist Melendi. In these pages we can see how the video clip “Calle
la Pantomima” is shown. Page C shows information about a CD by The Rolling
Stones. In this case the video clip is not shown.

 From Crosscutting Concerns to Web Systems Models 581

4 Concern Integration in Prototyping Activities

In this section, we introduce how the integration of concerns defined in Section 3 can
be taken into account in the process of generation of Web application prototypes (see
Section 2.2). Two strategies can be followed to do this:

1. Perform the integration in the model-to-model transformation. We must extend the
model-to-model transformation in order to interpret the concern integration defined
in the task-based description and then derive the proper conceptual elements to
support it. In this case, we obtain a unified conceptual model that supports the re-
quirements of each concern already integrated. With this solution the generation of
code from the conceptual model does not need to be changed.

2. Perform the integration in the automatic generation of code. In this case, we must:
(1) Apply the model-to-model transformation for each concern. This provides us
with a set of partial conceptual models that support the different
concerns independently to each other. (2) Define the concern integration at the
conceptual level. We must use a mechanism that allows us to define the same inte-
gration defined in the task descriptions but, in this case, in the conceptual model.
Furthermore, we must define the proper transformation in order to automatically do
this. (3) Finally, we must extend the strategy of automatic code generation in order
to interpret the integration defined in the conceptual model and then generate the
proper code. This solution allows us to perform the integration of concerns in later
stages of the development process.

Due to the characteristics of the OOWS method, which does not provide mecha-
nisms to define concern integration at the conceptual level, we have initially chosen
the first strategy. In fact, we are currently extending the model-to-model transforma-
tion used in the prototype generation process in order to consider the integration of
concerns presented in Section 3. However, we left as further work the development of
the second strategy with a Web engineering method such as OOHDM, which provides
us with mechanisms to define at conceptual level concern integration.

5 Concluding Remarks and Further Work

We have presented a novel approach for the representation and composition of Web
application concerns at the requirements engineering stage. Functional concerns are
modeled using tasks, and then integrated by applying task composition operators. The
integrated model can then be mapped into an OOWS conceptual model and a proto-
type can be generated using existing transformation-based tools. We have shown with
simple examples of archetypical Web applications how this process proceeds from
requirements into design and prototype generation.

We are currently working on several research lines: first we are improving the con-
cerns composition language to support more complex cross-cutting behaviors; besides
we are exploring the generation of partial OOHDM models from concern models to
experiment with composition at the conceptual and/or navigational levels.

582 P. Valderas et al.

References

1. Araújo, J., Whittle, J., Kim, D.: Modeling and Composing and Validating Scenario-Based
Requirements with Aspects. In: Proceedings of the 12th International Requirements Engi-
neering Conference, Kyoto, Japan (September 2004)

2. Pastor, O., Gómez, J., Insfran, E., Pelechano, V.: The OO-Method Approach for Informa-
tion Systems Modelling: From Object-Oriented Conceptual Modeling to Automated Pro-
gramming. Information Systems 26, 507–534 (2001)

3. Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid, A., Tekinerdogan, B.: Dis-
covering Early Aspects. IEEE Software 23(1), 61–70 (2006)

4. Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-Oriented Software. Pren-
tice-Hall, Englewood Cliffs (1990)

5. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

6. Valverde, P., Valderas, P., Fons, J., Pastor, O.: A MDA-based Environment for Web Ap-
plications Development: From Conceptual Models to Code. In: 6th International Work-
shop on Web-Oriented Software Technologies (2007)

7. Filman, R., Elrad, T., Clarke, S., Aksit, M. (eds.): Aspect-Oriented Software Development.
Addison-Wesley, Reading (2004)

8. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web Applications from
Web Enhanced Conceptual Schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuer-
mann, P. (eds.) ER 2003. LNCS, vol. 2813, Springer, Heidelberg (2003)

9. Gordillo, S., Rossi, G., Moreira, A., Araujo, J., Urbieta, M., Vairetti, C.: Modeling and
Composing Navigational Concerns in Web Applications. In: Proceedings of LA-Web
2006, IEEE Press, Los Alamitos (2006)

10. Güell, N., Schwabe, D., Vilain, P.: Modeling Interactions and Navigation in Web Applica-
tions. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920,
pp. 115–127. Springer, Heidelberg (2000)

11. Valderas, P., Pelechano, V., Pastor, O.: A Transformational Approach to Produce Web
Application Prototypes from a Web Requirements Model. In: IJWET. International Jour-
nal on Web Engineering and Technology (2007)

12. Schwabe, D., Rossi, G.: An Object-Oriented Approach to Web-Based Application Design.
Theory and Practice of Object Systems (TAPOS) 4, 207–225 (1998)

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, Springer, Heidelberg (1997)

14. Koch, N., Kraus, A., Hennicker, R.: The Authoring Process of UML-based Web Engineer-
ing Approach. In: IWWOST 2001. Proceedings of the 1st International Workshop on Web-
Oriented Software Construction, pp. 105–119 (June 2001)

15. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTree: A diagrammatic notation for
specifying task models. In: Interact 1997, pp. 362–369. Chapman&Hall, Australia (1997)

16. Moreira, A., Rashid, A., Araújo, J.: Multi-Dimensional Separation of Concerns in Re-
quirements Engineering. In: RE 2005. Proceedings of the 13th IEEE International Re-
quirements Engineering Conference, IEEE Computer Society, Los Alamitos (2005)

	From Crosscutting Concerns to Web Systems Models
	Introduction
	Background: The Task Based Approach of OOWS
	Using Tasks for Describing Concerns
	Obtaining Web Application Prototypes from Task Descriptions

	Our Approach in a Nutshell
	Integration at Task Taxonomy Level
	Integration at Task Performance Level
	Integration at Task Information Level

	Concern Integration in Prototyping Activities
	Concluding Remarks and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

