
Petri Net Based Algorithm Modelization and Parallel
Execution on Symmetric Multiprocessors

Gustavo Wolfmann
Laboratorio de Computación

Fac. Cs. Exactas Fı́sicas y Naturales
Universidad Nacional de Córdoba

Av. Vélez Sársfield 1611 - Córdoba - Argentina
gwolfmann@efn.uncor.edu

Armando De Giusti
III LIDI

Fac. Informática
Universidad Nacional de La Plata
50 y 120 - La Plata - Argentina

degiusti@lidi.info.unlp.edu.ar

Abstract—PDPTA 2014 - The Symmetric Multiprocessors
architecture is composed by a complex set of cores, chips and
memory channels that make it difficult to implement a parallel
program that efficiently uses all resources. Another obstacle for
achieving a performance according the resources is added by
algorithms with hard data dependency. Asynchronicity is a key
to get all processors running. Petri Nets have been used for along
time to model algorithms, but not as a tool to parallel execution.
In this paper we introduce an asynchronous Parallel Execution
Model based on Petri Nets and the process to go from a high
level model to an executable parallel program. The Cholesky
Factorization algorithm is used as a testbed. Tests resultsyield
values that are near the theoretical peak and open good prospects
to expand the model to other environments and algorithms.

Keywords—Petri Net Modelization - Symmetric Multiprocessor
- Parallel Execution Model - Cholesky Factorization Algorithm.

I. I NTRODUCTION

Tiled algorithms emerge as a solution to the problem of
load balance for dense linear algebra algorithms on multicore
processors [1]. This type of algorithms divides data in square
blocks that are used in subsequent stages of processing until
the final result is reached. This strategy of data division allows
increasing the number of tasks that can be run in parallel when
there is no data dependency among data tiles.

To improve processing performance, the parallel algorithm
has to drive two key concepts: granularity and asynchronicity.
Granularity plays an important role in parallel performance
because the larger the number of blocks, the more tasks that
can be run in parallel. Furthermore, without asynchronicity,
performance decreases due the existence of blocking pointsin
the algorithm that causes processors to become idle until they
all reach each point.

The combination of a large number of tasks with asyn-
chronicity generates an execution problem: the selection of
the task to be launched and the processor that execute it.
Hundreds or even thousands of tasks running in a machine
with a large number of parallel processors will result in an
overload problem.

In a previous work, [2] we have shown that Petri Net is
a good tool to model and control the execution of a com-
plex parallel algorithm. A high-level modelization based on
Coloured Petri Nets (CPN) [3] has been presented. Transitions

represent the tasks of the algorithm and Places represent
the data parameters used by each task. For example, the
Cholesky Factorization algorithm can be resolved with four
BLAS/LAPACK [4], [5] routines; thus, the CPN that model
that algorithm uses only four transitions with one, two or three
input places according the data blocks used as parameters. No
additional transitions nor places are needed.

The Coloured Petri Net model is good to understand and
analyze the parallel algorithm, but it is too complex to be the
basis for parallel execution. Unfolding a CPN to a Token Petri
Net (TPN) [6] allows working with an equivalent but simpler
net. This unfolding defines a net with the exact number of tasks
the algorithm must execute. In addition, as Petri Nets are good
to model a parallel process, the resulting unfolded net allows
analyzing parallel execution restrictions of the algorithm.

On the other hand, there is a tendency to increase the
number of cores in a Symmetric Multiprocessor machine
(SMP). This feature is given by assembling multiple CPU chips
into the motherboard, normally with two or four slots to add up
to sixteen cores in each one. In order to maintain data locality,
two problems arise with this hardware architecture: efficient
memory management and process affinity [7].

The multiplicity of processors in the SMP machine results
in difficulties with cache memory. Thus, the higher level of
cache memory is shared by one or more cores, based on chip
design. To avoid cache misses, a parallel process that uses a
block of data, should not have more threads than the number
of cores that share the higher cache memory.

Not only the number of threads must be present to mini-
mize cache misses, but also the position of the thread in the
pool of cores, namely, core affinity must be taken into account.
If the threads of a parallel process are distributed in different
chips of the CPU, cache consistence for all threads will have
to copy data between chips, reducing performance.

Both facts, the number and placement of threads, have an
impact on parallel algorithm design. In advance, a double core
division is recommended to have all processors working with
an acceptable level of cache faults. A first level consists ina
series of logical processors, whose quantity must match the
number of higher cache memory partitions. The second level
divides each logical processor into as many threads as physical
cores shares the higher level of cache memory. For example, if

the higher cache level is shared by four cores and the machine
has 32 cores, it should be divided into eight parallel logical
processors with four contiguous cores each.

Therefore, an efficient SMP machine utilization must not
only use a data block size that minimizes cache misses, but
also the number of cores that share one block of higher cache
memory must be considered. If we add algorithm structure,
the complexity to get an efficient parallel execution is high.

In this paper we present the design and execution results of
a parallel version of Cholesky factorization algorithm, modeled
with Petri Nets and executed on two different SMPs. This
work is the continuation of the one cited above, using the
same algorithm modelization. In this paper, an execution model
that takes into account the hardware variables of an SMP
machine is introduced. The rest of the paper is organized
as follows: the next section presents a brief summary of the
Petri Net model developed before. Section three introducesthe
execution model. Results are discussed in Section four and
finally, conclusions and future research are presented.

II. T HE PETRI NET MODEL

In a previous work [2], the model used to analyze and
simulate runnings of a parallel algorithm was introduced. It is
based on Coloured Petri Nets. This high level model is then
unfolded into a Simple Place / Transition net (TPN), which is
used to run the parallel algorithm. A summary is presented.

Figure 1 shows the CPN that represents Cholesky’s al-
gorithm. It has only four Transitions and eight Places; each
Transition represents one routine and each Place represents
one of its parameters. The name of the places follows the
number of the block used in each operation. Color tokens are
represented by< x,y >, multiset repetitions by braces{x},
and functions arcs are only Booleans of the formif(cond).

potr1 trsm2

potr

< i, i >

< i, i >
{n− i}

trsm1

syrk1

gemm2 gemm1

trsm

< j, i >
< i, i >

< j, i >
{n− j}

< j, i >
{j − i− 1}

< j, i >

syrk2

syrk

< j, i >

< j, j, i >

< j, j, i + 1 >
if(i + 1 < j)

< j, j >
if(i + 1 = j)

gemm3 gemm

< i, q >
< j, q >

< j, i, q >

< j, i, q + 1 > if(q < i− 1)

< j, i >
if(q = i− 1)

Fig. 1. Coloured Petri Net that represents Cholesky’s factorization algorithm.

Place in CPN Domain in CPN
potr1

< i, i >, i = 1 . . . ntrsm2
trsm1

< j, i > j = 2 . . . n, i = 1 . . . j − 1, j > isyrk1
gemm1
gemm2 < j, i >, j = 3 . . . n, i = 1 . . . j − 2, j > i

syrk2 < j, j, i >, j = 2 . . . n ∧ i = 1 . . . j − 1 ∧
j > i

gemm3 < j, i, q >, j = 3 . . . n, i = 2 . . . n−1, q =
1 . . . i− 1 ∧ j > i ∧ i > q

Fig. 2. Domains of the Places for the Coloured Petri Net in Fig.1 .

Arcs domains are shown in the table of Fig. 2. The
algorithm is generically defined by the CPN, and the number of
tiles in which the matrix is divided is provided as a parameter
in the domain definition. The high level of expressivity of a
simple model can be remarked.

In contrast, the overhead required to represent CPN do-
mains and function arcs in an executable way is expensive in
terms of high performance computing, and it is impractical
to use it directly. Nevertheless, the CPN developed like this,
meets the definition of well-formed CPNs [6]. This type of
nets is easily transformed into a TPN, which has a simpler
computational implementation and is light to execute.

The unfolding of a CPN is defined in Diaz et.al. [6].
Each PlacePj in a CPN has an associated DomainD(Pj);
thus, its unfolding produces as many Places in the TPN as
the cardinality ofD(Pj) in the colored Place, preserving the
repetitions of the multiset. Hence, each Place in the TPN has
an association with a unique value from the pairs (color, place)
in CPN and only one token can live on it.

Transitions are unfolded by generating as many Transitions
in TPN as the cardinality of the Cartesian Product of all the
elements of its domain in the CPN. The cardinality of the
multiset in each Place must be preserved. Hence, each Tran-
sition in TPN is associated with a unique combination from
the Cartesian Product, preserving repetitions of the multisets
of each input Place. Only guards with true values produce
results. By construction, each unfolded Transition represents
an individual event that will be associated with a single task.

Figure 3 shows four examples of unfoldings from CPN to
TPN, forn = 1, 2, 3, 4 square tiles divisions1. Places are shown
in the same order they have in CPN. Their names are not shown
due to space limitations. The order in which each unfolding
is shown is not random: each unfolding ofn divisions has the
same graphic asn − 1 divisions, adding to the top, the tasks
due to larger number of tiles. In this way, the Transitions in
Fig. 3 at the same horizontal level represent the same task in
all figures, ordered from end to start.

The chart in Fig. 3 shows two important aspects of algo-
rithm parallel execution. First, there is a critical path oftasks
execution derived of data dependency, that can not be exceeded
[8]. Each increment in the number of tiles generates a sequence
of potr, trsm andsyrk tasks that must be done serially.

1A tile division of n representsn× n square blocks of data

Secondly, in the hypothetical case of having an unlimited
number of parallel processors with the same execution time for
all tasks, the minimum time required for the parallel execution
is a function of the number of tile divisions, and clearly, there
is an upper limit of the number of processors that can run in
parallel.

potr

(a)
n=1

potr

trsm

syrk

potr

(b) n=2

potr

trsm trsm

syrk syrk gemm

potr

trsm

syrk

potr

(c) n = 3

potr

trsm trsm trsm

syrk syrk syrk gemm gemm gemm

potr

trsm trsm

syrk syrk gemm

potr

trsm

syrk

potr

(d) n = 4

Fig. 3. Token Petri Net unfolded from the Coloured Petri Net in Fig.1 using
different numbers of square tiles divisions (n).

op \n 1 2 3 4 5 6 8 10 12 15 20
potr 1 2 3 4 5 6 8 10 12 15 20
syrk 0 1 3 6 10 15 28 45 66 105 190
trsm 0 1 3 6 10 15 28 45 66 105 190
gemm 0 0 1 4 10 20 56 120 220 455 1140
total 1 4 10 20 35 56 120 220 364 680 1540
seq.
tasks 1 4 7 10 13 16 19 22 25 28 31

Fig. 4. Number of each task according the tile division.

Figure 3 shows that, when the number of tile divisions is
small, the idleness of all parallel processors is high, due the
strong data dependency. The table in Fig. 4 shows the number
of algorithm tasks based on the number of tile divisions. The
potr task has a linear growth,syrk and trsm have quadratic
growth, andgemm, cubic growth. As stated above, each stage
of processing introduces a group of three serial tasks, except
for the first one has only one. This implies that, for example,
a tile division of five has 13 sequential tasks over the total of
35.

The parallelism of the algorithm with few tile divisions is
poor. Due the cubic growth of thegemmtask, more divisions
generate more tasks and a better capacity for parallel execution.
By contrast, a tile division of 10 results in a large number of
parallel tasks, and an increment of the overload cost. A tile
division with low number of divisions in a SMP machine with
few cores, will be enough to make an acceptable use of its
computational power, but, in machines with 32 or more cores,
a bigger number of divisions and a complex management tool
of tasks to exploit their capacity will be needed.

In the next section, the parallel execution model is de-
scribed. It was developed to handle the combined complexity
of the algorithm and the SMP architecture, and it will be used
as a basis for the execution.

III. T HE EXECUTION MODEL

The previous section shows how to model the algorithm
with Coloured Petri Nets (CPN). Unfolding the CPN to a
simple Token/Place Petri Net (TPN) transform a compact net
into a bigger but simpler one to execute. This section shows
how to execute a parallel algorithm based on TPN.

The Parallel Execution Model (PEM) is defined as a tuple:

PEM = (P, T, I−, I+,M,Π, χ) (1)

where:

• P is a finite set of PlacesPi, with cardinality
|P | = p, i = 1 . . . p.

• T is a finite set of TransitionsTj, with cardinality
|T | = t , j = 1 . . . t.

• I− and I+ are the negative and positive incidence
matrixes of the TPN, with dimensionp × t (I− and
I+ ∈ N

p×t).

• M , is the Mark Vector for Places,p× 1 (M ∈ N
p).

• Mf , is the Final Mark Vector,p× 1 (Mf ∈ N
p).

• Π is a finite set of ProcessorsΠi, with cardinality
|Π | = π, i = 1 . . . π. Each processorΠi has a boolean

variablee (Πi.e), which is set as either true or false
to indicate if it is running or if it is idle.

• χ is a Boolean variable that implements a mutual
exclusion mechanism overM that allows eachΠi to
updateM securely.

The initial state is:

• M = M0, the initial mark of the TPN.

• χ = true, the exclusion is free.

• Πi.e = true , i = 1 . . . π, because all processors are
idle.

The PEM is very close to Timed Petri Nets [9]. Both share
the concept that firing a Transition is not instantaneous because
there is a time elapsed between the start and the end of the
firing. The same as in PEM, the firing action represents the
execution of a task, but the difference is that in PEM firing is
not done autonomously once the transition is enabled as it is
in Timed Petri Nets. An idle Processor is responsible to fire
the Transition selected among all the enabled ones.

The number of enabled Transitions can be lower or higher
than the number of Processors. As a result of this, we can
have idle Processors with no Transitions to fire or enabled
Transitions waiting for a free Processor, depending on the
number of enabled Transitions in relation to the number of
idle Processors. In the first case, the execution speedup of the
will be poor and this situation must be avoided. In the second
case, the Processor must select the most appropriate Transition
to fire. To do this, we have adopted the general criteria of
selection based on the priority of the Transitions that are in
the “Critical Path” to finish the algorithm.

The implementation of this execution model needs one
Mutual Exclusion (mutex) mechanism to avoid concurrent
reading and writing operations over vectorM , which is the one
that defines the algorithm state. In this sense, the Processors
act serially when selecting the next Transition to fire, waiting
for the mutex enabled.

The Pseudo-code of the PEM execution algorithm is pre-
sented in Fig. 5. In round-robin format, each logical processor
with the enabled flag set on, searches for a task to execute
based on the Petri Net modelization of the algorithm. To
determine which Transitions are enabled, only simple linear
algebra operations are needed. In effect, if we callI−j andI+j
the j-th column (transition) inI− and I+ respectively, the j-
transition is enabled if the vectorial subtractionM − I−j does
not have any negative value. This is defined by functionh,
which has arityh : Np×t,Np×1 → {0, 1}, with parametersM
andI−, and their result values are:

h(j) =

{

0 if (M − I−j) has negative/s value/s
1 if (M − I−j) else

j = 1 . . . t

Computingh for all the columns determines all the enabled
transitions ready to be fired at one point of the execution. By
design, each Place of the unfolded TPN is the input Place of
only one Transition. This guarantees no competition between

1 While main a l g o r i t h m no t f i n i s h e d
2 I f can ho ld t h e mutua l e x c l u s i o n
3 Compute h f unc t ion
4 S e l e c t one t a s k to e x e c u t e
5 Update M by a b s o r b i n g tokens
6 Free t h e e x c l u s i o n
7 Task e x e c u t i o n
8 I n j e c t tokens in M
9 Else

10 Delay
11 Endif
12 End

Fig. 5. Pseudo-code of the task selection algorithm.

enabled transitions for input tokens, and that all enabled
transitions can be fired simultaneously.

To determine the task to be executed, a dynamic scheduler
was developed. It uses a valuation function that is applied to
the set of enabled Transitions, selecting the transition with
highest valuation,Tk. The valuation function is the key for
the parallel processing performance, because when the set
of enabled Transitions has more than one element, it must
select the one that will enable more Transitions in the future,
namely, it keeps the larger number of parallel tasks enabled.
This scheduler is related to Quark [10], which prioritizes data
locality instead of availability of parallel tasks.

Additionally, there is a mapping between each Transition
and each task to be executed, and also a mapping between
each Place and the data block which is used as parameter in
the task. To execute a task, the Processor determines which
task and which parameters are needed from theTk selected
and then runs it.

Steps 5 and 8 of the pseudo-code algorithm represents the
evolution of the execution. Similar to Timed Petri Nets, tokens
are absorbed and injected at two times. In step 5 the tokens
from the input Places ofTk are absorbed, and in step 8, they
are injected to their output Places. Both steps are made with
simple linear algebra operations:

M ′ = M − I−k in 5 at t0 (2a)

M ′′′ = M ′′ + I+k in 8 at t0 +∆k (2b)

and after step 8, potentially new Transitions become enabled.
M andM ′′ are the markings at timet0 and t0 + ∆k, where
∆k is the elapsed time of theTk task execution. The cycle
is repeated until the end of the algorithm is reached, which
occurs whenM = Mf .

The overhead introduced by the parallel execution is de-
fined by three factors. First, the mutual exclusion mechanism,
which uses few cycles of clock. Second, matrix and vector
operations, which are highly optimized to run in milliseconds
with current processors. Third, the selection policy must be
guided by a balancing among selection load and overall
algorithm performance. In fact, the sum of the time of three
factors is several orders of magnitude smaller than the routine
execution, which means a minimum overhead.

IV. EXPERIMENTS

A FORTRAN program was developed to read, interpret
and execute the model. OpenMP was used as shared memory
model of execution and tests were run over two machines, the
first with four AMD 6344 processors, which conform a 48
cores machine, and a second, with two Intel Xeon E5-2680
chips. Single precision floating point was used for all tests.

There are two requirements of the PEM that limit the
possible stack of compiler / libraries to be used for coding:
nested parallelism and core affinity. Both requirements arethe
basis of the PEM and are features that must be present jointly
in the compiler. This fact left only one possibility for each
machine: gfortran with ACML for the AMD-based machine,
and Ifortran with MKL for the Intel-based one.

The configuration of the parallel hardware may vary in
number of cores and chips, so the implementation of the PEM
must be configurable to adapt to the hardware used. Thus, an
XML-style file that contains the settings of the real machine
in which the program runs is used. It contains the first-and
second-level processor division, the type of physical processors
and the mapping between Places with data and Transitions with
tasks. In the software, this feature acts as an intermediatelayer
between hardware and algorithm and make tunning easier.

A. The AMD-based machine

The architecture of the AMD-based is as follows: four dies
with twelve cores each. Each die has two blocks of L3 cache
memory associated to a block of six cores. For floating point
operations, the die has one Fused Multiplication Addition unit
(FMA) shared by two cores. Each FMA unit can perform
concurrently one addition and one multiplication of 256 bits,
improving the processing power of the cores that share it. Since
there is an ACML version that is optimized for these FMA
units, it was used but restricting the number of processors to
the model in the PEM model to 24.

The logical hardware division used in the tests wasn×1
processors, wheren is the number of first level processors,
i.e., the second level of divisions has only one core. This
decision was made based on two factors: the first is that the
research focus is over task synchronization, thus, the higher
the number of processors to synchronize, the better the test
to our objectives. Second, the implementation of ACML for
the routines used, has a poor speedup. In effect, the parallel
implementation that uses the FMA units, when using several
threads (six,eight,etc), does not scale properly for the routines
ssyrk, strsm and spotrf. In consequence, the serial version
of ACML was used, running each routine in one FMA unit.
Nevertheless, the affinity concept remains important, because,
as the FMA unit is shared by two cores, the logical processor
division needs to take two consecutives cores to make exclusive
use of one FMA.

Several test results are shown in Table 6. The body presents
time and flops of various combinations of matrix range,
number of parameters and tile divisions.

The analysis of the results brings some conclusions:

• The low number of data divisions has poor results: it
is the effect of poor parallelism when the number of
tile divisions is fewer than six.

procs 8 16 24
range dvs secs flops secs flops secs flops

12000
8 3.14 183 2.89 199 3.12 185

12 2.91 198 2.21 260 2.38 242
15 4.05 142 4.07 141 4.42 130

24000
8 22.11 208 18.98 243 20.33 227

12 19.28 239 13.49 342 14.98 308
15 19.21 240 12.06 382 13.73 336

30000
8 43.05 209 36.99 243 40.90 220

12 36.02 250 25.11 358 25.74 350
15 35.50 254 23.11 389 23.42 384

Fig. 6. Time in seconds and flops in GFlops from tests with matrix ranges
of 12000, 24000 and 36000; 8, 16 and 24 processors, and data divided in 8,
12 and 15 tiles with the AMD-based machine.

• A tile division of 15 generates 680 tasks with 1800
parameters, which is the range of the corresponding
incidence matrix. This results in a heavy overload
for the matrix operations when updating the Marking
VectorM . However, this tile division produces a large
number of parallel tasks. A balance must be achieved
between the number of parallel tasks and data tile
range in order to keep the processing/overload ratio
convenient for throughput.

• The best result is for range of 30000, 16 processors
and 15 tiles, which brings 389 Gflops. Since AMD-
based machine has a theoretical processing peak of
998 Gflops2, it represents a processing utilization that
is close to 40% of its peak. Better yet, if we only
consider the sixteen processors used, the effective
processing ratio increases to 58%. These are very
good values considering they are negatively affected
by cache misses, the serial part of the algorithm and
overload.

• Using the 24-processor configuration has no speedup
improvements versus using the 16-processor one. This
is due to a problem in physical memory configuration
because the bank one is the only one used in this
machine, so the memory channel becomes saturated
when all the 24 processors are running.

B. The Intel-based machine

The Intel-based machine used has two Xeon E5-2680 chips,
each of them with eight cores. Thus, the operating system has
a total of sixteen threads available.

Each of the cores of the Intel processor has one AVX unit
(Advanced Vector Extensions) that uses 256 bits registers.It
can perform addition and multiplication operations simultane-
ously over these registers. This feature determines a theoretical
processing power per core similar to that of the FMA unit
available in the AMD-machine.

In the Intel-based machine, tests were executed using Intel
Composer 2013 suite, which includes the MKL BLAS/LA-
PACK implementation. In Fig. 7, a summary of the most
representative results are shown. As with the AMD-based
machine, the best performance is reached when tile divisionis
twelve.

The analysis of the results brings some conclusions:

2998 Gflops = 2.6 Ghz x 24 fma units x 2 ops x 8 single precision values

procs 8x1 16x1
range dvs secs flops secs flops

24000 8 17.08 270 13.25 348
12 14.35 321 9.52 484

48000
8 140.59 262 101.73 342

12 109.24 337 70.99 519

Fig. 7. Time in seconds and flops in GFlops from tests with matrix ranges of
24000 and 48000, 8 and 16 processors, and data divided into 8 and 12 tiles,
with the Intel-based machine.

• Similar to the results obtained with the AMD-based
machine, the impact of having more tile divisions
is strong: in all cases, division by 12 tiles increases
performance goes up to 30%.

• Going from 8 to 16 logical processors does not scale
properly due to the effect of memory channel satura-
tion. However, performance goes up to 50%.

• Processing a big matrix with 16 logical processors and
12 tile divisions yields a result of 519 Gflop. Consider-
ing the processing power available with sixteen cores,
the rate of use of the physical processors gets near
75% of the theoretical peak, which evidences a very
good management of cache misses and synchroniza-
tions.

A final test was done by fixing the number of tile divisions
and modifying core divisions. The table in Fig. 8 shows time
and flops for a range of 24000 and 48000, 12 tile divisions
and all the remaining combinations for sixteen cores into two
levels. This test was done on the AMD-based machine, but
the scalability was so poor that the results were useless. This
is the opposite with the Intel-based machine. They show a
similar performance regardless of how the cores are divided.
The best performance is achieved with a division of four
logical processors with four cores each, which brings 616
gflops. Considering that the theoretical peak of the machine
is 691.2 gflops, a near-optimum result was obtained.

procs 1x16 2x8 4x4 8x2
range dvs secs flps secs flps secs flps secs flps
24000 12 11.69 392 10.17 453 8.98 513 8.40 549
48000 12 69.73 529 62.72 588 59.81 616 60.33 611

Fig. 8. Time in seconds and flops in GFlops for tests with matrix ranges 24000
and 48000, using 16 threads with double level division, virtual processors x
internal threads (1x16,2x8,4x4,8x2), and data divided into 12 tiles, with the
Intel-based machine.

Finally, the Fig. 9 shows a timeline for the execution of
one of the tests, with a range of 24000, a division of 12 tiles
and 16 processors. Processor idleness can be observed both
at the initial and final stages of the execution, as mentioned
above. Also, there is no idle time while processing and the
low impact of the overload is evident from the absence of idle
areas around the tasks.

V. CONCLUSIONS

The research has several points to highlight:

• It has been shown that Petri Net not only has good
properties to model concurrent systems, but that it is
also a good basis for a parallel execution model. It is

not easy to manage the parallel execution of hundreds
or even thousands of tasks, but we found how to do
it with this tool.

• The execution tool developed can be adopted to any
SMP machine and optimized libraries thanks to the
combination of TPN with the virtual processor defi-
nition, two levels of hardware division and processor
affinity.

• The parallel execution environment developed was
able to reach a real utilization of the processors
very close to its theoretical limit. Asynchronicity and
affinity were the key to this achievement.

• Modeling an algorithm with CPN allows analyzing its
parallel capabilities and brings information about its
possibilities and limitations in the search for better
parallel performance. In particular, we conclude that
applying a tiled division of data to the Cholesky
algorithm does not result in a good performance if
tile division is less than six.

• The XML-style of the model’s parameter file allows
not only adapting it to different machines, but it also
leaves open the capability to switch the algorithm by
only changing the incidence matrix and task mapping.
Thus, any parallel algorithm designed following a well
formed CPN can be executed with a high level of
performance by only changing the incidence matrix
and tuning its virtual processors.

Future work will focus on researching the advantages and
obstacles when using the technique developed with various
algorithms and also using heterogeneous systems, such as
hybrid CPU / GPU systems. An implementation in a distributed
memory architecture will also be studied.

REFERENCES

[1] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures,” LAPACK
Working Note, Tech. Rep. 191, Sep. 2007.

[2] G. Wolfmann and A. De Giusti, “Parallel asynchronous modelization
and execution of cholesky algorithm using petri nets,” inThe 2013 Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA13), 2013.

[3] K. Jensen and L. M. Kristensen,Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

[4] “Basic Linear Algebra Subprograms Technical Forum Standard,”
University of Tennessee, Tech. Rep., 2001. [Online]. Available:
http://www.netlib.org/blas/

[5] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J.
Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen,LAPACK Users’ guide (third ed.). Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1999.

[6] M. Diaz, Petri Nets: Fundamental Models, Verification and Applica-
tions. London, Hoboken: ISTE Ltd - John Wiley & Sons, Inc., 2009.

[7] M. McCool, J. Reinders, and A. Robison,Structured Parallel Program-
ming: Patterns for Efficient Computation. Elsevier Science, 2012.

[8] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra
for hybrid gpu accelerated manycore systems,”Parallel Computing,
vol. 36, no. 5-6, pp. 232–240, 2010.

[9] J. Wang,Timed Petri Nets: Theory and Application, ser. The Interna-
tional Series on Discrete Event Dynamic Systems. Springer US, 1998.

[10] A. YarKhan, J. Kurzak, and J. Dongarra, “Quark users’ guide: Queueing
and runtime for kernels,” Innovative Computing Laboratory, University
of Tennessee, Tech. Rep., 2011.

Used routines
ge po sy tr

Elapsed time between 0 secs. to 5 secs.

1
sy07tr09 tr06 tr10 tr08ge02 ge09 ge10ge04 ge04 ge07ge04ge05 ge06 ge06 ge08

2
po01 po02 po06sy02 sy07 sy10tr02 tr11tr08 tr10 tr12ge03 ge04 ge06ge03 ge04 ge05 ge06ge06 ge08

3
po05sy05sy06tr05 tr05 tr05 tr07ge02 ge07ge03 ge03 ge07 ge07 ge09 ge10ge04 ge06

4
sy08 sy09tr08 tr09ge02 ge04ge05 ge06 ge05 ge05 ge04 ge05 ge07ge06 ge07

5
sy04 sy05sy07 sy07sy08 sy08tr06 tr10ge03 ge05 ge05ge04ge05 ge05 ge07 ge08 ge09

6
po07sy04 sy08tr04 tr04 tr11 tr07 tr08ge02 ge03 ge04ge06 ge06 ge08ge05 ge07 ge07

7
sy05 sy06 sy06tr07 tr07 tr08 tr09ge02 ge05ge06 ge08 ge08ge06 ge06ge07 ge07 ge09

8
sy07 sy08tr10 tr05 tr09ge04 ge03ge04 ge04 ge05 ge05 ge08ge05ge06 ge08 ge08

9
sy05 sy06 sy08tr06 tr06 tr10tr06ge03 ge07ge03 ge08ge04 ge05 ge06 ge08

10
sy03 sy09 sy11tr12 tr12tr07 tr07 tr11 tr10ge03 ge07 ge07 ge09ge03 ge09ge04 ge06

11
po04sy04 sy06tr03 tr09 tr04 tr12ge03 ge06 ge08ge03 ge04 ge07 ge09ge06 ge06 ge07

12
sy07 sy10tr08ge04 ge04 ge05 ge05 ge05 ge04 ge08ge05 ge07 ge07 ge07

13
po03sy03 sy09 sy09tr11 tr03 tr09 tr11ge02 ge05 ge08ge04ge05 ge07ge05 ge07 ge09

14
sy10ge02 ge03ge04ge05 ge07 ge08ge04 ge05 ge08ge05 ge06 ge06

15
sy09tr08ge02 ge10ge03 ge03ge04 ge06 ge06 ge08ge06 ge06ge05 ge06

16
tr12ge02 ge02ge03 ge03ge04 ge06 ge06 ge09 ge07ge05 ge06ge07 ge07

1

Elapsed time between 5 secs. to 10 secs.

1
sy12tr11ge09 ge09 ge09 ge09 ge09

2
po10sy10tr10ge09 ge09 ge09 ge09

3
po09sy09sy11 sy11tr09ge08

4
tr10 ge10 ge10ge08 ge10

5
tr12ge10 ge10 ge10 ge10 ge10 ge10 ge10 ge10

6
po12sy08 sy12tr12ge10 ge11 ge11 ge11 ge11 ge11 ge11 ge11 ge11 ge11

7
po08 tr11ge07 ge09 ge09

8
sy10 sy11 sy11 sy11 sy11 sy11 tr12ge09

9
sy10tr10ge06 ge08 ge08

10
sy10 sy10 sy10tr12ge07

11
sy09 sy12 sy12 sy12 sy12 sy12 sy12 sy12 sy12

12
po11sy11 sy12tr09 tr12ge08 ge08 ge08 ge08

13
tr11 ge09 ge09 ge09

14
tr12ge07ge07 ge07

15
sy09 tr11ge11 ge10 ge10 ge10

16
sy11tr11ge08 ge08 ge08

1

Fig. 9. Execution timeline, divided in two sections, Intel-based machine, 24000 range, 12 tiles, 16 processors

