
Designing the Interface of Rich Internet Applications

Matias Urbieta
LIFIA. Fac. Informatica, UNLP,

Argentina.
matias.urbieta@lifia.info.unlp.edu.ar

Gustavo Rossi
LIFIA. Fac. Informatica, UNLP,

Argentina and CONICET
Gustavo@lifia.info.unlp.edu.ar

Daniel Schwabe
Dto Informatica, PUC-Rio,

Brasil
dschwabe@inf.puc-rio.br

Jeronimo Ginzburg
Dto. Computación, FCEyN,

UBA, Argentina
jginzbur@dc.uba.ar

ABSTRACT

In this paper we present a novel approach for designing
the interface of rich internet applications. Our approach
uses the Abstract Data Views (ADV) design model which
allows to express at a high level of abstraction the
structure and behaviors of the user interface. Additionally,
by using advanced techniques for separation of concerns it
allows to create complex interfaces as oblivious
compositions of simple interface atoms. Using a simple
illustrative example we present the rationale of our
approach, its core stages and how it is integrated into the
Object Oriented Hypermedia Design Method (OOHDM).
Some implementation issues are finally analyzed.

1. INTRODUCTION
Designing the interface of rich internet applications (RIA,
from now on) [7] is difficult, as they must cleverly combine
hypermedia-like interfaces of “conventional” Web
software, with the kind of interface functionality we
usually find in desktop applications (with drag and drop,
pop-up information and diverse interface effects). To make
matters worse, these applications must also deal with a
myriad of concerns [10] which comprise multiple
requirements both functional and non-functional and which
usually crosscut each other.
The permanent “beta” state of rich internet applications
complicate things further: new interface widgets or
interaction styles are constantly introduced, checked to
assess users’ acceptance, and then either becoming core
components or eliminated.
Consider for example part of the interface of Google mail
as shown in Figure 1. We can see a mail core concern that
provides functionality to deal with e-mails as similar mail
clients. This application also exhibits services belonging to
other concerns, e.g. the chat concern and the RSS concern.

The chat concern allows users to send and receive instant
messages by means of the browser and crosscut the mail
concern by enhancing it with widgets like a semaphore
showing mail contacts and by providing a “reply by chat
to” button in the mail concern. Besides, some parts of the
interface allow hypertext-navigation, such as the RSS feeds
on top of Figure 1, which might be seamlessly composed
with the other functionality. Sometimes navigation might
proceed as in the “old” Web, but alternative styles of
navigation are now possible such as transcluding the target
page into the source.
The problem we face is how to clearly specify the behavior
of the interface, in a way that we obtain a modular and
abstract interface model which can be translated
(automatically or manually) into a running implementation.

Figure 1. Different concerns in the interface of Google mail.

While there has been much research on development
methodologies for “conventional” Web software [5,11,16],
design approaches for RIA are just emerging [3, 14].
In this paper we present a systematic approach for
designing RIA. The approach is a light-weight extension of
the Object-Oriented Hypermedia Design Method
(OOHDM) in which rich interface behaviors are specified

Fifth Latin American Web Congress

0-7695-3008-7/07 $25.00 © 2007 IEEE
DOI 10.1109/LA-Web.2007.14

144

by profiting from the object-oriented nature of Abstract
Data Views (ADVs). The approach also uses some
concepts borrowed from aspect-orientation to deal with
cross-cutting compositions at the interface level. The paper
has two important contributions: first it shows how to
specify structural and behavioral transformations at the
interface level using a single, uniform notation; second it
presents an elegant way to composing crosscutting
concerns with an extension of the ADV formalism. We
show how to make the composition oblivious, i.e. such that
components don’t need to be modified or edited to be
composed.
The rest of the paper is structured as follows: in Section 2
we briefly characterize RIA and give an overview of our
approach; in Section 3 we describe the ADV design model
and how we use it to specify RIA interfaces and in Section
4 we address the problem of complex interface
compositions. In Section 5 we discuss some related work.
Finally, in Section 6 we conclude the paper and present
some further work we are pursuing.

2. Designing Rich Internet Applications
There are many features which characterize RIA from a
Web Engineering point of view such as rich interaction
capabilities, complex client-side processing, the elimination
of full page refreshing to provide navigation, multimedia
animations, etc. (See [3] for a complete characterization).

In the context of our research we are particularly interested
in those applications which use rich interface behaviors to
improve the usability of complex behavioral applications
such as e-commerce sites, advanced Web mail clients (like
Gmail or Yahoo mail), internet radios (such as Pandora),
and generally so-called “Web 2.0” applications.. By using
rich interaction features we can simplify the user’s task,
improve his access to information, make navigation more
dynamic, etc.

For the sake of comprehension and conciseness we will not
address “pure” multimedia applications, in which the
access to application’s behaviors are not the main target,
even when these fancy applications could be also modeled
using our approach.

A design approach dealing with applications which
combine hypertext navigation with advanced interface
behaviors should allow specifying:

a. The application or content objects which contain
the basic information and behaviors of the
application.

b. The hypertext nodes which the user will navigate
and their relationships with application objects;
additionally it should allow specifying different
navigation semantics.

c. The interface look and feel of hypertext nodes and
the interface of those application objects which are
perceivable but not “navigable”.

d. The way in which the application reacts to
interface events: this includes the interface
transformations which occur as a result of these
events and how application behaviors are
triggered.

Additionally, a modern design approach should support
seamless composition of application and interface objects
which correspond to different concerns, especially when
these concerns crosscut. In this paper we will put our focus
mainly on aspect d. above and give an overall idea of
interface composition issues in Section 4.

In the next sub-section we describe the overall ideas of our
approach; in section 3 we concentrate on the interface
design stage.

2.1 Our Approach in a Nutshell
We closely follow the OOHDM design framework.
Development proceeds in a five stage process comprising
requirements modeling, conceptual modeling, navigation
design, interface design and implementation. The first four
steps generate an implementation-independent model
which can be later mapped to different interface platforms
(such as HTML, XUL, usiXML, etc).

In Figure 2 we see an overall schema of our design
approach. Interface objects (the focus of this paper) are
specified using the Abstract Data Views (ADV) approach
described in detail in section 3; interface objects can be
classified either as “pure” interface objects, therefore acting
as behavioral controllers of other objects (e.g. buttons
which trigger applications behaviors), as interfaces of
navigation objects thus providing interface support for
navigation (e.g. showing information or anchors of a node),
or as interfaces of application objects; in this latter case
interface objects trigger application behaviors not directly
related with navigation. These three types of interface
objects can be identified in the schema of Figure 2
according to their relationships with application or
navigation objects.

As discussed in Section 4, interface objects corresponding
to a single application concern (e.g. Mail, Chat, etc) are
grouped together as components of a composite ADV.
Finally ADVs of different concerns can be integrated either
using traditional object composition or by means of aspect-
like weaving [15]. Conceptual and Navigational classes can
(and should be) also be grouped according to the
corresponding concerns but we ignore this in the diagram
for the sake of clarity.

In Figure 3 we show how this schema looks like for a part
of the Gmail example. A simplified conceptual model

145

contains classes related to the two main application
concerns: Mail and Chat. Mail messages have their
navigational counterpart because it is possible to navigate
through messages; for example we can traverse them as an
OOHDM navigational context [16].

Chats meanwhile are not navigated; this means that we
don’t access them through links and we don’t have anchors
in chat elements. Therefore we don’t model them as nodes
(i.e. they don’t have a navigational counterpart), though
their interface must be specified, as shown in Figure 3.

We next describe how we design structural and behavioral
interface aspects using ADVs; hypertext aspects are
discussed in Section 3.3.

Figure 2: OOHDM design framework for RIA

-name
-address

Contact

+isSent()

-body
-subject
-starred
-status

Email

-name
-user
-address

Account

+contacts

*

-to *

-from

1

-mails

*

-name
Label

-sent

*

-labeled*

-labels

*

-text
-timestamp

message

-to1

-name
-address
-status
-statusMessage

ChatContact

-from1

Body:string
Subject:string
To:[SELECT Name] [FROM Contact:contact
WHERE mail is addressed to contact]
From:string

MailNode

N
av

ig
at

io
na

l
 M

od
el

C
on

ce
pt

ua
l

M
od

el

Reply:Button ReplyAll:Button Forward:Button

Body:EditableText

To:EditableAddress

Mail Editor ADV

Send:Button Save:Button Discard:Button

In
te

rfa
ce

 M
od

el

 Body:string

ADV Chat

Send:Button

history:string

MailAdv

 Body:string

From:String To:String

Reply:Button Forward:Button

Next

Previous

Figure 3: An instantiation of our schema for Gmail

3. Using ADVs to Design the Interface
ADVs [6] allow to specify the interface objects of a
software application and how these objects relate with

other application objects. Though the ADV approach was
originally devised for conventional interactive software, it
has been adapted and improved to be used in the context of
Web applications [16], as ADVs can be easily mapped into
running interface objects (e.g. XML/XSL specifications).
An ADV is a composed object which possesses state and
behavior; this behavior can be exercised by traditional
method calls and also by interface or internally generated
events (such as “mouse click”). ADVs can be composed or
grouped in generalization/specialization hierarchies
therefore allowing some level of reuse, when defining
recurrent interface object types (like buttons, maps, etc.).
They are abstract, as their specification is implementation-
independent; however details about their lower-level
aspects (such as location, background color, etc) can be
annotated in the ADV specification or indicated as part of
the ADV state. ADVs “observe” [9] application objects,
known as ADV owners [6], in which the application data
and business logic is usually managed. However, being full
fledge objects they can contain arbitrary behaviors,
including part of the business logic, which in conventional
Web software is typically allocated in the controller of the
Model View Controller triad (such as in J2EE tools like
Struts or JSF). In RIA, meanwhile, this kind of business
logic might be allocated in the interface [3].

An ADV specifies the interface aspects of its owner, i.e.
how we intend the owner to be perceived by the user. In the
context of RIA, and as shown in Figure 2, an ADV might
be the interface of a navigation node or the interface of an
application object (when no navigation is involved). ADVs
may also relate with their owners not just to indicate the
owner’s look and feel but to trigger the owners’ behaviors
(which is the case with buttons, menus, list of options, etc).

The relationships with application objects are specified
using configuration diagrams in which the exchange of
messages between the interface and the core objects are
shown [6]. Configuration diagrams are similar to UML
class diagrams though they emphasize which messages
clients send to servers (i.e. ADVs and their owners).

ADVs are also used to indicate how interaction will
proceed and which interface effects take place as the result
of user interaction. These behavioral aspects, which are
specified using ADV-charts [4] (a kind of Statecharts), are
of great importance for RIA. We describe below how to
specify the structure of interface objects and then how to
indicate their behaviors, for example to change their
perception aspects (e.g. being visible or not), to start
business logic, etc.

3.1 Structural Aspects
 An ADV is described as an aggregation of lower level
ADVs which reflect the composite structure of Web
interfaces; to improve communication between
stakeholders in the design process, we have slightly

146

modified the notation in order to indicate the relative
spatial position of ADVs in the diagram, as shown in the
examples.
In Figure 4, we show the ADV structure corresponding to a
part of the Google mail interface of Figure 1 and a simple
configuration diagram showing the relationships among the
interface objects and their corresponding application
objects.

Body:Text

To:Address

Mail Editor ADV

Send:Btn Save:Btn Discard:Btn

+Send()
+Save()
+getBody()
+getFrom()
+getTo()
+getSubject()

MailNode

Save

From:Address

Subject:String

Concrete
Interface

Abstract
Interface

-name
-address

Contact

+isSent()

-body
-subject
-starred
-status

Mail

-to* -from1

Conceptual
Objects

Body:EditableText

To:EditableAddress

Mail Editor ADV

Send:Btn Save:Btn Discard:Btn

+Send()
+Save()
+getBody()
+getFrom()
+getTo()
+getSubject()

MailNode

Save

From:Address

Subject:EditableString

Concrete
Interface

Abstract
Interface

Navigational
Objects

-name
-address

Contact

+isSent()

-body
-subject
-starred
-status

Mail

-to* -from1

Conceptual
Objects

Send

Figure 4: The static structure of a RIA interface

The Mail Editor ADV is one of the ADVs in the structure
of the Mail concern; it is composed of some lower level
ADVs, namely From, To, Subject and Body, the last three
ones are editable fields which means that they will
encompass some behavior to support editing. For the sake
of conciseness we don’t explain this behavior further,
though it can be easily specified by treating the Editable
behavior as a role which can be applied to strings or textual
ADVs. The Mail Editor also possesses some buttons,
whose behaviors allow interacting with the mail object (in
this case instantiated from the MailNode class). The dashed
lines from the Mail Editor to Mail Node indicate the
messages that the editor can send to the Mail Node, namely
Send and Save.

3.2 Behavioral Aspects
ADV-Charts are state machines that allow expressing
interface transformations which occur as the result of user
interaction. It has been shown that they are equivalent to
StateCharts [4], though they are more expressive in
communicating the dynamics of interfaces, as it is possible
to nest states in objects and objects in states as shown in the
examples of this section.
The composite nature of ADV-Charts allows (by nesting
states into ADVs) indicating how different lower-level
ADVs are affected when the user interacts with the system.
They can be also used (in combination with configuration
diagrams) to indicate the way in which conceptual or
navigational operations are triggered by interface events.
While the nesting of states in ADVs follows the Statecharts
semantics, meaning that this ADV can be in those states
(either AND-ed or XOR-ed), the nesting of ADVs inside
states indicate which are the ADVs that might be
perceivable in that state.

An ADV-chart transition is labeled with its name, the event
and pre-condition which triggers it and its post-condition
(usually an event which will trigger another change of
state, a method call, etc.). In Figure 5 we show a simple
example of in which we express a usual RIA behavior in
the context of Gmail.

On

On

Off

SendMail Chat

Photo
Contact

Data

SeeDetails

PrevConver

Contact List
(Set of Names)

Contact
Contact Info

1

2 3

1:
 Event: MouseOn
 Pre-Cond: Focus (Contact(i))
 Post-Cond: ContactSelected (n)

2:
 Event: ContactSelected (n)
 Pre-Cond:
 Post-Cond: perCont= per Cont
 + owner.ContactInfo (n)

3:
 Event: MouseOn
 Pre-Cond: not Focus (Contact (n))
 Post-Cond:
 perCont= perCont –ContactInfo(n)

 Event: MouseClick
 Pre-Cond: Focus (SendMail)
 Post-Cond: EditMail ;
 perCont= perCont – ContactInfo(n)

3 (cont.)
 Event: MouseClick
 Pre-Cond: Focus (Chat)
 Post-Cond: EditChat ;
 perCont= perCont – ContactInfo(n)

 Event: MouseClick
 Pre-Cond: Focus (SeeDetails)
 Post-Cond: OpenDetails;
 perCont= perCont –ContactInfo(n)

Figure 5: Specifying interface changes with ADV-charts

On the left of Figure 5 we show part of the actual interface
and on the right a simplified ADV chart which indicates the
interface behavior. When the mouse is on a contact person,
the contact’s data is shown.
The ADV Contact comprises two lower level ADVs:
Contact List (left of the interface) and Contact Info
(popped-up on the right), with an And relationship between
them, indicated by a dashed lined between the ADVs. The
Contact List ADV, which comprises a list of names, is
always displayed (state “On” in the diagram). The Contact
Info ADV is initially Off, indicated by the incoming arrow
in Contact Info. Transitions are numbered, and for each one
of them, we specify the event that triggers it, the pre-
condition and the post-condition. We also use a function
Focus which indicates the position of the cursor and a
pseudo-variable perCont (referring to the perception
context) to indicate the objects which are perceivable; these
objects are “added” or “subtracted” from the perception
context. ADVs also possess state variables which indicate
their default position; this position can be also indicated in
the post-condition specification as parameters of the
operations on perCont. When the mouse is on a specific
element of the contact list, Contact Info is made visible
(transition 2). Notice that when the ADV is in state On, it
shows some different sub-ADVs, in this case the Send
Mail, Chat, Photo, etc.
Each one of these ADVs has its own interface behavior,
indicated below the description of transition 3 (because all
of them cause the transition to Off). These behaviors are
described as post-conditions, which are themselves events
to be interpreted in the context of the higher level ADV
such as EditMail, EditChat, etc (See for example Figure 5).

147

The contents of the corresponding interface objects are
obtained from its owner as shown in the specification of
transition 2. For conciseness we omit the transitions which
allow showing more contact details (triggered by the
OpenDetails event) in the post-condition of transition 3.
A more complex ADV-chart showing some dynamics
corresponding to the chat concern is shown in Figure 6. For
the sake of comprehension we don’t include the
ContactInfo ADV shown in Figure 6, and which also
belongs to the chat concern.

On

On

Off

Close

body

Contact List
(Set of Names)

Contact Chat Window

1

4

1:
 Event: MouseClick
 Pre-Cond: Focus (Contact(i))
 Post-Cond: ContactSelected (n)

2:
 Event: ContactSelected (n)
 Pre-Cond:
 Post-Cond: perCont= per Cont
 + owner.chatWith (n)

3:
 Event: clickOn
 Pre-Cond: Focus (close)
 Post-Cond:
 perCont= perCont –chatWith(n)

4
 Event:
 Pre-Cond: History owner.isNotEmpty()
 Post-Cond:

 Event: KeyPressed(“Enter”)
 Pre-Cond: body.notEmpty
 Post-Cond: perCont=
 perCont
+HistoryText.append(bodyText)

History

Off

2 3

On

Figure 6: An ADV showing the dynamics of the chat concern

In the Figure 6, when the user clicks on an online contact
the Chat window is opened containing the history of
messages if it is not empty. This last behavior is
implemented by the execution of transition 4, in the nested
History ADV.

3.3 Hypertext Issues
As previously mentioned one of the most appealing
features of RIA is that they allow combining the well-
known style of hypertext navigation with dynamic interface
behaviors; particularly, it is possible to make hypertext
more dynamic (as in desktop hypertext environments).
In OOHDM we have used ADV-Charts to indicate the
behavior of anchors [16] by expressing how the perception
space changes when an anchor is selected. In the Web the
usual response to this event is that the target node is opened
and the source is closed, i.e. a new page is loaded instead
of the former.
In Figure 7 we show the ADV-Chart which specifies a
typical hypertext navigation operation from one of the
news which appears on the RSS concern. In this case the
source node (Gmail) remains open while the target node is
opened in another window. Considering the semantics of
Gmail for this specific link, the new window will be treated
as an independent artifact, not related with Gmail.

Figure 7: Specifying conventional navigation with ADV-
Charts

This behavior is explained as the main consequence of
transition 1 corresponding to the only state in which the
RSS feed may be; the behaviors of the Prev and Next
ADVs are specified below.
RIA however have the potential to exhibit much more
sophisticated navigation semantics, though they require
careful specification to insure consistent behaviors. An
improvement of the behavior specified in Figure 7, which
profits from the possibilities of RIA, would be to insert the
target HTML document, corresponding to the selected
news, in the same window where the link is shown, for
example reducing the space devoted to the list of mails.
Figure 8 shows the application look and feel and the
corresponding sketch of the ADV-chart which implements
this behavior. Now the RSS ADV is an AND of the heading
(described in Figure 7) and the News ADV; the main
difference is that the “mouseClick” on the Anchored Text,
causes the News ADV to be shown and the
“reduceMailList” event to be broadcasted, so it will trigger
a state change in the corresponding MailList ADV.
Additionally if the Mouse is clicked outside the News area,
the HTML text is eliminated from the perception context
and the mail list is reestablished.

Source
Link

Target
Node

148

Figure 8: Improved Navigation in a RIA and corresponding
ADV-Chart specification

Using ADV-charts we can specify more sophisticated
navigational behaviors; for example, notice that the text in
the target node of Figure 8 has an outgoing link (marked in
blue and surrounded with an oval). Following the RIA style
for navigation described in Figure 8, clicking on that
anchor might cause that the source node text is replaced by
the target node (instead of opening a new window); this
implies that the contents of the News ADV is now obtained
from the target of that anchor. This behavior should be
expressed in the Post-Condition of event 4, which was left
unspecified in Figure 8.
We can even specify and implement a more “advanced”
navigation style: transclusion of the target text into the
source, in such a way that the target text can be later
“closed” to return to the former state.
In Figure 9 we show how the News ADV-chart looks like
when using a simple implementation of transclusion to
navigate through news.
The News ADV-Chart now contains two sub-states
indicating if the source text has been expanded with the
target of the anchor’s URL or “collapsed” (therefore only
containing the source content).
The Post-Condition of transition 4 inserts the target text in
the News ADV by sending the message insert to self.
Meanwhile, after transition 5, the original text is
compressed again, when the user clicks on the anchor
again.

4:Event: MouseClick
 Pre-Cond: Focus (Anchor)
 Post-Cond: self insert ((anchor.url.content),
 anchor); perCon=perCon+ anchor.url.content

5:
 Event: MouseClick
 Pre-Cond: Focus (Anchor)
 Post-Cond: self compress (anchor.url.content)
 perCon= perCon – anchor.url.content

Off

On
2 3

4
Collapsed Expanded

News

5

Figure 9: Specifying transclusion

As it is, the specification of Figure 9 only allows two states
(Collapsed and Expanded) for the whole text. An
alternative solution would be to consider that (when in state
On), the News ADV has a list of anchors, each one with its
corresponding (object) state and change transitions 4 and 5
to react according to the clicked anchor.
Transclusion can be even used at a pure interface level to
implement one of the possible instantiations of the
“Information on Demand” pattern [17].
In Figure 5 we showed how the contact information could
be shown “on demand” when the user moves the mouse on
the name of the contact. In Figure 10 meanwhile we show
how we transcluded the map showing a company’s address

besides the mail body. In Figure 11 we show the
corresponding ADV-chart specification. Notice that we are
not navigating to a new node but just showing another
attribute of the node which is being perceived with another
style (map instead of text). The ADV corresponding to the
map has also some owns behaviors which are not shown in
the ADV-chart; they can be inherited from a more general
ADV Map specification.

Before
Transclusion

After
transclusion

Figure 10: Transclusion at the interface level

Anchored Text

On
1:
 Event: MouseClick
 Pre-Cond: Focus (AnchoredText)
 Post-Cond: openMap (AnchoredText.url)

 2:
 Event: openMap (url)
 Pre-cond:
 Post-Cond: Map.content= url.getHTML;
 perCont=perCont + Map.content;

1

Off On
2

Map link

Map

Off

Figure 11: Specifying transclusion in the user interface

4. Dealing with Cross-cutting concerns
As discussed earlier, a critical design issue for complex
RIA arises from the fact that they deal with different
application concerns, which in some occasions crosscut
each other. While traditional composition mechanisms
work well for integrating stable and/or orthogonal
concerns, they have a drawback when recurrent editions of
design models are necessary or when crosscutting is
complex.
Some interface operations impact within the same concern
in which they have been generated, such as operations in
the mail concern in Gmail. Other operations might imply
the execution of an operation in a different concern and
therefore the concerns get tangled; for example when
choosing “reply to Chat” in the mail ADV, the editChat
ADV should be shown, etc. In this case tangling means that
we have some interface objects or code of one concern
(Chat) inserted in another concern (Mail); therefore, the
evolution of one of them might impact in the other
complicating maintenance.
To make this discussion concrete, we will present different
examples of crosscutting features (structural and

149

behavioral) in the context of our Gmail example. All of
them can be easily generalized and the corresponding
solutions applied to other applications. Many kinds of Web
applications might suffer this problem; however, given the
dynamic nature of RIA interface behaviors, we mostly
concentrate on those crosscuttings with are common to
RIA.
Although, ideally, different concerns should be always
clearly separated from requirements and through design to
implementation, crosscutting might be particularly harmful
when new concerns arise when the application evolves.
In Gmail for example, the Chat concern arose after the Mail
concern was quite stable. As a consequence, adding this
new concern implied dealing with those features of Mail
that should be accommodated to support the new
operations.
In [15] we presented an approach for weaving different
ADVs by making them oblivious with each other and
therefore allowing them to evolve separately. Basically, we
propose to design the different ADVs independently such
that there are no crossed references between them, and then
integrate them by using a kind of specification very similar
to the pointcut/advice style of aspect-orientation [8]. This
specification is materialized using XSL transformations.
As an example in Figure 12 we show how the Chat and
Mail ADVs can be integrated by indicating how the
different Chat interface objects are weaved into the Mail
Editor.

 Body:editableText

Chat ADV

Send:Button

history:string

Body:EditableText

To:EditableAddress

Mail Editor ADV

Send:Btn Save:Btn Discard:Btn

From:EditableAddress

Subject:EditableString
IntegrationFor: Chat Concern
Target: ADV Mail Editor
Add: ADV Chat
Relative to:
ADV Mail Editor
Position: right

Figure 12: Weaving the Mail and Chat ADVs

This kind of structural crosscutting is of minor importance
as it could be solved by treating both Mail and Chat as
parts of a higher level ADV and therefore keeping them
independently (instead of weaving Chat onto Mail).
Behavioral crosscutting however might be more complex to
deal with. For example a new Gmail feature would advice
the use of “Reply by Chat” feature in the Mail concern
allowing to “switch” to the Chat mode when the recipient
of the email is online.
In Figure 13 we show the actual interface and the
corresponding confirmation ADV

ReplyByChatConfirmation ADV

SendByMail:
Button

ReplyByChat:
Button

Figure 13: Confirmation ADV

To implement this functionality we need some way to
intercept the original “Send” behavior such that the user is
prompted to select the Mail or Chat mode. In the latter case
the mail editor is closed and the mail content is sent by
initiating a chat session. In Figure 14 we show the basic
ADV-chart of the Mail concern in which the “MouseClick”
event on the SendButton causes the email to be sent and the
“MouseClick” event on DiscardButton discards the email.
In both cases the event triggers not only a change of state
but also a message is sent to the owner (the mail object).

Mail Concern
1:
 Event: MailSent
 Pre-Cond: Focus (SendButton)
 Post-Cond: perCont – currentMail
 self.owner sendMail

 Event: MouseClick
 Pre-Cond: Focus(DiscardButton)
 Post-Cond: perCont – currentMail;
 Self owner.discard();

DiscardButton OFF
1

ONSendButton

Mail Editor ADV Mail ADV

Figure 14: The basic Mail ADV-Chart

There are many different ways to incorporate the prompt of
Figure 13 in the diagram of Figure 14; the first one is to
ignore the impacts of crosscutting in evolution and
hardcode the new behavior in the ADV-chart of Figure 14
by adding new ADVs and intermediate states.
A better solution is obtained by applying aspect-oriented
concepts to ADV-Charts.
In [1] the authors suggest to use broadcast communication
between AND-ed Statecharts to weave aspectual state
transitions. In this case Chat is considered an aspect of
Mail which provides the code for weaving (in this case the
prompt). We don’t comment this solution as it implies
some (minimal) edition in the ADV-chart of Figure 14.
In [13], an improvement to this solution is presented by
replacing the intrusive edition, through the specification of
an event-reinterpretation to allow that when a transition in
a core state-chart fires another in an aspectual one can be
also fired. In summary, it is proposed to re-interpret
transition 1 such that instead of its execution another one is
fired.
We inspired ourselves with this last solution but
considering that these application concerns are symmetric,
i.e. Chat cannot be considered an aspect of Mail but must
be treated also as a core concern. (A discussion on
symmetry vs. asymmetry in aspect-orientation can be found
in [8]).
Therefore, we propose that both concerns (and others) be
developed separately and those features which correspond
to their weaving (like the prompt in Figure 13) are
specified separately as the structural weaving in Figure 12.
And the new set of requirements will be designed asymmetrically
in a new
concern because they modify or call functionality within the
former concern.

150

In Figure 15 we show the specification of the integration
ADV-chart. It basically:

• Intercepts the MailSent event (using the “catch”
keyword in the event 1)

• Enables the prompt in its state On
• Ends either returning control to the original ADV-

chart (using the proceed keyword at the event 2)
where the mail will be sent in the first fragment of
transition 2 or

• It triggers the event which initiates the Chat and
changes the effect of transition 1 in Figure 14 in
such a way that the mail is not sent (second
fragment of transition 2). This operation must send
the email’s body by chat and discard the real
email, and therefore the caught MailSent event is
dropped.

Integration Concern

Off

SendMail
Button

ReplyByChat
Button

On
1

1:
 Event: catch (MailSent)
 Pre-Cond:
 Post-Cond:
2:
 Event: MouseClick
 Pre-Cond: Focus (SendMail Button)
 Post-Cond: proceed()

 Event: MouseClick
 Pre-Cond: Focus (ReplyByChat Button)
 Post-Cond: preCont-currentMail;
 ChatSendEvent (self owner.getBody());
 self.owner.discard();

2

Confirmation ADV

Figure 15: Confirmation Dialog’s ADV-Chart specification

The impact of the introduction of the catch and proceed
keywords in the mail concern is equivalent to appending a
new state “Wait for Confirmation” and a new transition
from the new state to off state. In Figure 16 we show the
result of the weaving process in the Mail Editor’s ADV-
chart.

M a il C o n c e rn (a fte r w e a v in g)

W a it fo r
C o n firm a tio nO N O F F

M a il E d ito r A D V

Figure 16: Final concern ADV-chart after weaving

4.1 Implementation Issues
Integration issues for crosscutting concerns should be dealt
with implementation-neutral constructs as shown above.
However, those constructs should be mapped to run time
settings minimizing the impedance mismatch between
them.
These behavioral graphical sketches can be implemented in
a straightforward way in those GUI frameworks which
supports event-driven actions such as HTML/ JavaScript,
GWT, XUL, etc. Each event is translated to an action
listener which is attached to a specified widget event, i.e.
OnFocus, OnClick. Etc.
We have shown in [15] how to structurally weave ADVs
by using XML transformations. Next we show a simple but
effective way to implement interface weaving in a typical

XML + Javascript based technology (like AJAX, Laszlo or
XUL).
Figure 17 shows a sketch of a simplified Mail Editor ADV
implementation in which we only show the most important
interface objects related with the interface crosscutting.
In Figure 18 we show how the crosscutting behavior is
implemented by using a JavaScript API (described in [2])
which provides aspect oriented features for JavaScript by
taking advantages of JavaScript facilities to redefine
functions at runtime and to wrap one function into another.
The API provides functions that allow specifying
function’s point-cut where an advice can run before, after
or around the joint-point.

Figure 17: HTML code of Mail Editor ADV

Figure 18: HTML code of the Crosscutting chat feature

The “ask” function in Figure 18 plays the advice’s role
which draws a confirmation dialog, and depending on the
choice, it will send the message by chat or by mail (the
original behavior). The function “Aspect.addArround” (in
bold) is provided by the API and defines the point-cut that
matches any “OnClick” event fired by the sendButton
button with the aspect advice. This new block of code can
be weaved obliviously onto the core interface code by an
XSL transformation, like the ones we explain in [15]. The
crosscutting code is just appended at the end of the Mail’s
interface code.

<!-- API inclusion -->

<script type="text/javascript" language="javascript" src="aspect2.js"
></script>

<script>

function ask(){

 if (confirm("Would you like to try the new 'Reply By Chat' feature
sending email's body by Chat?")){

 //send by chat

 return false;

 }else

 //go on as usually

 proceed();

}<!- - this code wraps the onclick function - ->

Aspects.addAround(ask,document.getElementById('sendButton'),
"onclick");

</script>

<HTML>

<HEAD><!--head --></HEAD>

<BODY><!-- something -->

<FORM METHOD="POST" ACTION="sendEmailUrl">

 <!-- form's body -->

 <INPUT id="sendButton" TYPE="submit"
 value="submit" onclick="sendIt">

</FORM><!-- other things -->

</BODY>

</HTML>

151

5. Related Work
The need for methodological support for RIA has been
recently addressed [14]; a complete characterization of
some design issues related with RIA has been given in [3],
together with an extension of the WebML approach [5] to
support RIA. More recently, in [12] a complete model-
based approach to build interactive interfaces for RIA has
been presented; the authors mention that this approach has
been already implemented in the context of WebML
though it is general enough to be “plugged” to other
approaches. Our research follows a similar objective: the
improvement of Web modeling and design methods for
expressing the rich kind of behaviors that we find in RIA.
Our approach is slightly different with respect to [3, 12],
not only because it is based on OOHDM. Compared with
[12] our approach only addresses the Abstract Interface
Design stage and does not delve into architectural and
implementation issues which, as in the rest of OOHDM
research are treated neutrally. In this sense, the work in
[12] completes the MDA life-cycle, while we have not
developed implementation tools yet. We also address
separation of concerns in user interface design, an aspect
which has been so far ignored in the literature. In this
sense, our work is equivalent to the proposal in [13] though
it deals at the same time with structural and behavioral
weaving, while aspect-oriented Statecharts in [13] only
express behavioral crosscutting. Compared with the
modeling approach described in [3] our work ignores
lower-level aspects such as expressing which behavioral
features should be dealt at the client or server sides; instead
we have focused in the modeling primitives which are
needed to express advanced interface behaviors like those
shown in the paper.

6. Concluding Remarks
In this paper we have presented the most important aspects
of our approach for designing interfaces of Rich Internet
Applications. It is based on the OOHDM modeling and
design framework and uses the Abstract Data Views
(ADV) design model for specifying the structure and
behavior of user interfaces of RIA. We have shown with
simple but meaningful examples how to design the kind of
interface transformations typical of RIA; by using ADV-
charts (a variant of Statecharts) we are able to show which
objects are to be shown or hidden in the interface, how
information expands or collapses, etc. We have shown how
to express different hypertext navigation semantics,
including transclusion. Our approach encourages a clear
separation of application concerns which can be later
integrated using modern techniques for model weaving.
We are currently researching on several areas: first, we are
studying how to map our design diagrams into
implementation artifacts, maintaining the same modularity
properties to assure graceful application evolution. The use
of aspectual features in the user interface and the impact of

interface crosscutting in the overall application’s structure
also deserve further research. Finally, we are analyzing
how to integrate our approach with richer navigation
design models such as StateWebCharts [18] to specify
complex combinations between different navigation pages
and their corresponding interfaces.

7. REFERENCES
1. Aldawud, O., A Bader and T. Elltad, Weaving with

Statecharts, Aspect-Oriented Modeling with UML workshop
at the 1 st International Conference on Aspect-Oriented
Software Development, (2002)

2. Aspect Oriented Programming and Javascript. In
http://www.dotvoid.com view.php?id=43 (2007)

3. Bozzon, A.; Comai,,S.; Fraternali,P; Toffetti Carughi, G.
Conceptual Modeling and Code Generation for Rich Internet
Applications. ICWE2006, Menlo Park, California, USA
(2006)

4. Carneiro, L.M.F., Cowan, D.D and Lucena, C.J.P.,ADV
Charts: a visual formalism for interactive systems.SIGCHI
Bulletin, 26, 2, 74-77 (1994).

5. Ceri, S., Fraternali, P., Bongio, A. Web Modeling Language
(WebML): A Modeling Language for Designing Web Sites.
Computer Networks and ISDN Systems, 33(1-6), 137-157
June (2000)

6. Cowan, D. Pereira de Lucena, C.: Abstract Data Views: An
Interface Specification Concept to Enhance Design for
Reuse. IEEE Trans. Software Eng. 21(3): 229-243 (1995)

7. Driver, M; Valdes, R and Phifer, G.. Rich Internet
Applications are the next evolution of the Web. Technical
Report, Gartner (2005)

8. Filman, R., Elrad, T., Clarke, S., Aksit, M. (eds.). Aspect-
Oriented Software Development. Addison-Wesley (2004)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns. Elements of reusable object-oriented software,
Addison Wesley (1995)

10. Gordillo, S; Rossi, G; Moreira, A.; Araujo, J.; Vairetti, C;
Urbieta, M.: Modeling and Composing Navigational
Concerns in Web Applications: Requirements and Design
Issues. In Proceedings of LA-Web (2006)

11. Koch, N., Kraus, A., and Hennicker R.: The Authoring
Process of UML-based Web Engineering Approach. In
Proceedings of the 1st International Workshop on Web-
Oriented Software Construction (IWWOST 02), Valencia,
Spain, pp. 105-119 (2001)

12. Linaje, M; Preciado, J.C:; Sanchez-Figueroa, F.: A Method
for Model-Based Design of Rich Internet Application
Interactive User Interfaces. Proceedings of ICWE 2007,
Como, Italy, July 2007, forthcoming.

13. Mahoney, M., Bader, A., Aldawud, O., Elrad, T., Using
Aspects to Abstract and Modularize Statecharts. The 5th
Aspect-Oriented Modeling Workshop In Conjunction with
UML 2004 (2004).

14. Preciado, J. C.; Linaje, M.; Sanchez, F., Comai, S.: Necessity
of methodologies to model Rich Internet Applications, IEEE
Internet Symposium on Web Site Evolution, pp 7-13 (2005)

15. Rossi, G., Ginzburg, J., Urbieta, M., Distante, D.
"Transparent Interface Composition in Web Applications."
Proceedings of 7th International Conference on Web

152

Engineering (ICWE2007: July 16-20, 2007; Como, Italy),
pp. 152-166 (2007)

16. Schwabe, D., Rossi, G.: An object-oriented approach to web-
based application design. Theory and Practice of Object
Systems (TAPOS), Special Issue on the Internet, v. 4#4,
207-225. October (1998)

17. Schwabe, D., Rossi, G.: Improving Web Information
Systems with Navigational Patterns. Computer Networks
(31), pp 11-16, 1999.

18. Winckler, M., Palanque, P. StateWebCharts: a Formal
Description Technique Dedicated to Navigation Modelling
of Web Applications. International Work-shop on Design,
Specification and Verification of In-teractive Systems
(DSVIS'2003), Funchal, PT. (2003).

153

