
Sparse Equation Systems in Heterogeneous Clusters of Computers

Fernando G. Tinetti� Walter J. Aróztegui Antonio A. Quijano

Centro de Técnicas Analógico-Digitales
48 y 116 2do. Piso

Facultad de Ingenierı́a
Universidad Nacional de La Plata

1900 La Plata, Argentina

Instituto de Investigación en Informática - LIDI
50 y 115 1er. Piso

Facultad de Informática
Universidad Nacional de La Plata

1900 La Plata, Argentina

fernando@info.unlp.edu.ar, waroz@graffiti.net, quijano@volta.ing.unlp.edu.ar

Abstract

This paper presents a parallelization strategy in hetero-
geneous clusters of the Gauss-Seidel’s method applied for
the solution of sparse equation systems. From the point of
view of the numerical solution for matrices of coefficients
with low density of non null-elements, the standard lines
of thought are followed, that is, only non-null elements are
stored and iterative solution-search methods are used.

Two basic guidelines are defined for the parallel al-
gorithm: one-dimensional data distribution and broadcast
messages for all data communications. One-dimensional
data distribution eases the processing workload balance on
heterogeneous clusters. The use of broadcast messages for
every data communication is directly oriented to optimize
performance on the the most common cluster interconnec-
tion: Ethernet. Experimental results obtained in a local net-
work of heterogeneous computers are presented.

1. Introduction

Several branches of Science and Engineering need a con-
siderable computing power when modeling and emulating
various physical phenomena. It is enough to quote some
problems, such as environmental models in meteorology
applications, aerodynamics in the spacecrafts design, elec-
tronic circuits, and a wide range of typical scientific appli-
cations. Many of these models involve a large number of
partial differential equations (PDEs), and the most common

� Investigador Asistente de la Comisión de Investigaciones Cientı́ficas
de la Provincia de Buenos Aires

way of solving them is by discretization, that is, approach-
ing them by means of equations with a finite number of un-
knowns. Large linear equation systems are thus produced,
with many coefficients equal to zero, which leads to call
those systems as linear sparse equation systems.

Since some years ago, advances included in the so-called
“domestic” or desktop computers and the more than accept-
able relationship between cost and computing power deter-
mine the tendency to use parallel computers made up by
networks or PC clusters [10]. This paper is focused on het-
erogeneous clusters connected by Ethernet networks, which
can be found in several and daily environments.

In the special case of sparse systems, in which a great
part of the element of the system matrix are zeroes, iterative
methods are particularly efficient, even more when special
storage schemes for sparse matrices are applied and a the
system has a low quantity of non- null elements. Iterative or
indirect methods give rise to a series of vectors, which ide-
ally converge in the solution of the system by means of the
repetition of a simple process. The computation stops be-
fore or after a determined number of iterations [4] [7]. It-
erative methods are useful given that null coefficients will
remain invariable and can be disregarded, saving memory
space and processing time, since it is not necessary to nei-
ther access nor use null operands.

2. Matrix Storage and Gauss-Seidel’s Method

This section initially shows how space can be saved
in the storage of matrices with a great amount of null-
elements. It then shows how equation systems are solved
with the Gauss-Seidel’s method and to what extent this
method is affected by the sparse matrix storage system.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

Sparse Matrix Storage. The most simple of these storage
schemes is the so-called of coordinated format, which con-
sists of a data structure with three arrays: a real array con-
taining all the non-null values, an integer array containing
the row indexes, and a second integer array containing the
column indexes. As the elements are usually listed by rows
or columns, one of the arrays with the previous indexes can
contain redundant information. Taking this into account, the
CSR (Compressed Sparse Row) storage format is defined,
which is probably the most popular in the context of sparse
matrices [8]. In this case, there are also three arrays, though
now are:

1) An array containing the non-null elements of the ma-
trix, stored by rows.

2) An integer array with the respective column indexes.
3) An integer array containing the pointers to the begin-

ning of each row.
Thus, there are two arrays of length equal to the number of
non-null elements, and another of the length � � � with �

equal to the number of rows (equations), being its last el-
ement the one that indicates the total number of non-null
elements plus one. Other ways of storing sparse matrices
are: CSC (Compressed Sparse Column) [5], MSR (Modi-
fied Sparse Row), [8], by diagonals [8] [2], and Ellpack-
Itpack [8].

Gauss-Seidel’s Iterative Method. Assuming that the equa-
tion system coefficients are denoted as ���, and �� is the re-
sult of each equation, a general expression for the Gauss
Seidel’s procedure is:

�
���
� �

�

���

�
��� �

�
���

����
���
� �

�
���

����
�����
�

�
� (1)

which at least requires that ��� �� �, and �
���
� are the un-

known values on iteration �. The error computation often
uses the differences among successive values of variables:

��� � ��
���
� � �

�����
� � (2)

The Gauss-Seidel’s method is not altered by the way in
which the coefficient matrix is stored. It is clear that the ac-
cess to data, in the case of CSR storage for sparse matri-
ces, should be carried out using the previously mentioned
vectors. CSR storage does not change the algorithm’s nu-
merical characteristics but the access pattern to data and the
number of operations carried out since null-values are not
used. This paper presents the parallelization of the Gauss-
Seidel’s method for several reasons:

1) It is one of the most representatives among the sim-
plest iterative algorithms.

2) It is an improvement of the Jacobi’s method, with bet-
ter convergence time, and can be considered as a particular

case of another well-known procedure, the SOR (Succes-
sive Overrelaxation).

3) Data dependency in Eq. (1) is strongly enough not to
be in the best of the cases for parallel computing require-
ments, as in the case of the Jacobi’s method. In the Jacobi’s
method, once a solution is obtained, the computations for
the following solution are all independent and their paral-
lelization is thus immediate.

3. Parallel Gauss-Seidel’s Method

As previously mentioned, parallelization of the Gauss-
Seidel’s method is not immediate due to the existing data
dependency when computing the values of each iteration. In
general, for sparse matrices, efforts are focused not as much
on parallelization as on matrices’ pre-ordering in order to
turn them into forms that can be efficiently implemented
in parallel. Apart from using storage specifically oriented
to sparse equation systems, the proposed parallelization of
this paper follows the principles outlined in [9], which can
be stated as follows:

1) Message-passing programming model, which is con-
sidered the most appropriate for parallel processing in clus-
ters.

2) SPMD (Single Program-Multiple Data) processing
model, which is simple and scalable. On the other hand,
most of the parallel algorithms for lineal algebra problems
follow this processing model.

3) One-dimensional data distribution, i.e. all the pro-
cesses/processors are considered as interconnected in a lin-
ear array or by a communication bus. There exists a ten-
dency to think in a bus following the very definition of the
Ethernet standard of computers’ interconnection in a local
network.

4) Communication among processes via broadcast mes-
sages when possible, i.e. all data interchange is thought in
function of a process sending data and the remaining pro-
cesses receiving the data sent. There also exists the ten-
dency to optimize the implementation of this communica-
tion primitive over the hardware provided by the Ethernet
standard [3].

The partition or distribution of data to a processor among
processes or processors is carried out by row blocks. The
row block size is defined directly proportional to the com-
puter’s relative computing power, pwi, defined as

��� �
���

���
��� ��

��
(3)

where ��, � � � � � � �, can be found by running the
same (small enough to be stored in memory) sparse system
on each computer. Figure 3 schematically shows the parti-
tion of an equation system among three processors P�, P�
and P�, where P� is the slowest computer, P� is two times

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

faster than P�, and P� is three times faster than P�. Recall
that, on the one

P0

P1

P2

Figure 1. Row Block Distribution.

hand, this partition is non-dependent on the CSR storage of
a sparse matrix and, on the other, given a row block, the set
of variables to be calculated by the process is determined
automatically: each process compute the value of the vari-
ables which are associated to the main diagonal of coeffi-
cients matrix (sparse), such as can be derived from Eq. (1).
In general, each computer will make ������� of the to-
tal work to be done, where ��� is

��� �

����

���

��� (4)

From now on, the iterative process begins, which can be
separated into several stages, and it should be described
from the first iteration, assuming an initial value for the un-
knowns ������ � � � � � �

���
� �:

1.- The process with the first row block begins the com-
putation of the associated variables. That is, process P�
may determine the values of the variables ������ � � � � � �

���
���

�,
where �	� is the row block size corresponding to Process
P�. The remaining processes can only carry out the inter-
mediate results corresponding to the second sum in Eq. (1),
i.e. those dependent on initial values.

2.- Once the first �	� values of the first iteration are
computed, the remaining processes can use these values
to compute the first sum in Eq. (1). Since process P� is
the one that has the values of these variables and the re-
maining processes need them, it is natural to think in a
broadcast from process P� to the rest. In fact, in this sec-
ond step, all the computations necessary for the values
����������

� � � � � �
���
�������

� are completed in process P�. These
new �	� values can be sent to the remaining processes for
the computation depending on them according Eq.(1). No-
tice that these values can be also used in process P�, though
this time for the computation of the variables of the follow-
ing Gauss-Seidel iteration.

3.- The two previous steps can be continued taking as
reference processes P� up to the last process with the last
row/variable block, where: all the values for variables of

a Gauss-Seidel’s iteration are computed, and the total error
can be obtained, and thus it is possible to determine whether
to go on or not, considering the value of this error.

4. Experimental Results

In terms of hardware, experiments were carried out in a
network of five PCs interconnected with switched 100 Mb/s
Ethernet. Table 1 summarizes the relative computing pow-
ers of the five computers according with Eq. (3). Values
are ordered from the fastest, PC1, to the slowest, PC5. All

Comp. PC1 PC2 PC3 PC4 PC5
Pwi 6.50 3.45 1.45 1.45 1.00

Table 1. Relative Computer Speeds.

the PCs are installed with the Linux operating system and
LAM/MPI, the LAM implementation (Local Area Multi-
computer) [1] of the MPI standard library (Message Passing
Interface) [6] for message passing among processes. Only
the broadcast function was used from the MPI library, since
in fact the algorithm was conceived (for this) to be possi-
ble. As the size of the systems increases, the communication
cost increases as well, and one of the purposes of the exper-
imentation is precisely to determine the communication rel-
ative cost with respect to the computation for this algorithm.
Different number of computers and different sizes of equa-
tion systems were used with a dense percentage (non-null
elements) of the coefficient matrix, and the performance is
determined by the obtained speedup. Summarizing the ex-
perimentation:

a) Between two and five computers in parallel (which
is the maximum quantity of available PCs used for the re-
search work) were used. The best computers were always
chosen for experiments, i.e. for experiments with three com-
puters; PCs used were PC1, PC2, and PC3.

b) The sizes of the equation systems were: 2400 and
4800 equations with a density of 20%. The maximum num-
ber of equations is related to the maximum amount of data
that can be stored in a computer’s main memory and also
with experiments running time (so as not to be excessive).

c) The speedup is computed in relation to the sequen-
tial processing without making use of any message passing
primitive on the slowest computer of those used, e.g., i.e.
for experiments with three computers, PCs used were PC1,
PC2, and PC3 and the speedup is computed relative to PC3.

Figure 4 shows the results obtained in the experimenta-
tion for all the values previously described. In the x axis the
number of computers is shown, and the speedup values ob-
tained in the experiments is shown on the y axis. Three se-

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

ries of data are shown: those corresponding to sparse sys-
tem sizes, 2400 and 4800, and the optimum speedup values
for each number of computers.

2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

2400

4800

Opt

Computers

S
pe

ed
up

Figure 2. Performance for 20% Density.

The gap between the optimum speedup values and the ob-
tained in the experiments finally shows the weight of the
communication time/subsystem in the overall performance.
Furthermore:

1) Communication time never becomes relatively greater
than computing time even when the number of comput-
ers increases which, in turn, increases communication over-
head. This is shown by the growth of the obtained perfor-
mance as the number of computers grows.

2) Performance gain is almost the same for sparse sys-
tems of 2400 and 4800 computers, with the only exception
found when using five computers.

3) It is expected to find better parallel performance if
broadcasts are implemented taking advantage of the Ether-
net definition, which has physical broadcast.

5. Conclusions and Further Work

A parallel algorithm of the Gauss-Seidel’s method for
sparse equation systems over a local area network has been
presented, using the advantages of a compressed storage in
order to deal with this type of systems of equations. The ex-
perimentation shows that the implementation obtains good
results in parallel using up to five machines. The heteroge-
nous cluster used in the experiments is a network of PCs
of daily use, with a network of relatively low performance
(Ethernet 100Mb/s).

Even when a few simple parallelization guidelines are
used for design and implementation of the parallel Gauss-
Seidel’s method, the performance increases as the number
of computers increases. Furthermore, performance is not

strongly affected by the fact that broadcast messages are not
optimized in the MPI implementation used. The LAM/MPI
implementation does not take advantage of Ethernet broad-
cast to optimize broadcast messages amont processes. It is
expected that for a greater number of computers, the broad-
cast imposes a strong performance penalization. This pe-
nalization can be avoided with specific optimization for us-
ing Ethernet and/or physical broadcast. A boradcast mes-
sage specifically implemented in top of Ethernet is one of
the first candidates for further work on the parallel algo-
rithm implemented. From the algorithmical point of view,
using another broadcast message implementation is not a
major change.

The algorithm performance with higher number of com-
puters is still to be analyzed. In this case, the scope in terms
of scalability should be identified with more precision. It is
clear that, in this case, experimentation is strongly depen-
dent on the number of available computers.

Also, how the presented algorithm behaves when work-
ing with several row blocks per each processor is also still to
be analyzed. On the one hand, this would increase the num-
ber of communications, but on the other, it would decrease
the weight for each of them and, also, there could be a con-
currence of the total number of computers.

References

[1] Burns G., R. Daoud, and J. Vaigl, LAM: An Open Clus-
ter Environment for MPI. Ohio Supercomputer Center, May
1994. LAM/MPI is available at University of Notre Dame
(http://www.mpi.nd.edu/lam) - 1998-2001.

[2] Golub G., C. Van Loan, Matrix Computations, 2nd Edition,
The John Hopkins University Press, 1989.

[3] Institute of Electrical and Electronics Engineers, Local Area
Network-CSMA/CD Access Method and Physical Layer
Specifications ANSI/IEEE 802.3 - IEEE Computer Society,
1985.

[4] Kincaid D., W. Cheney, Numerical Analysis: Mathematics
of Scientific Computing, 3rd Edition. Brooks/Cole, Pacific
Grove, CA, 2002, 817 pp. ISBN 0-534-38905-8.

[5] MatLab 6.0 release 12, Users’ Guide, 2000.
[6] Message Passing Interface Forum, MPI: A Message Passing

Interface Standard, International Journal of Supercomputer
Applications, Volume 8 (3/4), 1994.

[7] Nakamura S., Applied Numerical Methods With Software,
ISBN: 0130410470, Prentice Hall, 1991.

[8] Saad Y., Iterative Methods for Sparse Linear Systems 2nd
edition, Society for Industrial and Applied Mathematic, 2003

[9] Tinetti F. G., Parallel Computing in Local Area Net-
works, PhD Thesis, Universidad Autónoma de Barcelona,
Barcelona, Spain, March 2004 (in Spanish). Available at
https://lidi.info.unlp.edu.ar/˜fernando/publis/publi-eng.html

[10] Wilkinson B., M. Allen, Parallel Programming: Techniques
and Applications Using Networked Workstations, Prentice-
Hall, Inc., 1999.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

