
Smith-Waterman Protein Search with OpenCL on an

FPGA

E. Rucci

and A. De Giusti

and M. Naiouf

Instituto de Investigacion en Informatica LIDI (III-LIDI)

Universidad Nacional de La Plata

La Plata (1900), Buenos Aires, Argentina

Email: {erucci,degiusti,mnaiouf}@lidi.info.unlp.edu.ar

C. Garcı́a

and G. Botella

and M. Prieto-Matias

Depto. Arquitectura de Computadores y Automatica,

Universidad Complutense de Madrid, Madrid 28040, Spain

Email: {garsanca,gbotella,mpmatias}@ucm.es

Abstract—The well-known Smith-Waterman (SW) algorithm
is a high-sensitivity method for local alignments. Unfortunately,
SW is expensive in terms of both execution time and memory
usage, which makes it impractical in many scenarios. Previous
research has shown that massively parallel architectures such as
GPUs and FPGAs are able to mitigate the computational prob-
lems and achieve impressive speedups. In this paper we explore
SW acceleration on an FPGA with OpenCL. We efficiently exploit
data and thread-level parallelism on an Altera Stratix V FPGA,
obtaining up to 39 GCUPS with less than 25 watt of power
consumption.

Keywords—Bioinformatics, Smith-Waterman, FPGA, Altera,
OpenCL.

I. INTRODUCTION

High throughput structural genomics and genome sequenc-
ing have provided the scientific community with a huge amount
of data to be processed from structures and sequences of many
thousands of proteins. This “big data” can be interesting as
researchers can extract useful and functional insights from it.

Bioinformatics is one of the most powerful technologies in
life sciences nowadays, and it is being used in research into
evolution theories and protein design, among other important
applications. Algorithms, methods and different findings used
in these studies offer a plethora of applications, such as
the functional classification of proteins, secondary structure
prediction, threading and modeling of distantly-related homol-
ogous proteins to represent their behavior throughout a cell’s
life cycle, and sequence and structure alignments.

Many bioinformatics operations and analyses are partly
held by sequence alignment, both for pattern searching among
amino-acid and nucleotide sequences, and for the search
of phylogenetic relationships among organisms. The Smith-
Waterman (SW) algorithm for local alignment is one of these
methods; it focuses on similar regions only in part of the
sequences, which means that the purpose of the algorithm
is finding small, locally similar regions. This method has
been used as the basis for many subsequent algorithms and
is often used as basic pattern to compare different alignment
techniques. To calculate optimal local alignment scores, the
SW algorithm has a linear space complexity and a quadratic
time complexity.

Biological sequence database searches require calculating
optimal alignment scores many times. Due to the high com-
plexity of SW algorithm, the computation time may become
impracticable. For this reason, several heuristics, such as
BLAST [1] and FASTA [2], have been developed to reduce
the execution time but at the expense of not guaranteeing
to discover the optimal local alignments. Due to the com-
putational cost of SW, the scientific community has made
great efforts to design more efficient implementations in recent
years. Most of the solutions proposed find and exploit the
inherent parallelism in the alignment process as intra-task and
inter-task parallelism [3].

With the recent emergence of accelerator technologies,
such as Field-Programmable Gate Arrays (FPGAs), and Graph-
ics Processing Units (GPUs), has come the opportunity of
speeding up life science analysis problems on commonly
available hardware at a relatively low cost. For large parallel
systems, we highlight the proposal of Qiu [4] with a hybrid
implementation based on the MapReduce model and a cluster
programmed with MPI using grid-architecture-based solutions.
Some authors have proposed the exploitation of subword-
level capabilities of CPU/core [5], [3]. Also, in the hardware
accelerator scenario, we can point to the CUDASW++ software
and newer versions developed by Liu [6], [7], which offer a
performance from 30 to 185.6 GCUPS (billion cell updates per
second) for single and multi Graphics Processor Units (GPUs).
More recently, Liu and Schmidt have presented SWAPHI
and SWAPHI-LS, which are highly optimized hand-tuned SW
implementations on Intel Xeon Phi accelerators [8], [9] for
protein and DNA sequence alignments, respectively. While
SWAPHI-LS is able to achieve 30.1 GCUPS, SWAPHI obtains
up to 58.8 GCUPS. Although these two studies have focused
mostly on the exploitation of the accelerator, Rucci et al. [10],
[11] focus on a hybrid implementation for protein alignment
that exploits both CPU and coprocessors simultaneously.

There are also some previous works that studied the
implementation of SW on FPGAs [12], [13], [14], [15], [16],
[17]. However, most of these implementations focus on DNA
alignment (which is simpler than protein alignment from an
algorithmic perspective) and/or cover special cases of SW
alignment (for example, query and/or database sequences of
limited or fixed length, embedded sequences in the design,
among others). Our paper presents an approach for SW im-

2015 IEEE Trustcom/BigDataSE/ISPA

978-1-4673-7952-6/15 $31.00 © 2015 IEEE

DOI 10.1109/Trustcom-BigDataSe-ISPA.2015.634

208

2015 IEEE Trustcom/BigDataSE/ISPA

978-1-4673-7952-6/15 $31.00 © 2015 IEEE

DOI 10.1109/Trustcom.2015.634

208



plementation using the Open Computing Language1(OpenCL).
Altera has recently begun to support heterogeneous OpenCL
programming, and therefore to promote its use. Despite Altera
staff having submitted an SW implementation with OpenCL
in [17], it focuses on non-real RNA sequence alignment with
fixed query length. Our proposal covers protein sequence
alignment and is tested with real amino acid datasets, besides
being fully functional for any sequence length. We would like
to point out that the use of an FPGA to accelerate SW is also
motivated by the low energy demands of these devices. This
work can be considered the starting point for more exhaustive
exploration of greener power choices.

The rest of the paper is organized as follows. Section II in-
troduces the basic concepts of the Smith-Waterman algorithm.
Section III introduces Altera’s OpenCL programming exten-
sion and in Section IV the methodology used to efficiently
program this alignment through different optimization tech-
niques is described. Section V presents the results obtained,
and finally Section VI contains the conclusion and future lines
for this novel viability study.

II. SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm is used to identify the
optimal local alignment between two sequences. It was pro-
posed by Smith and Waterman and improved by Gotoh [18].
This method employs a dynamic programming approach and
its high sensitivity comes from exploring all the possible
alignments between two sequences.

The recurrence relations for the SW algorithm with affine
gap penalties are defined below.

Hi,j = max

⎧⎪⎪⎨
⎪⎪⎩

0

Hi−1,j−1 + SM(qi, dj)

Ei,j

Fi,j

(1)

Ei,j = max

{
Hi,j−1 −Goe

Ei,j−1 −Ge

(2)

Fi,j = max

{
Hi−1,j −Goe

Fi−1,j −Ge

(3)

The two sequences to be compared are defined as q =
q1q2q3 . . . qm and d = d1d2d3 . . . dn. Hi,j represents the score
for aligning the segments of q and d ending at position i and
j, respectively. Ei,j and Fi,j are the scores ending with a gap
involving the first i symbols of q and the first j symbols of d,
respectively. SM is the substitution matrix which defines the
substitution scores for all residue pairs. In most cases, SM
rewards with a positive value when qi and dj are identical, and
punishes with a negative value otherwise. Goe is the sum of gap
open and gap extension penalties while Ge is the gap extension
penalty. The recurrences should be calculated with 1 ≤ i ≤ m
and 1 ≤ j ≤ n, and must start with Hi,j = Ei,j = Fi,j = 0
when i = 0 or j = 0. The optimal local alignment score S is
the maximal alignment score in the matrix H .

1Khronos Groups. OpenCL: https://www.khronos.org/opencl

d1 d2 d3

q1

q2

q3

...

..
.

Fig. 1. Data dependences in the alignment matrix H.

It is important to note that any cell of the matrix H can
be computed only after the values of the left and above cells
are known, as shown in Figure 1. These dependences restrict
the ways in which H can be computed.

III. OPENCL EXTENSION ON ALTERA’S FPGA

OpenCL is a framework for parallel implementation that
allows the execution of parallel programs on heterogeneous
platforms. It is currently supported by several hardware de-
vices, such as CPUs, GPUs, DSPs, FPGAs and other proces-
sors. OpenCL is based on the host-device model, where the
host is in charge of device memory management, data transfer
from/to device and kernel code invocation.

The kernel is a piece of code which expresses the par-
allelism of a program. The OpenCL programming model
divides a program workload into work-groups and work-items.
Work-items are grouped into a work-group, which is executed
independently with respect to other work-groups. Data-level
parallelism is regularly exploited in an SIMD way, in which
several work-items are grouped according to the lane width
capabilities of the target device.

The OpenCL memory model distinguishes different mem-
ory regions that are characterized by the access type, per-
formance and scope. Global memory is read-write accessi-
ble by all work-items across all work-groups, and it usually
corresponds to the DRAM memory device, which carries a
high latency memory access. Local memory is a shared read-
write memory accessible from all work-items of a single work-
group, and it habitually involves a low latency memory access.
Constant memory is a read-only memory that is visible to all
work-items across all work-groups, and private memory, as the
name suggests, is only accessible by a single work-item.

As OpenCL is a cross platform standard for parallel pro-
gramming on heterogeneous platforms, the developer can thus
focus on algorithmic specifications, avoiding implementation
details. The main advantage of implementing OpenCL on
FPGA platforms concerns the shorter time to market and faster
implementations. OpenCL Altera SDK supports the OpenCL
1.0 specification which is a subset of the full profile with more
flexible requirements and advanced features, and which has
been completed thanks to versions 1.1 and 1.2. The OpenCL
specification defines a platform, memory and programming
model which permits many add-ons that are vendor specific,
either vendor or cross-vendor specific. There is considerable

209209



freedom in terms of implementing the platform as long as the

final implementation satisfies the OpenCL specifications [19].

FPGAs provide programmable networks containing logic
elements, memory blocks and specific DSP blocks, and this
allows the design of dynamic custom instruction pipelines in
contrast with the fixed data-path architectures of CPUs and
GPUs. Generally, digital design verification and creation have
involved the use of Hardware Description Languages (HDLs),
which are complex, error prone and affected by an extra
abstraction layer as they contain the additional concept of time.

TABLE I. OPENCL MEMORY MODEL FOR FPGAS

OpenCL Memory FPGA Memory BittWare S5PHQ

global external 2x4GB DDR3
constant cache 16KB DDR3

local embedded 44Mbits
private registers 674Kbits

Regarding Altera’s scope, the FPGAs are dedicated co-
processors that obey a complex hierarchy model (see Table I
particularized for the FPGA used in this research). The host
processor is connected to accelerators through a peripheral
interface such as PCIe.

Each Altera FPGA can have multiple in-order command
queues associated with it that can execute independent com-
mands concurrently. Kernels are compiled previously using the
Altera OpenCL compiler and their content is passed at runtime
to create the OpenCL program object. Regarding the execution
model, it is possible to use the work-item ordering within a
pipeline, outperforming the throughput obtained thanks to this
topology. The OpenCL paradigm model defines the execution
of an instance of a kernel by a work-item using NDRange.
Kernels are executed across a global domain of work-items,
where work-items are grouped into local work-groups. The
execution model does not specify in what order the work-items
are distributed, and using the Altera implementation in a one-
dimensional NDRange work-items produce a serial execution
from 0 to the global size limit.

Altera’s OpenCL extension also takes advantage of I/O
channels and kernel channels as in OpenCL 2.0 by means
of pipes [20]. Altera’s channel extension allows the transfer
of data between work-items’ in the same kernel or between
different kernels. It uses a first-in, first-out (FIFO) buffer
without host interaction. This feature enables work-group
communication without additional synchronization and host
intervention.

IV. SW IMPLEMENTATION

In this section we address the programming aspects and
optimizations applied to our implementation on the FPGA
platform. The algorithm comprises three stages:

1) Pre-processing stage: the reference database is pre-
processed to adapt sequence data for FPGA process-
ing.

2) SW stage: after preprocessing the database, align-
ments among query sequences and database se-
quences are carried out.

Algorithm 1 Pseudo-code for Smith-Waterman host imple-
mentation

1: � Q are the query sequences
2: � vD is the preprocessed sequence database
3:

4: clCreateBuffer’s(...) � Create buffers + transfer data
5: SetKernelArg’s(...) � Set kernel common arguments
6: for c ≤ get num chunks(vD) do
7: SPc ← build score profiles(vDc, SM)
8: clEnqueueWriteBuffer(SPc) � Score profiles to device
9: SetKernelArg’s(...) � Args. for processing chunk c

10: for q ≤ get num sequences(Q) do
11: SetKernelArg’s(...) � Args. for query q
12: clEnqueueNDRangeKernel(...) � Compute align-

ments among query q and chunk c
13: end for
14: end for
15: clEnqueueReadBuffer(scores)
16: sort(scores) � Sort all scores in descending order

3) Sorting stage: lastly, all alignment scores are sorted
in descending order.

Stages 1 and 3 are executed on the host, while stage 2 is
offloaded to the FPGA.

Algorithm 1 shows the pseudo-code for the host implemen-
tation where Q corresponds to query sequences and vD is the
sequence database sorted by length in order to divide vD as c
chunks of similar sequence lengths. Memory management is
performed in OpenCL by means of clCreateBuffer (memory
allocation), clEnqueueWriteBuffer and clEnqueueReadBuffer
(memory transfer to device/host). The kernel computes the
alignments between a single query and a chunk of sequence
database.

Algorithm 2 shows the pseudo-code for our kernel imple-
mentation. The alignment matrix is divided into vertical blocks
and computed in a row by row manner (see Figure 2). This
blocking technique not only improves data locality but also re-
duces the memory requirements for computing a block, which
favours the use of the private low-latency memory. The inner
loop is fully unrolled to improve performance. Due to data
dependencies between blocks (last column H and E values are
needed), we employed Altera OpenCL channels to efficiently
transfer previously-computed values. The combination of these
techniques allows the Altera OpenCL compiler to successfully
generate parallel pipeline execution.

A. Parallelism inside the kernel

Our SW kernel employs the inter-task parallelization ap-
proach. Instead of aligning one database sequence against a
query sequence at a time, multiple database sequences are
aligned in parallel by means of the SIMD vector capabilities
available in the FPGA. For this reason, database sequences
are processed in groups. The size of the groups is determined
by the number of SIMD vector lanes. In order to maximize
processing efficiency, all the sequences of the same group
should be of similar length. Therefore, database sequences are
sorted by their lengths in ascending order and then they are
padded with dummy symbols to make their lengths a multiple

210210



���

������	
��


��
��

���
��

��
��

�
���

��

Fig. 2. Schematic representation of our OpenCL kernel implementation.

Algorithm 2 Pseudo-code for Smith-Waterman kernel

1: #pragma OPENCL EXTENSION cl altera channels : en-
able

2:

3: attribute ((reqd work group size(1,1,1)))
4: attribute ((task))
5: kernel void SW kernel ( vDc, q, SPc, scoresc ) {
6: for s ≤ get num sequences(vDc) do
7: d← get sequence(vDc, s)
8: numBlocks← sizeof(d)/BLOCK WIDTH
9: for k ≤ numBlocks do

10: for i ≤ sizeof(q) do � each row
11: if k �= 0 then
12: j = k ∗BLOCK WIDTH
13: Hi−1,j−1 ← read channel(H channel)
14: Ei,j ← read channel(E channel)
15: end if
16: #pragma unroll
17: for jj ≤ BLOCK WIDTH do
18: j ← k ∗BLOCK WIDTH + jj
19: � Calculate current cell value
20: Hi,j ← SW core(H,E, F, SPc, q)
21: score← max(score,Hi,j)
22: end for
23: if k �= numBlocks− 1 then
24: j ← (k + 1) ∗BLOCK WIDTH − 1
25: write channel(H channel,Hi−1,j)
26: write channel(E channel,Ei,j+1)
27: end if
28: end for
29: end for
30: scoresc[s] ← score � Save alignment scores
31: end for
32: }

of BLOCK WIDTH . Because complete unrolling requires
constant loop bounds, this last step is needed in order to fully
unroll the kernel inner loop.

B. Substitution score selection

Our code also implements the Score Profile (SP ) op-
timization technique to obtain scores from the substitution
matrix. This technique is based on constructing an auxiliary

n×l×|
∑
| two-dimensional score array, where n is the length

of the database sequence, l is the number of vector lanes and∑
is the alphabet. Since each row of the score profile forms

a l-lane score vector, its values can be loaded in parallel. To
reduce FPGA hardware resource usage, the score profiles are
built on the host using a set of SSE intrinsic functions as
in [10] and then transferred to the FPGA. However, because
the size of the score profiles can become prohibitive, database
sequences are processed in chunks.

C. Data type selection

Optimising FPGA area usage is crucial to obtain high-
performance OpenCL applications. The alignment scores do
not need a wide range data representation. The short data
type turns out to be sufficient to represent all alignment scores
computed in this work.

D. Host-side buffers and data transfers

Host-side buffers are allocated to be 64-byte aligned. This
fact improves data transfer efficiency because Direct Memory
Access (DMA) takes place to and from the FPGA. Common
data to all alignments, such as the queries, are transferred when
creating the device buffers. All scores are transferred to the
host after all alignments have been computed.

V. EXPERIMENTAL RESULTS

A. Experimental platform and tests carried out

All tests were performed on a Xeon server running CentOS
(release 6.5) equipped with:

• Two Intel Xeon CPU E5-2670 8-core 2.60GHz CPUs.

• 32 GB main memory.

• An Altera Stratix V GSD5 Half-Length PCIe Board
with Dual DDR3 (two banks of 4 GByte DDR3)
whose power consumption is less that 25 watts.

We used Intel’s ICC 15.0.2 compiler with the -O3 optimiza-
tion level by default. The synthesis tool used was Quartus II
DKE V12.0 2 with OpenCL SDK v14.0.

To provide the most relevant study, tests were performed
with the Swiss-Prot database (release 2013 11)2. Performance
evaluation was carried out with 20 protein sequences. This
database comprises 192480382 amino acids in 541561 se-
quences, the largest sequence being 35213 in length. The 20
query protein sequences were selected from the aforemen-
tioned database (accession numbers: P02232, P05013, P14942,
P07327, P01008, P03435, P42357, P21177, Q38941, P27895,
P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519,
Q7TMA5, P33450, and Q9UKN1), ranging in length from 144
to 5478. Furthermore, BLOSUM62 was used as the scoring
matrix, and gap open and extension penalties were set to 10
and 2, respectively. Each particular test was run ten times,
and the performance was calculated with the average of ten
execution times to avoid variability.

2Swiss-Prot database available in http://web.expasy.org/docs/swiss-prot
guideline.html

211211



B. Performance Results

Cell updates per second (CUPS) is a commonly used
performance measure in Smith-Waterman, because it allows
the removal of the dependency on the query sequences and
the databases utilized for the different tests. CUPS represents
the time for a complete computation of one cell in matrix
H, including all memory operations and the corresponding
computation of the values in the E and F arrays. Given a query
sequence of size Q and a database of size D, the GCUPS
(billion cell updates per second) value is calculated by:

|Q| × |D|

t× 109
(4)

where |Q| is the total number of symbols in the query
sequence, |D| is the total number of symbols in the database
and t is the runtime in seconds. In this paper, the runtime t
includes the device buffer creation, the cost of data transfer
between host and the FPGA and time of the score alignments.

In order to evaluate the FPGA performance rates, we
considered different implementations according to the degree
of data parallelism and memory hierarchy exploitation. We
detail below the main differences:

• the scalar version is the baseline code without opti-
mizations.

• SIMD versions exploit data level parallelism by en-
abling vectorization at the expense of a moderate
increase in resource usage. Vectorial nomenclature
indicates SIMD width; i.e int4 means small vectors of
4-elements, while int8 and int16 use 8 and 16 short
integer packages, respectively.

• Regarding memory exploitation, the constant version
refers to the use of read-only constant memory in
which query sequences (constant × 1) or both query
sequences and score profiles (constant × 2) are allo-
cated to it.

Table II shows FPGA resource utilization and the perfor-
mance obtained for the different kernel versions considered.
Without using vectorization (denoted as scalar), our imple-
mentation performs poorly. The exploitation of data level paral-
lelism by enabling vectorization allows significant performance
improvements. The highest GCUPS are obtained by the int16
version, which achieves a 11.5× speedup with a negligible
resource usage increment.

Because exploiting the device memory hierarchy is crucial
to achieve good performance, the impact of using constant
memory is evaluated. Copying query sequences to constant
memory (int16 + constant × 1) slightly improves performance
with a minor reduction in resource usage. However, this
enhancement is not significant in the int16 + constant ×
2 version, for which performance is considerably degraded.
int16 + constant × 1 can take advantage of this feature since
constant memory is optimized for high cache hit performance.
In the opposite way, int16 + constant × 2 does not benefit
as score profiles exhibit poor data locality, principally due
to their huge sizes. Because of the global memory accesses
incorporated and extra hardware to improve long memory
latencies, better performance can be obtained if score profile
data is transferred directly to this memory.

Fig. 3. Performance of the different OpenCL kernel implementations with
queries of varying length.

We also evaluate the impact of query length, and Figure 3
illustrates the performance of the different kernel implemen-
tations with varying query length. As can be seen, the scalar
kernel hardly improves performance. The vectorized kernels
benefit from larger workloads, except for int16 + constant ×
2, where constant memory usage for score profiles practically
cancels out any performance gain from vectorization. However,
the int16 + constant × 1 version outperforms all other kernel
implementations, reaching up to 37.1 GCUPS.

VI. CONCLUSIONS

The SW algorithm is one of the most popular algorithms
in sequence alignment because it performs an exact local
alignment. However, due to its computational complexity, in
practice several parallel implementations are used to reduce
the response time. In addition, with the emergence of hetero-
geneous computing and interest in the exploration not only of
computationally scalable solutions but also energy efficiency,
the chance arises of considering new parallel programming
paradigms and evaluating the behavior of new devices that
meet these requirements.

Among the main contributions of this research we can
highlight:

• Data level parallelism is crucial to achieve success-
ful performance rates at the expense of a moderate
increase in resource usage.

• The exploitation of OpenCL memory hierarchy, such
as the private memory offers considerable benefits,
although constant memory usage hardly improves the
performance.

• Our most successful implementation reaches up to 39
GCUPS, which is significantly higher than previous
implementation [17].

In this heterogeneous computing era, not only performance
matters but also energy efficiency. We would like to emphasize

212212



TABLE II. PERFORMANCE AND RESOURCE USAGE COMPARISON FOR DIFFERENT OPENCL KERNEL IMPLEMENTATIONS.

Version Performance (GCUPS)
Resource Usage

ALMs Regs RAM DSPs

scalar 3.41 29% 17% 29% 1%

int4 18 39% 19% 34% 1%

int8 23.66 54% 25% 43% 1%

int16 38.9 81% 36% 80% 1%

int16 + constant × 1 39.2 80% 35% 80% 1%

int16 + constant × 2 3.53 78% 25% 77% 1%

that our SW implementation on an FPGA is not only competi-
tive in terms of performance, but it is also more power-efficient
(GCUPS/Watt) than other well-known implementations such as
SWIPE [3], CUDASW++ [6] or SWAPHI [8] considering the
Thermal Design Power of the target devices.

In view of the results obtained, we plan to analyse the
scalability of the SW algorithm using a hybrid system based
on a multicore + FPGA, multi-FPGAs and the exploitation of
the most power-efficient trade-off.

ACKNOWLEDGMENT

Enzo Rucci holds a PhD CONICET Fellowship under
Argentinian Government and this work has been partially
supported by Spanish goverment through research contract TIN
2012-32180 and CAPAP-H5 network (TIN2014-53522).

REFERENCES

[1] S. F. Altschul, T. L. Madden, A. A. Schffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psiblast: a new
generation of protein database search programs,” NUCLEIC ACIDS

RESEARCH, vol. 25, no. 17, pp. 3389–3402, 1997.

[2] W. R. Pearson and D. J. Lipman, “Improved tools for biological se-
quence comparison.” Proceedings of the National Academy of Sciences

of the United States of America, vol. 85, no. 8, pp. 2444–2448, Apr.
1988.

[3] T. Rognes, “Faster Smith-Waterman database searches with inter-
sequence SIMD parallelization,” BMC Bioinformatics, vol. 12:221,
2011.

[4] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S. H. Bae, H. Li,
B. Zhang, T. Wu, Y. Ruan, S. Ekanayake, A. Hughes, and G. Fox,
“Hybrid cloud and cluster computing paradigms for life science appli-
cations.” BMC Bioinformatics, vol. 11 (Suppl12), 2010.

[5] M. Farrar, “Striped Smith-Waterman speeds database searches six time
over other SIMD implementations,” Bioinformatics, vol. 23 (2), pp.
156–161, 2007.

[6] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled graph-
ics processing units,” BMC Research Notes, vol. 2:73, 2009.

[7] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” vol. 14:117, 2013.

[8] Y. Liu and B. Schmidt, “Swaphi: Smith-waterman protein database
search on xeon phi coprocessors,” in 25th IEEE International Con-

ference on Application-specific Systems, Architectures and Processors

(ASAP 2014), 2014.

[9] Y. Liu, T.-T. Tran, L. Felix, and B. Schmidt, “SWAPHI-LS: Smith-
waterman Algorithm on Xeon Phi Coprocessors for Long DNA Se-
quences,” in Proceedings of IEEE International Conference on Cluster

Computing (CLUSTER 2014), September 2014.

[10] E. Rucci, G. Botella, C. Garcia, A. D. Giusti, M. Naiouf, and M. Prieto-
Matias, “Smith-Waterman Algorithm on Heterogeneous Systems: A
Case Study,” in Proceedings of the IEEE Cluster 2014, 2014.

[11] E. Rucci, C. Garcia, G. Botella, A. D. Giusti, M. Naiouf, and M. Prieto-
Matias, “An Energy-aware Performance Analysis of SWIMM: Smith-
Waterman Implementation on Intel’s Multicore and Manycore Archi-
tectures,” in Concurrency and Computation: Practice and Experience.
Wiley, 2015.

[12] T. I. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BMC Bioinformatics, vol. 8:I85, 2007.

[13] S. Dydel and P. Bala, “Large scale protein sequence alignment
using fpga reprogrammable logic devices,” in Field Programmable

Logic and Application, ser. Lecture Notes in Computer Science,
J. Becker, M. Platzner, and S. Vernalde, Eds. Springer Berlin
Heidelberg, 2004, vol. 3203, pp. 23–32. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30117-2 5

[14] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-
placement c-slow retiming for the xilinx virtex fpga,” in Proceedings

of the 2003 ACM/SIGDA Eleventh International Symposium on

Field Programmable Gate Arrays, ser. FPGA ’03. New York,
NY, USA: ACM, 2003, pp. 185–194. [Online]. Available: http:
//doi.acm.org/10.1145/611817.611845

[15] Y. Yamaguchi, H. Tsoi, and W. Luk, “Fpga-based smith-waterman
algorithm: Analysis and novel design,” in Reconfigurable Computing:

Architectures, Tools and Applications, ser. Lecture Notes in Computer
Science, A. Koch, R. Krishnamurthy, J. McAllister, R. Woods,
and T. El-Ghazawi, Eds. Springer Berlin Heidelberg, 2011, vol.
6578, pp. 181–192. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-19475-7 20

[16] M. Isa, K. Benkrid, T. Clayton, C. Ling, and A. Erdogan, “An fpga-
based parameterised and scalable optimal solutions for pairwise bio-
logical sequence analysis,” in Adaptive Hardware and Systems (AHS),

2011 NASA/ESA Conference on, June 2011, pp. 344–351.

[17] S. O. Settle, “High-performance dynamic programming on fpgas with
opencl,” 2014.

[18] O. Gotoh, “An improved algorithm for matching biological sequences,”
in Journal of Molecular Biology, vol. 162, 1981, pp. 705–708.

[19] A. Coorporation, “Altera SDK for OpenCL Programming Guide, Ver-
sion 13.0sp1,” 2012.

[20] K. Group, “The OpenCL Specification. version 2.0,” 2014. [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

213213


