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Abstract. Technological advances nowadays have made it possible for
processes to handle large volumes of historic information whose man-
ual processing would be a complex task. Data mining, one of the most
significant stages in the knowledge discovery and data mining (KDD)
process, has a set of techniques capable of modeling and summarizing
these historical data, making it easier to understand them and helping
the decision making process in future situations. This article presents a
new data mining adaptive technique called lvqPSO that can build, from
the available information, a reduced set of simple classification rules from
which the most significant relations between the features recorded can
be derived. These rules operate both on numeric and nominal attributes,
and they are built by combining a variation of a population metaheuristic
and a competitive neural network. The method proposed was compared
with several methods proposed by other authors and measured over 15
databases, and satisfactory results were obtained.

Keywords: Classification rules · Data mining · Adaptive strategies ·
Particle swarm optimization · Learning vector quantization

1 Introduction

Data mining is a research field that in recent years has gained attention from vari-
ous sectors. Government employees, business people and academics alike, for very
different reasons, have contributed to the development of various techniques that
can summarize the information that is available. This is one of the most impor-
tant stages in the knowledge discovery and data mining process, and it is charac-
terized for producing useful and novel information without any prior hypotheses.
It encompasses a set of techniques capable of modeling available information and,
even though there are different types of models, decision makers usually choose
those that are self-explanatory. For this reason, rules, i.e., statements of the IF
condition1 THEN condition2 type, are preferred when characterizing that huge
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volume of historical data that were automatically saved. In particular, we were
interested in obtaining classification rules, i.e., rules whose consequence is formed
by a single condition with the same attribute being involved: the class. However,
most of the existing methods produce sets of rules that are so large and complex
that, despite having the IF-THEN structure, rules become almost unreadable.
For this reason, a new method to obtain classification rules is proposed in this
article, with two essential features: the cardinality of the set of rules obtained
is low, and the antecedent of the rules that are generated is reduced. To this
end, the method proposed combines a competitive neural network with an opti-
mization technique. The former is responsible for the supervised grouping of the
examples with the purpose of identifying the most relevant attributes for build-
ing the rule. Then, by means of an optimization technique, the search process is
guided towards the appropriate set of rules.

This paper is organized as follows: Section 2 lists some related articles,
Sections 3 and 4 briefly describe the neural network and metaheuristic used,
respectively, Section 5 details the method proposed, Section 6 presents the results
obtained, and Section 7 presents a summary of the conclusions.

2 Related Work

The literature describes several methods for building classification rules that
can operate with numerical and nominal attributes. The most popular one is
the method known as C4.5, defined by Quinlan in [16], which can be used to
generate a pruned classification tree whose branches allow obtaining the desired
set of rules.

It should be noted that the lvqPSO method proposed in this article, unlike
the C4.5 method, generates a list of classification rules. That is, when using the
rules to classify new examples, they are not analyzed separately but rather in
their order of appearance. Therefore, the rules are inspected one by one until
the one that is applicable to the case at hand is found. This is related to how
the set of rules was built, and has been used in other methods, such as PART,
defined Witten in [2]; PSO/ACO, defined by Holden in [3]; and cAnt-MinerPB,
proposed by Medland in [14].

In the case of PART, a pruned partial tree is built to determine each rule,
following the ideas proposed by Quinlan in C4.5. The difference lies in that
the tree is not built in full, but rather an error quota is applied to stop tree
generation and select the best brach obtained so far. On the other hand, the
PSO/ACO and cAnt-MinerPB method share with lvqPSO the idea of using a
population-based metaheuristic to search for the best rules.

In particular, lvqPSO presents an approach that is based on Particle Swarm
Optimization (PSO). This technique has already been used in previous works
[1,5,8,19]. Unquestionably, one of the main issues when operating with nomi-
nal attributes is the impossibility of adequately covering all areas of the search
space with the examples that are available. This results in a poor start for the
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population and a premature convergence to a local optimum. As a way to solve
this problem, and at the same time reducing rule generation time, the initial
state is obtained from an LVQ (Learning Vector Quantization) competitive neu-
ral network.

The literature describes methods that optimize a competitive neural network
with PSO and significantly reduce the calculation time for the training phase
[15], or methods that use PSO to determine the optimal number of competitive
neurons to be used in the network, such as [4]. Unlike these papers, our pro-
posal is using PSO to obtain the set of rules, and an LVQ network to avoid the
premature convergence of the population.

3 Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) is a supervised classification algorithm that
is based on centroids or prototypes [9]. It can be interpreted as a competitive
neural network formed by three layers. The first layer is just an input layer. The
second layer is where competence takes place. The output layer is responsible
for the classification process. Each neuron in the competitive layer is associated
to a number vector whose dimension is the same as that of the input examples,
and a label that indicates the class that it is going to represent. Once the adap-
tive process finishes, these vectors will contain the information related to the
classification centroids or prototypes. There are several versions of the training
algorithm. The one used in this article is described below.

When the algorithm is started, the number K of centroids to be used must
be indicated. This allows defining the architecture for the network, since the
number of input entries and output results are given by the problem.

Centroids are initialized taking K random examples. Examples are then
entered one by one, and centroid position is then adapted. To do so, the centroid
that is closest to the example being analyzed is selected using a preset distance
measurement. Since this is a supervised process, it is possible to determine if the
example and the centroid belong or not to the same class. If the centroid and
the example do belong to the same class, the centroid is “moved closer” to the
example in order to strengthen representation. If, on the contrary, they belong
to different classes, the centroid is “moved away”. These movements are done
by means of a factor or adaptation speed that allows weighing the distance for
the move.

This process is repeated until modifications are below a preset threshold, or
until the examples are identified with the centroids themselves in two consecutive
iterations, whichever happens first.

For the implementation used in this article, the second nearest centroid is
also analyzed and, should it belong to a different class than that of the example,
and should it be at a distance that is less than 1.2 times the distance to the first
centroid, the “moving away” step is applied.

Several variations of LVQ are described in [10].
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4 Obtaining Classification Rules with PSO

Particle Swarm optimization or PSO is a population-based metaheuristic pro-
posed by Kennedy and Eberhart [6] where each individual in the population,
called particle, represents a possible solution to the problem and adapts by fol-
lowing three factors: its knowledge of the environment (its fitness value), its
historical knowledge or previous experiences (its memory), and the historical
knowledge or previous experiences of the individuals in its neighborhood (its
social knowledge).

PSO was originally defined to work on continuous spaces, so a few consider-
ations should be taken into account when working on discrete spaces. For this
reason, Kennedy and Eberhart defined in [7] a new binary version of the PSO
method. On of the key problems of this last method is its difficulty to change
from 0 to 1 and from 1 to 0 once it has stabilized. This has resulted in dif-
ferent versions of binary PSO that seek to improve its exploratory capacity. In
particular, the variation defined by Lanzarini et al. [13] will be used in this
article.

Using PSO to generate classification rules that can operate on nominal and
numerical attributes requires a combination of the methods mentioned above,
since the attributes that will be part of the antecedent (discrete) have to be
selected and the value or range of values they can take (continuous) has to be
determined.

Since this is a population-based technique, the required information has to
be analyzed for each individual in the population. A decision has to be made
between representing a single rule or the entire set for each individual, and the
representation scheme has to be selected for each rule. Given the objectives
proposed for this work, the Iterative Rule Learning (IRL) [18] approach was
followed, where each individual represents a single rule and the solution to the
problem is built from the best individuals obtained after a sequence of runs.
Using this approach implies that the population-based technique will be applied
iteratively until achieving the desired coverage and obtaining a single rule in
each iteration: the best individual in the population. Additionally, a fixed-length
representation was chosen, where only the antecedent of the rule will be coded
and, given the approach adopted, an iterative process will be carried out to
associate all individuals in the population to a preset class, which does not
require consequent codification. The code used for each particle is described in
detail in [11].

The efficacy of population-based optimization techniques is closely related to
the size of the population. For this reason, the method proposed here uses the
variable population strategy defined in [12]. Thus, a minimum-size population
can be used to initiate the process and then adjust the number of particles during
the adaptive process.

The fitness value for each particle is calculated as follows:

Fitness = α ∗ balance ∗ support ∗ confidence − β ∗ lengthAntecedent (1)
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where

– support: it is the support value for the rule. That is, the quotient between
the number of examples that fulfill the rule and the total number of examples
being analyzed.

– confidence: it is the confidence value for the rule. That is, the quotient of
the number of examples that satisfy the rule and the number of those that
satisfy the antecedent.

– lengthAntecedent: it is the quotient between the number of conditions used
in the antecedent and the total number of attributes. It should be noted that
each attribute can only be used once within the rule antecedent.

– α, β: these are two constants that represent the significance assigned to each
term.

– balance: it takes values between (0,1], and it is used to compensate the effect
of the imbalance between classes when calculating the support value. It is
applied only when working with classes that have a number of examples
that is above the mean. Let C1, C2, ..., Ci, ..., CN be the classes into which
the examples are divided. N is the total number of classes. Let Ei be the
number of examples in the nth class. Let T be the total number of examples
being used. That is,

T =
N∑

i=1

Ei (2)

Let j be the class to which the rule corresponding to the phenotype of the
particle belongs. Let Si be the number of examples in class Ci covered by
the rule. Note that Sj corresponds to the support of the rule and

N∑

i=1,i �=j

Si (3)

is the total number of examples incorrectly covered by that rule. Then, the
value of this factor is calculated as follows

balance =
N∑

i=1,i �=j

Ei − Si

T − Ej
(4)

That is, balance will have a value of 1 if the rule is perfect, i.e., its confidence
is 1. On the other hand, Balance will be 0 if the rule covers all of the examples
being used regardless of their class.

5 Proposed Method for Obtaining Rules: lvqPSO

Rules are obtained through an iterative process that analyzes non-covered exam-
ples in each class, starting with the largest classes. Each time a rule is obtained,
the examples that are correctly covered by the rule are removed from the input
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data set. The process continues until all examples are covered or until the number
of non-covered examples in each class is below the corresponding established min-
imum support or until a maximum number of tries has been done to obtain a
rule, whichever happens first. It should be noted that, since the examples are
removed from the input data set as they are covered by the rules, the rules oper-
ate as a classification list. That is, in order to classify a new example, the rules
must be applied in the order in which they were obtained, and the example will
be classified with the class that corresponds to the consequent of the first rule
whose antecedent is verified for the example at hand.

Before starting the iterative process for obtaining the rules, the method starts
with the supervised training of an LVQ neural network using the entire set of
examples. The purpose of this training is identifying the most promising areas
of the search space.

Since neural networks only operate with numerical data, nominal attributes
are represented by means of dummy code that uses both binary digits and the
different options that may be present in such nominal attribute. Also, before
starting the training process, each dimension that corresponds to a numerical
attribute is linearly scaled in [0,1]. The similarity measure used is the Euclidean
distance. Once training is finished, each centroid will contain approximately the
average of the examples it represents.

To obtain each of the rules, the class to which the consequent belongs is
first determined. Seeking high-support rules, the method proposed will start
by analyzing those classes with higher numbers of non-covered examples. The
minimum support that any given rule has to meet is proportional to the number
of non-covered examples in the class upon rule generation. That is, the minimum
required support for each class decreases as iterations are run, as the examples
in the corresponding class are gradually covered. Thus, it is to be expected that
the first rules will have a greater support than the final ones.

After selecting the class, the consequent for the rule is determined. To obtain
the antecedent, a swarm population will be optimized using the process described
in Section 4. This swarm will be initialized with the information from the cen-
troids. In Algorithm 1, the pseudo-code of the method proposed is shown.

6 Results Obtained

In this section, the performance obtained with the method proposed is compared
against that of the cAnt-MinerPB, J48 (implementation of C4.5) and PART
methods mentioned in Section 2 for generating classification rules for a known
set of 15 databases of the UCI repository [17].

Thirty separate runs of ten-fold cross-validation were performed for each
method, and an LVQ network with 9 neurons was used. In the case of the PART
and C4.5 methods, a confidence factor of 0.3 and 0.25, respectively, was used for
pruning the tree. The cAnt-MinerPB method was used with a colony of 9 ants.
For the rest of the parameters, their default values were used.

Tables 1, 2 and 3 summarize the results obtained with each method for each
of the databases, calculating mean and deviation. In each case, not only the
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Algorithm 1. Pseudocode of the proposed method
Train LVQ network using all training examples.
Calculate the minimum support for each class.
while (termination criterion is not reached) do

Choose the class with the highest number of non-covered examples.
Build a reduced population of individuals from centroids.
Evolve the population using variable population PSO.
Obtain the best rule for the population.
if (the rule meets support and confidence requirements) then

Add the rule to the set of rules.
Consider the examples classified by this rule as correctly covered.
Recalculate the minimum support for this class.

end if
end while

coverage accuracy of the set of rules was considered (Table 1), but also the
clarity of the model obtained, which is reflected in the average number of rules
obtained (Table 2) and the average number of terms used to form the antecedent
(Table 3). In each case, a two-tailed mean difference test with a significance level
of 0.05 was carried out, where the null hypothesis establishes that the means are
equal. Based on the results obtained, when the difference is signficant according
to the specified level, the best option was shaded and highlighted in bold in the
table and when the difference is not significant equivalent solutions were only
highlighted in bold.

As shown in Table 2, in most of the cases, the number of rules used by
the method proposed is lower than with the other methods. This is due to
the emphasis placed on the simplification of the model. The purpose is not
only solving a classification problem, but also building a specific help tool for
decision making. The expectation is generating a model that can identify the
most relevant attributes and exposes how they are related among themselves
when classifying available information.

In Table 1, in 5 of the cases, the accuracy achieved with lvqPSO is equivalent
to or better than that obtained with other methods. In the case of the “Breast
cancer”, “Credit-a”, “Heart disease” and “Zoo” databases, accuracy is better or
approximately the same, and the number of rules is still lower. In the case of the
“Iris” database, the number of rules is similar to that used by the deterministic
methods C4.5 and PART, and lower than with cAnt-MinerPB.

However, when the problem to solve requires a large number of rules, the
method proposed is less accurate. This happens in other databases that were
tested. If these cases are analyzed in average, it can be stated that for a 2%
improvement, a five-fold increase in rule set cardinality was required. For exam-
ple, for the “Diabetes” database, the best accuracy is obtained with the cAnt-
MinerPB method, with 26 rules, followed by C4.5, with 20 rules. There is a 2%
difference in accuracy when compared to lvqPSO, but the latter uses less than
4 rules to solve the problem, i.e., only one sixth of the number of rules used by
cAnt-MinerPB. The same happens with the “Breast-w” database, with lvqPSO
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Table 1. Accuracy of the rule set obtained when applying the lvqPSO, PART, cAnt-
MinerPB and J48 methods

Database lvqPSO cAnt-MinerPB C4.5 (J48) PART

Balance scale 0, 7471 ± 0, 0231 0, 7696 ± 0, 0105 0, 7732 ± 0, 0073 0, 8219 ± 0, 0129

Breast cancer 0,7203 ± 0, 0121 0, 7088 ± 0, 0208 0, 5641 ± 0, 0466 0, 6631 ± 0, 0207

Breast-w 0, 9490 ± 0, 0079 0, 9485 ± 0, 0049 0, 9549 ± 0,0050 0, 9566 ± 0, 0065

Credit-a 0,8569 ± 0, 0055 0, 8493 ± 0, 0087 0, 8515 ± 0, 0047 0, 7454 ± 0, 0444

Credit-g 0, 7060 ± 0, 0128 0,7374 ± 0,0091 0, 7095 ± 0, 0072 0, 6998 ± 0, 0111

Diabetes 0, 7242 ± 0, 0152 0,7409 ± 0,0050 0, 7438 ± 0,0116 0, 7377 ± 0, 0156

Heart disease 0,7650 ± 0, 0151 0,7598 ± 0,0164 0, 7433 ± 0, 0169 0, 7647 ± 0, 0264

Heart statlog 0, 7626 ± 0, 0180 0, 7648 ± 0, 0141 0, 7811 ± 0,0083 0, 7667 ± 0, 0150

Iris 0,9427 ± 0, 0218 0, 9380 ± 0, 0122 0, 9453 ± 0,0103 0, 9440 ± 0, 0110

Kr-vs-kp 0, 9365 ± 0, 0037 0, 9812 ± 0, 0010 0, 9929 ± 0,0007 0, 9917 ± 0, 0013

Mushroom 0, 9676 ± 0, 0046 0,9969 ± 0,0001 0, 9843 ± 0, 0252 0, 9962 ± 0, 0106

Promoters 0, 6977 ± 0, 0261 0,7917 ± 0,0250 0, 7082 ± 0, 0389 0, 6782 ± 0, 0600

Soybean 0, 8735 ± 0, 0156 0,9066 ± 0,0056 0, 9082 ± 0,0053 0, 8936 ± 0, 0090

Wine 0, 8727 ± 0, 0146 0,9192 ± 0,0124 0, 8800 ± 0, 0144 0, 8867 ± 0, 0091

Zoo 0,9417 ± 0, 0204 0,9408 ± 0,0153 0, 3290 ± 0, 0277 0, 3190 ± 0, 0307

Table 2. Number of rules obtained when applying the lvqPSO, PART, cAnt-MinerPB
and J48 methods

Database lvqPSO cAnt-MinerPB C4.5 (J48) PART

Balance scale 9, 6700 ± 0,5945 14, 6900 ± 0, 4483 41, 3300 ± 1, 3300 38, 5100 ± 1, 2215

Breast cancer 5, 8600 ± 0,4742 25, 4100 ± 1, 0744 11, 4500 ± 1, 1128 18, 8900 ± 1, 4098

Breast-w 2, 8900 ± 0,3281 12, 9000 ± 0, 5477 10, 8500 ± 0, 7091 10, 3500 ± 0, 4950

Credit-a 3, 4100 ± 0,1595 25, 0000 ± 0, 8654 18, 0400 ± 1, 8404 33, 3200 ± 1, 3028

Credit-g 8, 3600 ± 0,8113 41, 4100 ± 2, 0776 85, 4500 ± 3, 4574 70, 5700 ± 1, 5868

Diabetes 3, 7900 ± 0,3178 26, 6400 ± 0, 8996 22, 1900 ± 2, 7517 7, 5200 ± 0, 4264

Heart disease 4, 9200 ± 0,2821 16, 0800 ± 0, 7406 23, 9000 ± 0, 9043 19, 6400 ± 0, 4248

Heart statlog 4, 6400 ± 0,3777 15, 1200 ± 0, 6663 18, 1900 ± 1, 2556 17, 8700 ± 0, 4191

Iris 3, 0600 ± 0,0843 8, 3500 ± 0, 3808 4, 6600 ± 0, 0966 3, 7800 ± 0, 2658

Kr-vs-kp 3, 6500 ± 0,3274 18, 0900 ± 0, 9049 29, 0700 ± 0, 6717 22, 1100 ± 0, 6385

Mushroom 3, 2300 ± 0,1059 22, 6900 ± 2, 0328 18, 6100 ± 0, 2378 11, 2400 ± 0, 2591

Promoters 7, 4250 ± 0,3775 11, 5300 ± 0, 6430 16, 7500 ± 0, 5874 7,2800 ± 0, 3765

Soybean 24,6857 ± 0,7151 62, 9700 ± 2, 1334 43, 5400 ± 0, 2366 31, 7300 ± 0, 4322

Wine 3, 7818 ± 0,0874 6, 6900 ± 0, 3900 7, 6600 ± 0, 4766 5, 6200 ± 0, 1317

Zoo 6, 9500 ± 0,0548 10, 9700 ± 0, 2214 8, 3500 ± 0, 0707 7, 6300 ± 0, 0483
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Table 3. Antecedent average length for each rule obtained when applying the lvqPSO,
PART, cAnt-MinerPB and J48 methods

Database lvqPSO cAnt-MinerPB C4.5 (J48) PART

Balance scale 1, 8035 ± 0, 0910 1, 5900 ± 0,0527 6, 3494 ± 0, 0668 3, 0807 ± 0, 0694

Breast cancer 1,7373 ± 0, 0497 1, 8464 ± 0, 0578 2, 1210 ± 0, 0939 2, 0048 ± 0, 0570

Breast-w 3, 3173 ± 0, 3546 1, 1622 ± 0,0329 3, 8899 ± 0, 1581 2, 1249 ± 0, 0800

Credit-a 1, 4049 ± 0, 1186 1, 2247 ± 0,0504 4, 8299 ± 0, 2014 2, 4844 ± 0, 0746

Credit-g 2, 0349 ± 0, 1276 1, 9258 ± 0,1227 5, 6443 ± 0, 1209 2, 9695 ± 0, 0890

Diabetes 2, 4647 ± 0, 2027 1, 1627 ± 0,0238 5, 7461 ± 0, 3253 1, 9255 ± 0, 1043

Heart disease 1, 8766 ± 0, 1039 1, 7455 ± 0,0682 3, 9391 ± 0, 0952 2, 5415 ± 0, 0692

Heart statlog 1, 8491 ± 0, 0715 1, 2927 ± 0,0346 4, 6700 ± 0, 1629 2, 8783 ± 0, 1099

Iris 1, 2083 ± 0, 0518 1, 1793 ± 0, 0329 2, 6118 ± 0, 0540 0,9949 ± 0, 0135

Kr-vs-kp 2, 4750 ± 0, 1236 1, 4986 ± 0,1125 7, 7738 ± 0, 0318 3, 1275 ± 0, 0689

Mushroom 1, 6400 ± 0, 0733 1, 0899 ± 0,0294 2, 6302 ± 0, 0384 1, 2609 ± 0, 0153

Promoters 1, 1131 ± 0, 0302 1, 0409 ± 0, 0527 2, 2847 ± 0, 0364 0,9976 ± 0, 0416

Soybean 3, 1299 ± 0, 2543 3, 3858 ± 0, 0537 6, 0213 ± 0, 0349 2,7127 ± 0, 0709

Wine 2, 7811 ± 0, 2248 1, 0626 ± 0,0340 3, 1027 ± 0, 1232 1, 5529 ± 0, 0759

Zoo 1, 6675 ± 0, 0462 1, 6888 ± 0, 0601 4, 0057 ± 0, 0242 1,4693 ± 0, 0145

being less accurate than C4.5 and PART by approximately 1% but using only
one third of the number of rules with less queries in each antecedent.

7 Conclusions

A novel method for obtaining classification rules has been presented. This
method is based on PSO and can operate with numerical and nominal attributes.

An LVQ neural network was used to adequately initialize the population of
rules. The centroids obtained when grouping available data allow identifying
the relevance of each attribute for the examples. In any case, this metric is not
enough to select the attributes that will form the rule, and it is at this point
where PSO takes control to carry out the final selection.

A representation for the rules was used, combining a binary representation
that allows selecting the attributes that are used in the rule with a continuous
representation used only to determine the boundaries of the numerical attributes
that are part of the antecedent. A variation of binary PSO was used whose pop-
ulation is adequately initialized with the information from the centroids in the
previously trained LVQ network and which has the ability of adjusting popula-
tion size.

The results obtained when applying the method proposed on a set of test
databases show that the lvqPSO method obtains a simpler model. In average, it
uses approximately 40% of the number of rules generated by the other methods,
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with antecedents formed by just a few conditions and an acceptable accuracy
given the simplicity of the model obtained.

Although not included in this article, the measurements performed using
the method proposed but using fixed-size population PSO resulted in a less
accurate set of rules. This is because the architecture of the LVQ network must
be indicated beforehand, which affects grouping quality.
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