
Smith-Waterman Algorithm on Heterogeneous

Systems: A Case Study

Enzo Rucci

and Armando De Giusti

and Marcelo Naiouf

Instituto de Investigacion en Informatica LIDI (III-LIDI)

Universidad Nacional de La Plata

La Plata (1900), Buenos Aires, Argentina

Email: {erucci,degiusti,mnaiouf}@lidi.info.unlp.edu.ar

Guillermo Botella

and Carlos Garcı́a

and Manuel Prieto-Matias

Dept. Computer Architecture,

Complutense University of Madrid, Madrid 28040, Spain

Email: {gbotella,garsanca,mpmatias}@ucm.es

Abstract—The well-known Smith-Waterman (SW) algorithm
is a high-sensitivity method for local alignments. However, SW
is expensive in terms of both execution time and memory
usage, which makes it impractical in many applications. Some
heuristics are possible but at the expense of losing sensitivity.
Fortunately, previous research have shown that new computing
platforms such as GPUs and FPGAs are able to accelerate
SW and achieve impressive speedups. In this paper we have
explored SW acceleration on a heterogeneous platform equipped
with an Intel Xeon Phi coprocessor. Our evaluation, using the
well-known Swiss-Prot database as a benchmark, has shown
that a hybrid CPU-Phi heterogeneous system is able to achieve
competitive performance (62.6 GCUPS), even with moderate low-
level optimisations.

Keywords—Bioinformatics, Smith-Waterman, HPC, Intel Xeon
Phi, heterogeneous computing.

I. INTRODUCTION

High throughput structural genomic and genome sequenc-
ing are delivering huge amounts of data from the structures
and sequences of thousand of proteins. To keep pace with these
new technologies and to be able to extract useful information
and insights from these massive data, new computational tools
have to be developed in the coming years, being essential the
acceleration of key primitives and fundamental algorithms.

In this paper, we have focused on the acceleration of the
classic Smith-Waterman (SW) algorithm without heuristics.
Almost all the applications of new sequencing technologies are
based on sequence alignment [1] and SW is still (or could be)
a critical and basic primitive in many of those applications.
In high-throughput sequencing, the SW algorithm itself, or
variations of it, are often used to align sequencing reads to
reference sequences. Unfortunately, identifying the optimal
alignment score using SW is computationally expensive (linear
space complexity and a quadratic time complexity) since
it performs an exhaustive search to find the optimal local
alignment between two sequences. However, it guarantees the
optimal alignment, which is essential in some applications.
Furthermore, SW has been also used as the basis for many
subsequent heuristic algorithms that were developed over the
last few years.

BLAST (Basic Local Alignment Search Tool) is a popular
example of such heuristic algorithms [2], [3] that increase

speed at the cost of reduced sensitivity. This algorithm keeps
the position of each k-length subsequence (k-mer) of a query
sequence in a hash table (k is usually 11 for a DNA sequence),
with the k-mer sequence being the key, and scans the reference
database sequences looking for k-mer identical matches, which
are the so-called seeds. Once those seeds have been identified,
BLAST performs seed extensions and joins (first without
gaps), and then it refines them using again the classic SW
algorithm. Over the years, BLAST has been significantly im-
proved adding new functionalities although keeping the same
seed-and-extend structure: some proposals have enhanced the
seeding process, while others have improved the seed extension
[1]. Overall, the point is that accelerating SW is still a priority
even though sequence alignment operations are also speeded
up using heuristic tools.

Fortunately, the alignment process exhibits inherent par-
allelism that can be exploited to mitigate the high cost of
SW. Two well-known tools that take advantage of such par-
allelism for SW sequence database searches are Swipe [4]
and CUDASW++ [5]. The former focuses on CPUs with
multimedia extensions such Intel’s SSE, whereas the latter
targets CUDA-enabled GPUs from NVIDIA. The latest version
of CUDASW++ (version 3.0) uses a hybrid implementation
that is able to take advantage of both GPUs and CPUs
simultaneously. More recently, Liu and Schmidt have presented
SWAPHI, a highly optimized hand-tuned SW implementation
for Intel Xeon Phi accelerators [6]. There are also other
proposals for SW acceleration on grid architectures [7],
cloud-based systems using MapReduce [8], an even FPGAs
implementations [9], [10], [11].

Our focus in this paper is on heterogeneous Intel Xeon
server equipped with an Intel Xeon Phi coprocessor. Unlike
previous research that have focused on extracting the most
of the Xeon Phi coprocessor using low-level optimizations
[6], we are interested on evaluating the potential of a mod-
erate optimized SW code that can be easily recompiled onto
different platforms with SIMD extensions. This way, we are
trading portability for performance, which could facilitate the
optimization on more elaborated sequencing tools that improve
SW with heuristics. Nevertheless, we are able to compete with
some of those previous tools taking advantage of both Xeon
and Xeon Phi processors simultaneously.

978-1-4799-5548-0/14/$31.00 ©2014 IEEE 323

Section II introduces the basic concepts of the Smith-
Waterman algorithm. Section III briefly introduces the Intel’s
Xeon-Phi architecture and in Section IV we describe our
implementation of the SW algorithm. In Section V we discuss
performance results and finally in Section VI we conclude with
some ideas for future research.

II. SMITH-WATERMAN ALGORITHM

Smith-Waterman (SW) is a well-known algorithm for per-
forming local sequence alignment that is able to return the
optimal local alignment between two sequences. It is based
on a dynamic programming approach and its high sensitivity
comes from exploring all the possible alignments between two
sequences.

In the following paragraphs we explain how the SW
algorithm find a similarity score between two sequences.

Given two sequences A = a1a2a3 . . . aM and B =
b1b2b3 . . . bN , an alignment matrix H of (N + 1)× (M + 1)
is built, in such a way that the residues that form sequence
A label its rows (starting with 1), and those from sequence
B label its columns (starting with 1). The following steps are
applied to calculate the values of H that yield the similarity
score between A and B:

1) Initialise the first row (row zero) and the first column
(column zero) of H with zero, as shown in Equa-
tion 1.

Hi,0 = H0,j = 0 for 0 ≤ i ≤ Mand 0 ≤ j ≤ N
(1)

2) Hi,j measures the maximum similarity between two
segments ending in ai and bj , respectively, ∀i ∈
[1, . . . ,M] and ∀j ∈ [1, . . . , N]. This score is com-
puted using Equation 2:

Hi,j = max

0

Hi−1,j−1 + V (ai, bj)

Ci,j

Fi,j

(2)

where,

a) V (ai, bj) is the substitution matrix. This is
a table that describes the probability of a
residue from sequence A at position i to
occur in sequence B at position j. There
are different options available depending on
the target problem. In most cases, V (ai, bj)
rewards with positive value when ai and bj
are identical, and punishes with a negative
value otherwise.

b) Ci,j is the score in column j considering a
gap, and is calculated with Equation 3.

Ci,j = max1≤k≤i {Hi−k,j − g(k)} (3)

c) Fi,j is the score in row i considering a gap,
and is calculated with Equation 4.

Fi,j = max1≤l≤i {Hi,j−l − g(l)} (4)

Fig. 1. Data dependences in the alignment matrix H.

d) g(x) is the penalization function for a gap of
length x, and is obtained with Equation 5, q
being the penalization applied for opening a
gap and r the penalization for prolonging it.

g(x) = q + rx (q ≥ 0; r ≥ 0) (5)

3) Obtain the maximum similarity score as indicated in
Equation 6.

G = max(0≤i≤N ;0≤j≤M) {Hi,j} (6)

4) Finally, a backtracking process finds the pair of
segments with maximum similarity: starting from the
element of matrix H where G was found, which
represents the tail of the highest-scoring alignment
between both sequences, until reaching a zero value
position (which represent the head of the local align-
ment).

It is importante to note that H values can not be computed
in any order due to the data dependences inherent to this
problem. To be able to calculate the value of any cell, all the
values of the previous cells at the same row and column have
to be computed first, as shown in Figure 1. These dependences
restrict the ways in that H can be computed.

III. INTEL’S XEON-PHI

The adoption of accelerators within the HPC community
continues to grow and it is expected that new designs from
Intel, NVIDIA and AMD will likely dominate most production
systems in the next few years.

The Intel Xeon Phi (Phi) is a many-core coprocessor with
the MIC (Many Integrated Cores) architecture that derived
from the defunct Larrabee project [12]. In its current genera-
tion, the Phi features up to 61 x86 pentium cores with extended
vector units (512-bit) and simultaneous multithreading (four
hardware threads per core). Each core integrates an L1 cache
(32 KB data + 32 KB instructions) and has an associated fully
coherent L2 cache (512 KB combined data and instructions).
As shown in Figure 2, a high-speed ring interconnect allows
data transfer between all the L2 caches of the Phi and the
memory subsystem. The Phi can support up to 8 memory
controllers, each one with two GDDR5 channels, and is
connected to the host server through a PCIe Gen2 bus.

From a software perspective, one of the strengths of
this platform is the support of existing parallel programming

324

Fig. 2. Xeon Phi architecture.

models used traditionally on HPC systems such as OpenMP
or MPI, which simplifies code development and improves
portability over other alternatives based on accelerator specific
programming languages.

Unlike GPUs, the Xeon Phi can be run as a completely
standalone computing system, which allows running applica-
tions using exclusively the resources of the coprocessor. This is
called the native mode. Building a Xeon Phi native application
usually involves minimal code modifications. In fact, many
HPC codes written for general purpose processor clusters can
run in this mode without modification, just recompiling them
for this platform using the mmic compiler flag. Nevertheless,
the key to Phi performance is the efficient use of the per
core vector units and the small cache. In other words, easy
portability does not automatically ensure high performance.

The native mode can be inefficient for applications with
frequent sequential parts or those with high I/O rates. In
those cases, it is better to employ the Phi as a coprocessor
device using the offload mode, which is the Phi’s primary
mode of operation. The programming model in this case is
similar to other accelerators such as CUDA-enabled GPUs.
The host CPU runs the sequential code of the application
and invokes kernel execution on the Phi. Figure 3 shows an
example code that illustrates the basic concepts. The offload
pragma annotates code regions that run as a kernel on the
Phi. With the additional in/out tags, programmers specify the
required data transfers between the host and the Phi memories.
Finally, the OpenMP omp parallel for pragma instructs the
compiler to distribute loop iterations across Phi threads (60
cores, 4 threads per core).

A programmer who is familiar with OpenMP will find
this model easier to learn than OpenCL or CUDA. This is
one of the advantages over GPU and FPGA accelerators that
Intel’s marketing claims. Nevertheless, the main aspects to be

void axpy (f l o a t ∗y , f l o a t ∗x , f l o a t a
i n t n)

{

pragma o f f l o a d t a r g e t (mic) \
i n (x , y : l e n g t h (n)) ou t (y : l e n g t h (n))

{
pragma omp p a r a l l e l f or
f or (i n t i =0; i<n ; i ++)

y [i] = a∗x [i] + y [i] ;
}

}

Fig. 3. Source code snippet that implements the axpy subroutine kernel on
Intel’s Xeon Phi

addressed in order to achieve high performance are still (1)
the efficient exploitation of the memory hierarchy, especially
when handling large datasets, and (2) how to structure the
computations to take advantage of the Phi vector units.

Ideally, programmers would only need to introduce some
directives to inform the compiler about data dependencies,
pointer disambiguation or data alignment, and introduce min-
imal code modifications to allow automatic vectorization.
However in practice, guided auto-vectorization is not able to
achieve the best performance and programmers often need to
concentrate on hand-tuned their codes using language intrin-
sics. Despite intrinsics may inhibit other loop-level optimisa-
tions that improve performance, highly optimised hand-tuned
codes usually outperform their guided counterparts. Indeed,
intrinsics are the only option for complex applications with
irregular access patterns or with data dependencies that can
be hidden using specific code transformations. Unfortunately,
the gains in performance are at the expense of losing cross-
platform portability. Most processors families, even from the
same vendor, have incompatible intrinsics since they support
different SIMD instruction sets. Therefore, programmers are
forced to develop multiple code branches that are usually
difficult to maintain.

IV. SW IMPLEMENTATION

In this section we describe our mapping of the SW algo-
rithm on both the Intel’s Xeon and Intel’s Xeon Phi platforms.
One of our goals is to to use the same baseline code for
both platforms. As mentioned above, compiler should take the
responsibility of optimizing the core of the computation and
vectorize it using AVX (Advanced Vector Extensions) 256-bit
extensions when targeting the Intel Xeon Processor or the MIC
512-bit extensions on the Xeon Phi.

Our target application performs SW sequence database
searches and consists of the following four major steps:

1) Loading stage: loading of the query and database
sequences.

2) Pre-processing stage: preprocessing of the reference
database.

3) SW stage: SW alignments.
4) Sorting stage: sorting by the alignment scores in

descending order.

The SW stage performs several sequence alignments in
parallel using both thread-level and simd-level parallelism.

325

It is based on the inter-task scheme proposed by previous
research [4]. Other authors have also explored fine-grained
vectorization schemes [13] that are able to exploit the simd
parallelism available within a single sequence alignment. How-
ever, the inter-task approach usually outperforms the intra-
task counterpart, especially when aligning short sequences.
Essentially, when aligning several pairs in parallel, we avoid
the data dependences that limit the performance of intra-task
approaches [4]. Nevertheless, special care should be taken to
exploit data locality as well as to avoid unbalanced execution.
For instance, alignment operations take different execution
time depending on the length of the sequences. A straight-
forward optimization consists in pre-processing the reference
database and sorting its sequences by length in advance. This
way, consecutive alignments operations take similar time [14].

Algorithm 1 shows the pseudo-code of our SW baseline
code. Thread level parallelism is exploited using the OpenMP
programming model. The main loop that iterates over chunks
of database sequences is distributed across cores with the #omp
parallel for pragma using a dynamic scheduling policy. Despite
sorting the reference database, the static scheduling does not
performance well as has been also highlighted in previous
research [6]. However, we have not observed any noticeable
improvement when using guided scheduling. Note that, at this
level, the code is essentially the same for both the Intel’s Xeon
and the Phi, with as mention above only requires the additional
#pragma offload directive and the tags that specify the data
transfers between the host and the device.

The code has also been annotated with directives that
inform the compiler which loops are independent and their
memory access pattern. As shown in the pseudo-code, one
of those directives is the new #pragma omp simd introduced
by OpenMP 4.0, which instructs the compiler to enforce
vectorization of the corresponding loops.

Since data locality is the other key element to achieve high
performance, especially on the Phi, blocking is also necessary
to reduce the number of cache misses [15]. Furthermore, data
structures has also been aligned to avoid the overhead of
misaligned memory accesses (64-byte aligned for the Phi and
32-byte aligned for the Xeon).

Our baseline code also implements other well-know op-
timizations of the SW algorithm that have been proposed
by previous research such as the Query Profile (QP) and
Sequence Profile (SP) optimizations [13], [5]. The former is
based on constructing an auxiliary two-dimensional|Q| × |E|
array, where Q is the query sequence and E is the alphabet, in
the pre-processing stage before performing the database search.
Each row of this matrix holds the scores of the corresponding
query residue against each possible residue in the alphabet.
Since each thread compares the same query residue with differ-
ent database residues, this optimization improves data locality.
It also increases memory requirements but this is negligible
since the size of the alphabet is usually quite small compared
to the size of the database. The sequence profile optimization
is based on constructing an auxiliary N × L sequence array,
where N is the length of the database sequences and L is the
number of vector lanes. Because each row of the sequence
profile forms a L-lane residue vector, all its values can be
gathered using a single vector load. Note that in this case,

Algorithm 1 SW(reference database, query sequences,
SUBMAT)

1: Q = read query sequences() ⊲ (1)
2: D = read reference database() ⊲ (1)
3:

4: vD = sort by length(D) ⊲ (2)
5:

6: #pragma offload target (mic)
7: in(Q,vD, SUBMAT) out(G)
8: {
9: G = SW core(Q, vD, SUBMAT) ⊲ (3)

10: }
11: scores = sort(G)⊲ in descending order ⊲ (4)
12:

13: function SW CORE(Q,vD, SUBMAT)
14: if query profile then
15: QP = get query profile(Q,SUBMAT)
16: end if
17:

18: #pragma omp parallel for
19: for t ≤ |Q| ∗ |vD| do
20: q = get query sequence(Q, t)
21: d = get database sequence(vD, t)
22: if sequence profile then
23: SP = get sequence profile(SUBMAT, d)
24: end if
25:

26: for i ≤ |q| do
27: #pragma omp simd
28: for j ≤ |d| do
29: if query profile then
30: V = get V (QP, qi, dj)
31: end if
32: if sequence profile then
33: V = get V (SP, qi, dj)
34: end if
35: Hi,j = value(Hi−1,j−1, V, Ci,j , Fi,j)
36: end for
37: end for
38: G = get score(H)⊲ save similarity scores
39: end for
40: return G
41: end function

there is one array per chunk of reference sequences and these
profiles cannot be constructed in the pre-processing stage.

Using the same baseline code for both processors has
allowed us the implementation of a simple heterogeneous
version that is able to take advantage of both the Intel Xeon and
the Xeon Phi coprocessor simultaneously. Similar approaches
have been investigated by previous research on heterogeneous
CPU-GPU platforms [5], [16], [17]. The key to outperform
the homogeneous implementations is to balance the runtimes
between the Xeon Core and the Phi. This is a relatively
easy task knowing in advance the relative performance of
both processors, which can be found empirically. Sorting
the reference database by length also simplifies it since it
guarantees that consecutive alignments take similar time. With
these assumptions, we can estimate statically the number of
sequences assigned to the Phi to balance the runtime. As shown

326

in Figure 2, this distribution can be implemented introducing
an additional splitting stage after sorting the database.

Algorithm 2 Heterogeneous SW(reference database,
query sequences, SUBMAT)

1: Q = read query sequences() ⊲ (1)
2: D = read reference database() ⊲ (1)
3:

4: [vDCPU , vDMIC] = sort and split(D) ⊲ (2)
5:

6: #pragma offload target (mic)
7: in(Q,vDMIC , SUBMAT) out(GMIC) signal(sem)
8: {
9: GMIC = SW core(Q, vDMIC , SUBMAT) ⊲ (3)

10: }
11:

12: GCPU = SW core(Q, vDCPU , SUBMAT) ⊲ (3)
13:

14: #pragma offload target(mic) wait(sem)
15: scores = sort(GMIC , GCPU) ⊲ (4)

V. EXPERIMENTAL RESULTS

A. Experimental platform and performance evaluation

All tests have been performed on a Xeon server running
CentOS equipped with:

• Two Intel Xeon CPU E5-2670 8-core 2.60GHz CPUs
with hyper-threading enabled.

• 32 GB main memory.

• A single 60-core Xeon Phi coprocessor card (4 hard-
ware threads per core, 240 hardware threads overall)
with 5GB dedicated memory.

We have used the Intel’s ICC compiler (version 14.0.2.144)
with the -O3 optimization level by default. Auto-vectorization
has been enabled with the -vec compiler flag.

The experiments used for assessing performance are sim-
ilar to previous work [4], [14], [18]. We have evaluated
our application by searching 20 query protein sequences
against the Swiss-Prot database (release 2013 11)1. This
database comprises 192480382 amino acids in 541561 se-
quences with the longest sequence containing 35213 amino
acids. The queries has also been extracted from the aforemen-
tioned database (accession numbers: P02232, P05013, P14942,
P07327, P01008, P03435, P42357, P21177, Q38941, P27895,
P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519,
Q7TMA5, P33450, and Q9UKN1), ranging in length from 144
to 5478. BLOSUM62 has been used as scoring matrix, and gap
insertion and extension penalties have been set to 10 and 2,
respectively. Performance results are in GCUPS .

B. Performance results on the Intel Xeon

Figure 4 shows the performance on the Intel Xeon for the
different approaches under evaluation with increasing number
of OpenMP threads. Without enabling vectorization (denoted

1The Swiss-Prot database is available online at http://web.expasy.org/docs/
swiss-prot guideline.html

Fig. 4. Scalability on the Intel Xeon.

Fig. 5. Performance on the Intel Xeon with queries of varying length.

as no-vec in the figure), our implementation hardly improves
performance. Vectorization does not only improve performance
significantly, but it also allows our codes to scale with the
number of threads. The hand-tuned versions based on AVX
intrinsics (denoted as intrinsic) outperform the guided vector-
ization counterparts (denoted as simd). Overall, the Sequence
profile (denoted as SP) performs better than the Query profile
(denoted as QP). SP achieves almost linear speedup, reaching
30.4 GCUPS with 32 OpenMP threads.

Figure 5 illustrates the performance with queries of varying
length using 32 OpenMP threads. Most implementations have
a rather flat performance curve. This is the expected behavior
since our implementation exploits inter-task parallelism. How-
ever, we observe a gradual loss in performance for shorter
queries, which is more noticeable for the hand-tuned SP
version (performance drops from 32 GCUPS to just 19.3
GCUPS). Indeed, for query lengths shorter than 375 residues,
QP outperforms SP. A similar behavior has been observed in
previous research for the Xeon Phi [6]. This can be explained
by the additional overhead incurred by the construction of
the SP profile. As mention above, these profiles cannot be
constructed in the pre-processing stage, and this overhead
cannot be offset for shorter queries. This observation also
suggests us the implementation of an adaptive version that
dynamically sets either the SP or the QP profile based on the
length of the queries, which should be known in advance.

327

Fig. 6. Scalability on the Intel Xeon Phi.

Fig. 7. Performance on the Intel Xeon Phi with queries of varying length.

C. Performance results on the Intel Xeon Phi

Figure 6 shows the performance on the Intel Xeon Phi
for the different approaches under evaluation with increasing
number of threads (from 30 to 240 hardware threads). Again,
without enabling vectorization, our implementation hardly
improves performance. The hand-tuned codes based on MIC
intrinsics also outperforms guided vectorization counterparts.
However in this case, the performance gap between both
approaches is much higher (around 2×). Indeed, even the
hand-tuned QP is able to outperform SP with automatic
vectorization. We also observe that the hand-tuned SP achieves
the maximum performance (34.9 GCUPS with 240 threads),
scaling relatively well with the number of hardware threads.
In contrast, the guided auto-vectorization counterpart only
reaches 14.5 GCUPS.

Figure 7 illustrates the performance with queries of varying
length using 240 hardware threads. There is a noticeable
drop in performance with queries shorter than about 850
residues. Again, QP outperforms SP for short queries due to
the additional overhead incurred by the SP profile construction,
also suggesting an adaptive implementation.

Finally, Figure 8 analyzes the impact on performance of the
blocking optimizations used in our codes with queries of vary-
ing length. In these test we have used 240 hardware threads.
Blocking achieves a consistent 3× performance improvement

Fig. 8. Performance impact of the blocking optimizations with queries of
varying length.

for query lengths greater than 850 residues, but there is also
an important gain even for the shorter query lengths. As a
reference, we have also shown the performance on the Intel
Xeon (using 32 OpenMP). Xeon also benefits from blocking,
but the improvements are lower. This is the expected behavior
since the Xeon has a larger Cache than the Phi.

Another interesting insight shown in Figure 8 is that our
Xeon implementation is able to outperform the Phi counterpart
for shorter query lengths. However, we should highlight that
there is still room for additional performance optimizations in
our codes and the Phi will benefit more from them. Indeed,
this is a penalty from using a common baseline code with very
few low-level optimizations. However, highly hand optimized
codes, such as the recently presented SWAPHI [6], are able
to achieve up to 58.8 GCUPS on a single Phi card. Achieving
such impressive performance, but relying on compiler tech-
nology as much as possible is still one of our goals for future
research.

D. Performance results of the heterogeneous implementation

Our evaluation concludes with the analysis of the heteroge-
neous implementation. The key to achieve higher performance
is to balance the workload between both processors. Figure 9
analyses this for best hand-tuned SP implementation. We are
using all the computational resources and we have varied the
percentage of the sequence pairs that are aligned on the Phi.
The maximum performance is achieved with a static 45% Xeon
55% Xeon-Phi distribution, in other words, assigning 20%
more job to the Phi. Despite using a relatively simple workload
distribution scheme, the overall maximum performance is
62.6 GCUPS. This is close to the sum of the individual
performances achieved by the Xeon and the Phi (30.4 and
34.9 GCUPS respectively). Therefore, the additional overhead
caused by the sequence distribution of our heterogeneous
implementation is almost negligible. Overall, we are able to
compete with the results achieve by SWAPHI on a single Phi,
but at the expense of using all the computational resources of
our heterogeneous server.

VI. CONCLUSIONS AND IDEAS FOR FUTURE RESEARCH

In this paper, we have presented an evaluation of a hetero-
geneous SW database search algorithm. In our implementation,

328

Fig. 9. Performance of the hybrid implementation varying the percentage of
sequence pairs that are aligned on the Phi.

Xeon Cores and a Xeon Phi coprocessor run collaboratively
for computing multiple SW alignments in parallel. A static
distribution is able to balance the Xeon and Xeon Phi running
times, although we need to know in advance the relative
performance of both processors to apply it effectively. For our
best hand-tuned implementations, assigning around 20% more
work load to the Phi gets the optimal balance and achieves the
maximum performance (more than 60 GCUPS using all the
computational resources of our server). Nevertheless, we are
also analyzing other approaches that distribute both queries
and reference sequences dynamically since they allow us to
have a finer control of the computational resources.

Highly hand optimized codes, such as the recently pre-
sented SWAPHI [6], are able to achieve just slightly lower
performance on a single Phi. Reaching such impressive perfor-
mance, but relying on compiler technology as much as possible
is still one of the main targets of our future research. Our
previous experience about SIMD tuning encourages us to still
pursue such a goal [19].

Finally, we would like to analyze the opportunities for
saving energy consumption that heterogeneous implementation
allows. Energy is the product of time and power and since
the heterogeneous implementation is able to reduce time, it
could also save power. However, this is just intuition. Modern
architectures integrate different power knobs than have a
tremendous impact on power-performance ratios. Overall, we
do not have yet a define answer to that question since this is
not a simple analysis and it requires additional infrastructure.
Fortunately, we have recently built a prototype to analyze such
power-performance tradeoffs [20] and we plan to investigate
this issue as part of our future research.

ACKNOWLEDGMENT

Enzo Rucci holds a PhD CONICET Fellowship under
Argentinian Government. This work has been partially sup-
ported by the Spanish research project TIN 2012-32180 and
the CAPAP-H4 network (TIN2011-15734-E).

REFERENCES

[1] H. Li and N. Homer, “A survey of sequence alignment algorithms
for next-generation sequencing,” Briefings in Bioinformatics, vol. 11,
no. 5, pp. 473–483, 2010. [Online]. Available: http://bib.oxfordjournals.
org/content/11/5/473.abstract

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool.” Journal of molecular

biology, vol. 215, no. 3, pp. 403–410, Oct. 1990. [Online]. Available:
http://dx.doi.org/10.1006/jmbi.1990.9999

[3] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new
generation of protein database search programs.” Nucleic Acids Res,
vol. 25, no. 17, pp. 3389–3402, September 1997.

[4] T. Rognes, “Faster Smith-Waterman database searches with inter-
sequence SIMD parallelization,” BMC Bioinformatics, vol. 12:221,
2011.

[5] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” BMC Bioinformatics, vol. 14:117, 2013.

[6] Y. Liu and B. Schmidt, “Swaphi: Smith-waterman protein database
search on xeon phi coprocessors,” in 25th IEEE International Con-

ference on Application-specific Systems, Architectures and Processors

(ASAP 2014), 2014.

[7] F. Chichizola, M. Naiouf, L. D. Giusti, IsmaelRodriguez, and A. D.
Giusti, “Overhead Analysis in Parallel Processing DNA Sequences on
Grid Architectures,” in Proceedings of the LAGrid08 (2nd International

Latin American Grid Workshop 2008), 2008.

[8] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S. H. Bae, H. Li,
B. Zhang, T. Wu, Y. Ruan, S. Ekanayake, A. Hughes, and G. Fox,
“Hybrid cloud and cluster computing paradigms for life science appli-
cations.” BMC Bioinformatics, vol. 11 (Suppl12), 2010.

[9] Y. Yamaguchi, K. H. Tsoi, and W. Luk, in ARC, A. K. 0001, R. Krishna-
murthy, J. McAllister, R. Woods, and T. A. El-Ghazawi, Eds. Springer,
pp. 181–192.

[10] C. W. Yu, K. H. Kwong, K. H. Lee, and P. H. W. Leong, “A smith-
waterman systolic cell,” in In Proceedings of the 13th International

Workshop on Field Programmable Logic and Applications FPL 2003.
Springer, 2003, pp. 375–384.

[11] T. I. Li, W. Shum, and K. Truong, “60-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BMC Bioinformatics, vol. 8:I85, 2007.

[12] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins,
A. Lake, R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash,
J. Sugerman, and P. Hanrahan, “Larrabee: A many-core x86 architecture
for visual computing,” IEEE Micro, vol. 29, no. 1, pp. 10–21, 2009.

[13] M. Farrar, “Striped Smith-Waterman speeds database searches six time
over other SIMD implementations,” Bioinformatics, vol. 23 (2), pp.
156–161, 2007.

[14] Y. Liu, D. L. Maskell, and B. Schmidt, “CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled graph-
ics processing units,” BMC Research Notes, vol. 2:73, 2009.

[15] E. Rucci, “Computación eficiente del alineamiento de secuen-
cias de adn sobre cluster de multicores,” Master’s thesis, Uni-
versidad Nacional de La Plata, Argentina. Available online at:
http://hdl.handle.net/10915/27737, 2013.

[16] N. Alachiotis, S. A. Berger, and A. Stamatakis, “Coupling simd
and simt architectures to boost performance of a phylogeny-aware
alignment kernel.” BMC Bioinformatics, vol. 13, p. 196, 2012.
[Online]. Available: http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi13.
html#AlachiotisBS12

[17] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu,
X. Chu, K. Zhao, R. Li, and T.-W. Lam, “Soap3: Ultra-fast gpu-based
parallel alignment tool for short reads,” Bioinformatics, 2012. [Online].
Available: http://bioinformatics.oxfordjournals.org/content/early/2012/
01/28/bioinformatics.bts061.abstract

[18] Y. Liu, W. Huang, J. Johnson, and S. Vaidya, “GPU Accelerated Smith-
Waterman,” Lecture Notes in Computer Science, vol. 3994, pp. 188–195,
2006.

[19] D. Chaver, C. Tenllado, L. Piñuel, M. Prieto, and F. Tirado, “2-d
wavelet transform enhancement on general- purpose microprocessors:
Memory hierarchy and simd parallelism exploitation,” in High

Performance Computing HiPC 2002, ser. Lecture Notes in Computer
Science, S. Sahni, V. Prasanna, and U. Shukla, Eds. Springer
Berlin Heidelberg, 2002, vol. 2552, pp. 9–21. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36265-7 2

329

[20] F. D. Igual, L. M. Jara, J. I. Gomez-Perez, L. Piñuel, and M. Prieto-
Matı́as, “A power measurement environment for pcie accelerators,”
Computer Science - Research and Development, pp. 1–10, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s00450-014-0266-8

330

