

On the Optimization of HDA* for Multicore Machines.

Performance Analysis.

Victoria Sanz
1
, Armando De Giusti

2
, Marcelo Naiouf

III- LIDI, School of Computer Sciences, UNLP, La Plata, Buenos Aires, Argentina

Abstract – Combinatorial optimization problems are

interesting due to their complexity and applications,

particularly in robotics.

This paper deals with a parallel algorithm suitable for shared

memory architectures, based on the HDA* algorithm (Hash

Distributed A*), which allows finding solutions to

combinatorial optimization problems. The implementation

was carried out using the shared memory programming tools

provided by the Pthreads library, the Jemalloc memory

allocator and taking the N
2
-1 Puzzle as study case.

The experimental work focuses on analyzing the speedup and

efficiency achieved by the parallel algorithm when running on

a computer with multi-core processors, for different instances

of the problem and varying the amount of threads/cores used.

Finally, the scalability obtained with increasing workload and

number of threads/cores used is analyzed.

Keywords: Parallel Heuristic Search; HDA*; Multicore;

Combinatorial Problems; Scalability.

1 Introduction

In the area of Artificial Intelligence, heuristic search
algorithms are used as the basis to solve combinatorial
optimization problems that require a sequence of actions that
minimize a goal function and allow transforming an initial
configuration (which represents the problem to be solved) into
a final configuration (which represents the solution).

One of the most used search algorithms for that purpose is
known as Best First Search (BFS) [1], which browses the
graph that represents the state space of the problem using a

cost function to value the nodes, which is in part composed
of some heuristic information, that will guide the search faster
to the solution and will reduce the nodes to be considered. The
algorithm is different from the conventional methods because
the graph is implicit and generated dynamically, i.e. nodes are
created as the search progresses. During the process, it keeps
two data structures: one for the unexplored nodes ordered by

the function (open list), and the other for the already
explored nodes (closed list) used to avoid processing the same
state repeatedly. In each iteration, the most promising node

available on the open list is removed (according to function),
it is included on the closed list and legal actions are applied to
it to generate successor nodes which will be added to the open
list under certain conditions. The search continues until a node
that represents the solution is removed from the open list.

The A* algorithm [2] is one of the most commonly used
BFS variants because it guarantees finding optimal cost

solutions. To that end, the cost function contains known cost
information of the path from the initial node to the current
node and heuristic information to estimate the unknown cost
of the path from the current node to the solution node, which
can never overestimate the actual cost; in this way, the search
is guided to firstly process the most promising paths.

On the other hand, over the last years the development of
parallel heuristic search algorithms has been promoted
because the high requirement of computing power and
memory, as a consequence of the exponential or factorial
graph growth, makes its resolution on a single-core processor
difficult. Moreover, it is common to find multi-core machines
today, so the sequential applications should be adapted to take
advantage of the computing power that this architecture
provides.

So far, different authors have presented several techniques
to parallelize BFS algorithms, which vary according to how
they manipulate the open and closed list and in the load
balancing strategy used among processors during the
execution. The chosen technique will depend on the
architecture and the problem to solve [3].

On a shared memory architecture, the simplest strategy is
to keep only one open list and only one closed list shared by
all the threads (centralized strategy). This implies a thread
synchronization process to ensure data structure consistency,
which will limit performance [3][4]. Although the open and
closed lists can be implemented through data structures that
allow concurrent access to different portions in order to
reduce resource contention, several authors have shown that
this technique will only bring improvements for problems
with high heuristic computation time [3], and especially
current studies have shown that it does not get a competitive
performance on multi-core machines [5].

In order to solve the previous problem, each
process/thread is equipped with its own local open and closed
lists (decentralized strategy) and performs a quasi-
independent search. This strategy is suitable either for shared
memory or distributed memory architectures. However,
communication among the processes/threads is needed due to
the following reasons:

 As only one process/thread has the initial node on its open
list at the beginning and the graph is generated at run time,
the workload should be distributed dynamically.

 The nodes located on the processor’s open list might not
be the global best ones, so it will be necessary to equalize
the nodes quality between processors.

 Duplicate nodes (nodes representing the same state) can be
generated by different processes/threads. If the duplicate

1 Fellow, CONICET.
2 Principal Researcher, CONICET.

detection procedure is only performed by the
process/thread which has generated the node and/or by
that which has received the node owing to load balancing,
the detection and pruning of duplicate nodes will be
partial because another process/thread may have a node
representing the same state on its open or closed list.
However, if absolute detection and pruning is required,
strategies that assign each state to a particular processor
will be needed.

 The termination criterion should be modified, as there are
multiple inconsistent open lists and, as a consequence of
dynamic load balancing, there may be some graph nodes
that are being communicated between processes/threads.

 The costs of the partial solutions found should be
communicated in order to use them to prune the paths that
lead to suboptimal cost solutions.

In this sense, the HDA* algorithm (Hash Distributed A*)
[6] parallelizes A* using the decentralized strategy and it
applies Zobrist´s hash function to assign each state to a unique
process; in this way, when a process generates a node, the
owner process can be identified and the node is transferred to
it. This mechanism allows balancing the workload, leveling
node quality, and pruning duplicates in an absolute way, as
the nodes representing a same state are always sent to the
same process. The algorithm was implemented using the MPI
message passing library and asynchronous communication, so
the algorithm can be executed either on distributed or shared
memory architectures.

On the other hand, the research carried out by [5] presents
an adaptation of the HDA* algorithm developed using the
shared memory programming tools provided by the Pthreads
library; in this way, it is possible to eliminate some
inefficiencies that arise when the original HDA* algorithm is
run on a shared memory machine. The Jemalloc library [7] is
used to avoid performance degradation due to contention in
the access to the data structures managed by the dynamic
memory allocator, caused by the frequent alloc/free
operations. Algorithm performance is analyzed on a multicore
machine. Moreover, a technique to create a state space
abstraction that allows assigning state blocks to the threads,
instead of individual states as it occurs with Zobrist´s hash
function, is included in the algorithm. Then, the PBNF
algorithm that allows threads to work during synchronization
free periods is presented. The experimental work is done in
part considering 250 easy instances of the 15-Puzzle, using
the Sum of the Manhattan Distances heuristic, and an analysis
of the speedup obtained as the architecture scales is carried
out. Although a better performance is obtained with the PBNF
algorithm, the algorithm is complex and does not use the same
approach as the serial A*, so a superlinear speedup is
obtained in some cases.

A common problem that causes performance degradation
in multi-threaded applications, which frequently perform
allocation and deallocation operations, is the producer-
consumer relation that arises due to alloc-free operations
carried out by different threads, which creates a need for
synchronization to keep the consistency of the structures
assigned to each thread by the memory allocator. In order to

improve this, it is suggested to incorporate a pool of pointers
to node in every thread (Memory Pool) to prevent thread A
from freeing memory that is allocated by thread B; instead,
thread A will store those pointers for future reuse.

Based on the above, the HDA* algorithm is still
interesting due to its simplicity. The focus of this paper is the
incorporation of techniques to optimize the HDA* algorithm
for its execution on multicore, which may lead to a better
performance, and to carry out a scalability analysis when the
workload and the amount of processors are increased.

2 Contribution

This paper presents a parallel algorithm suitable for shared
memory architectures, based on the HDA* algorithm, which
allows finding optimal solutions to combinatorial optimization
problems, in this case to the N

2
-1 Puzzle. In this sense, the

algorithm is similar to the one proposed in [5] but with the
following differences: it incorporates an algorithm to detect
termination in a decentralized way, which is an adaptation of
the algorithm proposed by Dijkstra and Safra [8] [9]; threads
accumulate a customizable quantity of nodes addressed to
another thread before attempting their transfer, i.e. there are
no transfers after each node generation; and a technique called
Memory Pool is used to avoid performance degradation
caused by alloc-free operations in a producer-consumer
relation among different threads.

The contributions are:

 Carrying out experimental work running the HDA*
parallel algorithm proposed, suitable for shared memory,
on a multicore processor machine, using different initial
configurations of the problem and varying the amount of
threads/cores used, analyzing the performance obtained
(speedup, efficiency) in each case.

 Carrying out a comparison between the performance
obtained by the parallel algorithm when active waiting or
passive waiting is used while the thread is idle.

 Documenting the benefits obtained when using the
Memory Pool technique.

 Carrying out a scalability analysis of the algorithm when
the workload and amount of threads/cores used are
increased.

3 Characterization of the N
2
-1 Puzzle

The N
2
-1 Puzzle problem consists in N

2
-1 pieces numbered

from 1 to N
2
-1 placed on an N

2
sized board [10]. Each square

of the board contains one piece, so there is only one empty
square.

 A legal movement implies moving the empty square to an
adjacent position, either horizontally or vertically, by
moving the piece that was in the newly emptied square to
the previous position of the empty square.

 The objective of the puzzle is applying legal movements
until the initial board becomes the selected final board.
The solution to the problem should be the one that

minimizes the number of movements required to achieve
the final configuration from the initial given configuration.

1.1. Heuristics

Heuristic search algorithms use information about the
problem to guide the search process, so they value the nodes
based on the application of a heuristic function. Thus, they
process first the node that looks more promising. The heuristic
value of a node is an estimate and indicates how close it is to
the solution node.

A more polished heuristic will carry out estimates that are
closer to the real cost; therefore, the algorithms that use it will
need to process less nodes [1].

The heuristic used by the algorithms presented for the
resolution of the Puzzle problem is a variation of the sum of
the Manhattan distance of the pieces with the addition of
linear conflict detection among pieces, the detection of the last
movements applied, and an analysis of corner pieces. The
definition can be found in [11].

4 Sequential A* algorithm

The A* algorithm [2] is a variation of the Best First
Search technique where each node n is valuated in accordance
to the cost of reaching it from the root of the search tree
and a heuristic that estimates the cost to go from n to a

solution node . Thus, the cost function will be
 . If the heuristic is admissible (i.e., it never
overestimates the real cost), the algorithm will always find an
optimal solution.

The algorithm keeps a list of unexplored nodes (open list)

ordered by the value of function , and another list of already
explored nodes (closed list) used to avoid loops in the search
graph. Initially, the open list contains only one element, the
initial node, and the closed list is empty.

In each step, the node with the lowest value (the most
promising node) is removed from the open list and examined.
If the node is the solution, the algorithm ends. Otherwise, the
node is expanded (generating the children nodes by applying
legal movements) and added to the closed list. Each successor
node is added to the open list if it does not appear on either
list, or if it does but its cost value improves that of the
previous node (this verification is known as duplicate
detection).

Once the node that represents the final state has been
found, the sequence of actions taken on the optimal path can
be obtained by following the sequence of pointers to each
parent node.

5 HDA* algorithm for shared memory

architectures

The HDA* algorithm suitable for shared memory
architectures proposed in [5] is based on the following:

 Each thread has its own open and closed lists.

 Each thread has an input queue known globally where the
rest of the threads will deposit nodes that must be

processed by this thread. The input queue must be
protected by a lock to keep its consistency.

 Each thread has a local output queue for each peer thread,
which does not need to be protected since it will be for
thread’s own use to avoid obstructions.

 When a thread ti generates a node that belongs to another
thread tj, it must be communicated by adding it to tj’s input
queue at some point. In order to do this, the thread tries to
take the lock associated to tj’s input queue. When the lock
is obtained immediately, node transfer is done by copying
the pointer, and then the lock is released (this enables
subsequent access to the queue by another thread).
Otherwise, the pointer is added to the local output queue
for tj (there is no waiting time associated with this
operation).

 After thread ti carries out a certain number of node
expansions from its open list:

- For each non-empty local output queue, the thread tries to
communicate the stored nodes on it to its owner thread. In
order to do this, the thread tries to take the lock associated
to the input queue of the corresponding thread. If the lock
is obtained, all the pointers to node are transferred,
leaving the local output queue empty. Otherwise, it is not
forced to wait.

- The thread tries to consume the nodes left by other
threads on its own input queue. To do this, the thread
must take the lock but it is only forced to wait if its open
list is empty (in this case, it does not have any nodes to
keep on working).

Fig. 1 shows the communication scheme of HDA*
algorithm for shared memory. Here the thread’s main local
structures can be seen (open list, closed list, output queues)
and also the global input queues. We can observe that thread 0
and thread 3 have generated a node that corresponds to thread
2; both of them attempt to take the lock associated to target
thread’s input queue. On the one hand, thread 3 gets the lock
immediately, copies the pointer and releases the lock. On the
other hand, thread 2 does not get the lock immediately, so it
adds the pointer to its local output queue for the target thread.

The implementation was carried out with the tools
provided by the Pthreads Library and Jemalloc, the dynamic
memory allocator. The allocation of states to threads was done
through the Zobrist Function. The input and output queues
were implemented as a dynamic array that contain pointers to
node.

6 Implementations

The implementations of the following algorithms were
carried out in C Language. The compilation was done through
Gcc, phase in which the memory allocator that is going to be
used can be selected (in this case, it was ptmalloc [12] or
Jemalloc [7]).

6.1 Sequential A*

The selected structure to implement the open list is a
MinHeap [13] whose content is indexed by an Extensible

Hash Table [14]. This structure allows nodes to be ordered

according to the function, so the operations of inserting a

node, removing the node with the lowest value and
decreasing the priority of a node can be carried out in
logarithmic order; at the same time, it enables carrying out
searches to determine the existence of a node that represents a
particular state in constant order. Additionally, an Extensible
Hash Table[14] was used to implement the closed list, which
allows the operations of insertion/ removal of a node and
searching to determine the existence of a node that represents
a particular state occur in constant order.

The keys associated to the elements (nodes) stored in the
Hash Tables are obtained by calculating the Zobrist Function
[15] over the representation of the state. The Zobrist Table
that was used is loaded from file and it will be the same for all
the runs and instances of the problem selected as a case of
study. The key will be represented with a 64-bit integer,
which leads the function to assign the same key to different
states of the search space (this happens because the number of
possible problem states can be much higher than 2

64
). This

case is not frequent during the run of the search algorithm.

The kind of heuristic functions used is that which
calculates the estimation of the cost directly, taking as input
the representation of the state. Consequently, the heuristic is
problem-dependent and can be selected before the compilation
phase; this enables experimenting with different heuristic
functions and analyzing the performance obtained.

6.2 HDA* for shared memory

A version of the HDA* algorithm suitable for shared
memory similar to the one studied in Section V was
implemented. Threads and synchronization mechanisms
provided by the Pthread library were used. The assignment of
states to threads was carried out through the Zobrist Function.

Each thread will perform an A* search locally, keeping its
local open and closed lists. The node communication strategy
is based on the use of input and output queues.

To avoid making an only thread detect the termination
state by checking the state of the other threads and the state of
their input queues, an adaptation of the Dijkstra and Safra’s
termination detection algorithm was carried out, allowing all
the threads to cooperate with such purpose. Each thread keeps
a state (or color) and a counter of sent and received nodes -
instead of the number of “communications” that were done

1
.

The termination token will be represented with a shared
variable with the following information: a counter of nodes in
transit, a state (or color), and the identifier of the thread that
owns the token at the moment; the data that corresponds to the
token are not protected since only one thread will be able to
modify them at a given point in time. The end of the
computation will be communicated through a shared variable
end.

1 The input queues do not count how many times a deposit was done over

them, but the total amount of nodes that they store (logical dimension).

Because of that, the amount of nodes in transit is calculated instead of the

amount of “communications” or “deposits” that have not been received yet.

This is a modification of the Safra and Dijskstra algorithm.

T2

T1

T0

OQ 1

OQ 2

OQ 3

IQ0

IQ 1

IQ 2

IQ 3

OQ 0

OQ 2

OQ 3

OQ 0

OQ1

OQ3

OL CL OL CL

OL CL

T3

OQ0

OQ 1

OQ 2

OL CL

1. Successful access to IQ2

1. Failed access to IQ2

 2. Pointer stored into local OQ2

 2. Pointer stored into IQ2
3. Access released to IQ2

Fig. 1. Communication scheme of HDA* algorithm suitable for shared

memory

With the aim of making possible the pruning of nodes that
will lead to suboptimal solutions, the threads share a pointer to
the best solution found so far by all the threads (best_solution)
and its cost (best_solution_cost). Both variables must be
protected, since two threads can find two different solutions
and try to update these values at the same time.

The code that all the threads will run is identical, only
thread 0 will be in charge of the additional tasks of generating
the initial node and adding it to the input queue of its owner
thread, initializing the common structures, detecting the
termination state, and recovering from the shared memory the
steps sequence that represents the solution to the problem
once computation is finished.

Each thread will carry out a series of iterations until it
detects the end of the computation (through a change in the
value of the variable end). In each iteration, the following
phases are performed:

 Phase of node consumption from input queue: the thread
checks whether its own input queue is not empty. In that
case, it tries to take the lock associated to the queue. When
it obtains the access immediately, it takes all the pointers
to nodes that were deposited on the queue, releases the
lock, and then for each node whose cost is lower than
best_solution_cost the thread performs the duplicate
detection process adding them to the open list as
appropriate.

 Processing phase: the thread processes at least LNPI
(Limit of Nodes per Iteration) nodes from its open list.
When the thread removes a node, it verifies if its cost is at
least best_solution_cost. If it is so, the thread empties the
open list since the nodes on it will lead to suboptimal
solutions. Otherwise, it checks if the node represents the
solution and in that case it updates best_solution and
best_solution_cost, after having taken the lock that
protects them and having consulted again if the node cost
is less than

best_solution_cost

2
. When the removed node is

2 This is necessary because two threads can find two solutions with different

cost at the same time. If a solution had not been found yet or if the two

solutions that have just been found improve the current partial solution, when

the threads try to obtain the lock to update the shared data, the thread with the

best solution could update the data first, and then the second thread could

not the solution, it is inserted into the closed list, it is
expanded (in this way successors are generated), and then
for each successor the Zobrist Function is calculated so as
to know which thread has to process it. When the node
belongs to the thread that generated it, the thread carries
out the duplicate detection and adds it on the open list as
appropriate. Otherwise, the thread places the node in the
local output queue for the target thread; when the amount
of stored nodes on the output queue is higher than the limit
LNPT (Limit of Nodes per Transference), the thread tries
to take the lock of the target thread’s input queue and, if it
obtains the lock immediately, it transfers the stored nodes
leaving the output queue empty

3
. A node transfer simply

means a pointer copy. When a thread is the first one that
deposits nodes on the input queue of another thread (i.e., at
that moment the input queue was empty) it must inform
the action, just in case the other thread was idle waiting for
work.

 Idle phase: after the processing phase, if the thread stands
idle because its open list is empty, it will send nodes
stored on each non-empty output queue, and it will wait
for any of the following events:

- End of calculation: thread 0 detected the termination state
and it changed the value of the end variable, so that this
state can be known.

- Termination token arrival: the thread must update the
shared variables that correspond to the token, based on
the termination algorithm, and pass it to the following
thread, which means that the thread must change the
value of the token owner field (informing the successor
thread that it is the new owner). On the other hand, thread
0 verifies if the termination conditions are given. If this is
so, the value of the end variable changes. Otherwise, it
starts a new round to detect termination.

- Work deposit on its own input queue: the thread must
obtain the lock associated to its input queue, it must take
all the pointers to nodes that were deposited on the queue
(leaving the input queue empty), and release the lock. For
each node whose cost is lower than best_solution_cost the
duplicate detection is carried out, adding the node to the
open list as appropriate.

The termination detection algorithm involves updating the
variable state (or color) and the counter of the thread every
time it adds nodes to the input queue of another thread or
every time it removes nodes from its own input queue, either
increasing or decreasing the local counter of nodes that were
deposited and received respectively.

To resolve performance degradation when an alloc-free
relation between threads happens, a pool of pointers to node
(Memory Pool) was incorporated to each thread, where the

obtain the lock to carry out its update. If the condition about the cost is not

verified again, the second thread could make effective the update and a

suboptimal solution would be stored.
3 This is different to the version proposed by Burns in which after each node

generation that belongs to another thread tj, the thread tries to take the lock

associated to tj’s input queue. Moreover, here when the lock is obtained all the

nodes stored on the output queue for the target thread are communicated, this

is another difference with Burns’ version.

pointers to node that the thread wishes to “set free” for a
further use are stored. This technique prevents access by
thread A to the structures assigned to another thread B by the
dynamic memory allocator, when the former wants to “free” a
pointer allocated by the latter, situation that would produce
contention.

Finally, the possibility to compile the algorithm to carry
out a wait in a passive or active way when the thread stands
idle was incorporated.

7 Experimental results

For the experimental work, a machine with two Intel ®
Xeon ® E5620 [16] processors was used. Each processor has
four 2.4 Ghz physical cores. Each core has two L1 caches of
64 KB for data and instructions respectively and one L2 cache
of 256 KB. At the same time, all processor cores share a L3
cache of 12 MB. Each processor has a memory controller,
therefore, the machine’s memory design is NUMA and it uses
a QuickPath Interconnect (QPI) interconnection of 5.86 GT/s.
The machine has 32 GB of RAM, DDR3 1066 Mhz.

The tests were carried out taking into account the 100
initial configurations of 15-Puzzle used by [17], numbered
from 1 to 100. Ten of the configurations with more steps for
their solution [18] were also taken into account in the parallel
algorithm scalability analysis, since for some of them
resolution time is considerable. These were numbered from
101 to 110.

7.1 Sequential A*

7.1.1 Effect in the use of Jemalloc

The sequential algorithm was run with the 100 initial
configurations and the final configuration suggested by [17]
using the heuristic function presented in Section II.A and
varying the dynamic memory allocator between ptmalloc and
Jemalloc. Jemalloc was configured to work with 256 arenas,
as this configuration will be used during the parallel algorithm
tests.

For each initial configuration, 10 runs were performed and
the runtime in seconds for each test was calculated. From the
results, it can be observed that the average runtime of each
configuration obtained from the samples that use Jemalloc
presents a reduction ranging between 0.9% and 15.8% with
respect to the average runtime for the same configurations
using ptmalloc.

As it has been proved that when Jemalloc (configured to
work with 256 arenas) is used with sequential A*, algorithm
performance improves, the above mentioned allocator will be
used in the tests from now on.

7.1.2 Effects in the use of Memory Pool technique

The sequential algorithm was run with the 100 initial
configurations and the final configuration proposed by [17],
using the heuristic function presented in Section II.A,
Jemalloc (configured to use 256 arenas) and the pool of
pointers to node “Memory Pool”. For each initial
configuration, 10 tests were run. Then, the average runtime in
seconds obtained for each configuration was compared with

the results presented in the previous section that do not use the
“Memory Pool” technique.

From the comparison, it can be observed that the “Memory
Pool” technique does not bring any advantage for the
sequential application: 17 configurations suffered an
increment of their average runtime of about 2% and 9%; 15
configurations increased their average runtime between 1%
and 2%; 43 configurations achieved a modest increase in its
average runtime which goes between 0% and 1%; finally, 25
configurations reduced their average runtime between 0% and
6.45%.

Generally, relevant variations in performance achieved by
instances with a significant runtime are not observed. Thus,
the sequential results obtained without using the “Memory
Pool” technique will be used for the performance analysis of
the parallel algorithm.

7.2 HDA* for shared memory

The HDA* parallel algorithm is nondeterministic, i.e.
when different experimental samples are taken for the same
initial/ final configuration and the same parameters, the results
obtained by the algorithm may be different. That is possible
because an initial configuration can have multiple optimal
solutions and, as threads distribute the space of states
dynamically among themselves, the nodes processed by a
thread will vary depending on how asynchronous events occur
in the system.

In the tests, affinity was used to allocate each thread to an
exclusive core using the function sched_setaffinity() [19]. In
those tests with 4 threads 1 pair of threads was allocated to
each machine processor, and in those tests with 8 threads 1
thread was allocated to each physical core of the machine.

The selected initial configurations are those used in
Section VII.A whose sequential runtime is of at least 5
seconds

4
. For performance analysis, the configurations

numbered from 101 to 106 were also taken into consideration;
sequential and parallel tests for configurations 107, 108, 109
and 110 exhausted available RAM memory and were
therefore aborted.

The Jemalloc memory allocator, configured to work with
256 arenas, and the heuristic function presented in Section
II.A were used. For each initial configuration and each
parameter group, 100 samples were obtained. The parameters
are: the amount of cores/threads, whose values vary between 4
and 8; LNPI between 1, 5, 50 and 500; LNPT was set in 26
nodes. Then, the average runtimes resulting from the 100 runs
for the same configuration and set of parameters, which will
be called average sample, were obtained.

7.2.1 Passive waiting vs. active waiting

Two test sets were run using active waiting and passive
waiting respectively, LNPT was limited to 26 and the Memory
Pool technique was used.

Average runtimes brought by the test sets do not show an
apparent benefit for any particular waiting technique. This

4 Configurations are as follows: 3, 15, 17, 21, 26, 32, 33, 49, 53, 56, 59, 60,
66, 82, 88, 100

may be due to algorithm asynchronism, as most times threads
perform attempts to take locks and in case they do not get it
they keep on working. Additionally, each thread is run on an
exclusive core. Therefore, either waiting actively or resorting
to the Operating System to perform a passive wait does not
cause drastic changes in performance.

7.2.2 Effects in the use of Memory Pool technique

Two test sets were run including the Memory Pool
technique or not; LNPT was limited to 26, and active waiting
was used.

Average runtimes of the test set that uses Memory Pool
reduced the average runtimes of the test set that does not use
that technique between 4.5% and 12.82%. Generally, the
reduction in the average runtime for the samples with 4
threads is between 4.5% and 8.64%, while the reduction in
tests with 8 threads is between 6.43% and 12.82%.

Therefore, the advantage of this technique for reducing
contention in the access to structures assigned to each thread
by the dynamic memory allocator, in cases with an existing
producer-consumer relation between threads by alloc-free
operations, is shown.

7.2.3 Performance Analysis

The experimental tests discussed in the previous section,
which optimized the results, were considered to assess parallel
algorithm performance

5
. Moreover, tests were carried out for

configurations 101 to 106 following the same strategy. Then,
for each configuration and number of threads, the average
sample that minimizes average runtime, i.e. the sample whose
LNPI parameter value optimizes performance, was selected.

To assess algorithm scalability, the average samples
selected for each configuration were organized according to
their sequential workload (sequential time). In this sense,
escalating the problem means increasing the number of
processed or generated nodes. On the other hand, the
architecture is escalated by increasing the number of cores
used to solve the problem.

Fig. 2 shows the Speedup obtained by the average sample
selected for each configuration using 4 cores and 8 cores,
while Fig. 3 shows the Efficiency obtained. For tests with 4
cores, the Speedup obtained varies from 2.95 to 4.01, while
Efficiency ranges from 0.73 to 1.0034. Tests with 8 cores
show a Speedup between 5.14 and 8.15, and Efficiency
between 0.64 and 1.018.

Both average samples that obtained a superlinear Speedup
present a negative Search Overhead

6
 (-2.92 for the average

sample with higher Speedup with 4 cores and -9.86 for the
average sample with higher Speedup with 8 cores). Therefore,
the parallel algorithm processes fewer nodes than the
sequential algorithm. This situation is possible for this class of
algorithms due to the causes explained in [20].

5 The tests of interest are those that use active waiting, limiting LNPT in 26

and using the Memory Pool technique.
6 The Search Overhead represents the percentage of increment in the number

of nodes expanded by the parallel algorithm against the sequential algorithm

and it is calculated with the formula 100x(NP/NS -1), where NP= number of

nodes processed by the parallel algorithm and NS = number of nodes

processed by the sequential algorithm.

Fig. 2. Speedup achieved by the HDA* algorithm for shared memory, by

configuration

Fig. 3. Efficiency achieved by the HDA* algorithm for shared memory, by

configuration

After analyzing the results shown in Fig. 2 and 3, it can be
concluded that, for the same workload (initial configuration),
if the number of cores is increased, the Speedup obtained is
better. This proves that the problem is solved faster as more
cores are used. However, efficiency does not normally remain
constant. This decrease in efficiency is due to different
factors, such as sequential parts especially at the beginning
and at the end of computation, synchronization, idle time, load
unbalance, search overhead increase, among other factors.

It is observed that when the problem is escalated
maintaining the same number of processors, efficiency
generally improves or remains constant as overhead is less
significant on total processing time.

8 Conclusions and future lines of work

A version of the HDA* algorithm that is suitable for
shared memory architectures and incorporates an effective
technique to avoid performance degradation when there is a
producer-consumer relation between various threads due to
alloc-free operations was presented. The algorithm was run
taking the Puzzle problem as study case and a more polished
heuristic with respect to the classical one. On the other hand,
it was proved that using active or passive waiting when the
thread becomes idle is irrelevant, as there are no significant
variations in performance.

This paper shows a scalability analysis of the parallel
algorithm on a machine with multicore processors. From the
results obtained, it can be concluded that the behavior
exhibited is typical of a scalable parallel system, where

efficiency can be kept constant when workload and
architecture are escalated.

Future lines of work focus on contrasting the algorithm
presented in this paper against HDA* for distributed memory
(implemented exclusively with MPI), comparing the
performance achieved and the amount of memory used.

9 References

[1] S. Russel and P. Norvig, Artificial Intelligence: A
Modern Approach, Segunda edición ed., New Jersey:
Prentice Hall, 2003.

[2] P. Hart, N. Nilsson and B. Raphael, “A Formal Basis for
the Heuristic Determination of Minimum Cost Paths”,
IEEE Transactions on Systems Science and Cybernetics,
vol. 4, nº 1, pp. 100-107, 1968.

[3] V. Kumar, K. Ramesh and V. N. Rao, “Parallel Best-First
Search of State-Space Graphs: A Summary of Results”,
de Proceedings of the 10th Nat. Conf. AI, AAAI, 1988.

[4] V.-D. Cung and B. Le Cun, “An efficient implementation
of parallel A*”, de Proceedings of the First Canada-
France Conference on Parallel and Distributed
Computing , Montréal, 1994.

[5] E. Burns, S. Lemons, W. Ruml and R. Zhou, “Best-First
Heuristic Search for Multicore Machines.”, Journal of
Artificial Intelligence Research, vol. 39, pp. 689-743 ,
2010.

[6] Kishimoto, A. Fukunaga and A. Botea, “Evaluation of a
simple, scalable, parallel best-first search strategy”,
Artificial Intelligence, pp. 222–248, 2013.

[7] J. Evans, “A Scalable Concurrent malloc(3)
Implementation for FreeBSD”, de Proceedings of the 3rd
annual Technical BSD Conference, Ottawa, 2006.

[8] E. W. Dijkstra, “Shmuel Safra’s version of termination
detection EWD-Note 998”, 1987.

[9] E. W. Dijkstra, W. H. J. Feijen and A. J. M. Van
Gasteren, “Derivation of a termination detection
algorithm for distributed computations”, Information
Processing Letters, vol. 16, pp. 217-219, 1983.

[10] D. Ratner and M. Warmuth, “The (n2−1)-puzzle and
related relocation problems”, Journal of Symbolic
Computation, vol. 10, nº 2, pp. 111-137, 1990.

[11] R. Korf and L. Taylor, “Finding Optimal Solutions to the
Twenty-Four Puzzle”, Proceedings of the Thirteenth
National Conference on Artificial Intelligence, 1996.

[12] W. Gloger, “Wolfram Gloger's malloc homepage”, 2014.
http://www.malloc.de/en/.

[13] Aho, J. Ullman and J. Hopcroft, Data Structures and
Algorithms, First Edition, Boston, MA: Addison-Wesley
Longman Publishing Co, 1983.

[14] R. Ramakrishnan and J. Gehrke, Database Management
Systems, Second Edition, McGraw-Hill Education, 1999.

[15] A. L. Zobrist, “A New Hashing Method with Application
for Game Playing”, University of Wisconsin, Madison,
1968.

[16] Intel Ark, 2010. http://ark.intel.com/products/47925.

[17] R. Korf, “Depth-first Iterative-Deepening: An Optimal
Admissible Tree Search”, Artificial Intelligence, pp. 97-
109, 1985.

[18] A. Brüngger, Solving Hard Combinatorial Optimization
Problems in Parallel: Two Cases Studies, Zurich, 1998.

[19] D. Gove, Multicore Application Programming. For
Windows, Linux and Oracle (c) Solaris. Developers'
Library, Boston, MA: Pearson Education, 2011.

[20] Grama, A. Gupta, G. Karypis and V. Kumar, Introduction
to Parallel Computing (Second Edition), Edinburgh Gate,
Harlow, Essex: Pearson, 2003.

