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Abstract – Combinatorial optimization problems are 

interesting due to their complexity and applications, 

particularly in robotics. 

This paper deals with a parallel algorithm suitable for shared 

memory architectures, based on the HDA* algorithm (Hash 

Distributed A*), which allows finding solutions to 

combinatorial optimization problems. The implementation 

was carried out using the shared memory programming tools 

provided by the Pthreads library, the Jemalloc memory 

allocator and taking the N
2
-1 Puzzle as study case. 

The experimental work focuses on analyzing the speedup and 

efficiency achieved by the parallel algorithm when running on 

a computer with multi-core processors, for different instances 

of the problem and varying the amount of threads/cores used. 

Finally, the scalability obtained with increasing workload and 

number of threads/cores used is analyzed. 

Keywords: Parallel Heuristic Search; HDA*; Multicore; 

Combinatorial Problems; Scalability. 

1  Introduction 

In the area of Artificial Intelligence, heuristic search 
algorithms are used as the basis to solve combinatorial 
optimization problems that require a sequence of actions that 
minimize a goal function and allow transforming an initial 
configuration (which represents the problem to be solved) into 
a final configuration (which represents the solution). 

One of the most used search algorithms for that purpose is 
known as Best First Search (BFS) [1], which browses the 
graph that represents the state space of the problem using a 

cost function    to value the nodes, which is in part composed 
of some heuristic information, that will guide the search faster 
to the solution and will reduce the nodes to be considered. The 
algorithm is different from the conventional methods because 
the graph is implicit and generated dynamically, i.e. nodes are 
created as the search progresses. During the process, it keeps 
two data structures: one for the unexplored nodes ordered by 

the function    (open list), and the other for the already 
explored nodes (closed list) used to avoid processing the same 
state repeatedly. In each iteration, the most promising node 

available on the open list is removed (according to function   ), 
it is included on the closed list and legal actions are applied to 
it to generate successor nodes which will be added to the open 
list under certain conditions. The search continues until a node 
that represents the solution is removed from the open list. 

The A* algorithm [2] is one of the most commonly used 
BFS variants because it guarantees finding optimal cost 

solutions. To that end, the cost function    contains known cost 
information of the path from the initial node to the current 
node and heuristic information to estimate the unknown cost 
of the path from the current node to the solution node, which 
can never overestimate the actual cost; in this way, the search 
is guided to firstly process the most promising paths. 

On the other hand, over the last years the development of 
parallel heuristic search algorithms has been promoted 
because the high requirement of computing power and 
memory, as a consequence of the exponential or factorial 
graph growth, makes its resolution on a single-core processor 
difficult. Moreover, it is common to find multi-core machines 
today, so the sequential applications should be adapted to take 
advantage of the computing power that this architecture 
provides. 

So far, different authors have presented several techniques 
to parallelize BFS algorithms, which vary according to how 
they manipulate the open and closed list and in the load 
balancing strategy used among processors during the 
execution. The chosen technique will depend on the 
architecture and the problem to solve [3]. 

On a shared memory architecture, the simplest strategy is 
to keep only one open list and only one closed list shared by 
all the threads (centralized strategy). This implies a thread 
synchronization process to ensure data structure consistency, 
which will limit performance [3][4]. Although the open and 
closed lists can be implemented through data structures that 
allow concurrent access to different portions in order to 
reduce resource contention, several authors have shown that 
this technique will only bring improvements for problems 
with high heuristic computation time [3], and especially 
current studies have shown that it does not get a competitive 
performance on multi-core machines [5]. 

In order to solve the previous problem, each 
process/thread is equipped with its own local open and closed 
lists (decentralized strategy) and performs a quasi-
independent search. This strategy is suitable either for shared 
memory or distributed memory architectures. However, 
communication among the processes/threads is needed due to 
the following reasons: 

 As only one process/thread has the initial node on its open 
list at the beginning and the graph is generated at run time, 
the workload should be distributed dynamically.  

 The nodes located on the processor’s open list might not 
be the global best ones, so it will be necessary to equalize 
the nodes quality between processors.  

 Duplicate nodes (nodes representing the same state) can be 
generated by different processes/threads. If the duplicate 
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detection procedure is only performed by the 
process/thread which has generated the node and/or by 
that which has received the node owing to load balancing, 
the detection and pruning of duplicate nodes will be 
partial because another process/thread may have a node 
representing the same state on its open or closed list. 
However, if absolute detection and pruning is required, 
strategies that assign each state to a particular processor 
will be needed.  

 The termination criterion should be modified, as there are 
multiple inconsistent open lists and, as a consequence of 
dynamic load balancing, there may be some graph nodes 
that are being communicated between processes/threads.  

 The costs of the partial solutions found should be 
communicated in order to use them to prune the paths that 
lead to suboptimal cost solutions.   

In this sense, the HDA* algorithm (Hash Distributed A*) 
[6] parallelizes A* using the decentralized strategy and it 
applies Zobrist´s hash function to assign each state to a unique 
process; in this way, when a process generates a node, the 
owner process can be identified and the node is transferred to 
it. This mechanism allows balancing the workload, leveling 
node quality, and pruning duplicates in an absolute way, as 
the nodes representing a same state are always sent to the 
same process. The algorithm was implemented using the MPI 
message passing library and asynchronous communication, so 
the algorithm can be executed either on distributed or shared 
memory architectures.  

On the other hand, the research carried out by [5] presents 
an adaptation of the HDA* algorithm developed using the 
shared memory programming tools provided by the Pthreads 
library; in this way, it is possible to eliminate some 
inefficiencies that arise when the original HDA* algorithm is 
run on a shared memory machine. The Jemalloc library [7] is 
used to avoid performance degradation due to contention in 
the access to the data structures managed by the dynamic 
memory allocator, caused by the frequent alloc/free 
operations. Algorithm performance is analyzed on a multicore 
machine. Moreover, a technique to create a state space 
abstraction that allows assigning state blocks to the threads, 
instead of individual states as it occurs with Zobrist´s hash 
function, is included in the algorithm. Then, the PBNF 
algorithm that allows threads to work during synchronization 
free periods is presented. The experimental work is done in 
part considering 250 easy instances of the 15-Puzzle, using 
the Sum of the Manhattan Distances heuristic, and an analysis 
of the speedup obtained as the architecture scales is carried 
out. Although a better performance is obtained with the PBNF 
algorithm, the algorithm is complex and does not use the same 
approach as the serial A*, so a superlinear speedup is 
obtained in some cases.  

A common problem that causes performance degradation 
in multi-threaded applications, which frequently perform 
allocation and deallocation operations, is the producer-
consumer relation that arises due to alloc-free operations 
carried out by different threads, which creates a need for 
synchronization to keep the consistency of the structures 
assigned to each thread by the memory allocator. In order to 

improve this, it is suggested to incorporate a pool of pointers 
to node in every thread (Memory Pool) to prevent thread A 
from freeing memory that is allocated by thread B; instead, 
thread A will store those pointers for future reuse.   

Based on the above, the HDA* algorithm is still 
interesting due to its simplicity. The focus of this paper is the 
incorporation of techniques to optimize the HDA* algorithm 
for its execution on multicore, which may lead to a better 
performance, and to carry out a scalability analysis when the 
workload and the amount of processors are increased.  

2 Contribution 

This paper presents a parallel algorithm suitable for shared 
memory architectures, based on the HDA* algorithm, which 
allows finding optimal solutions to combinatorial optimization 
problems, in this case to the N

2
-1 Puzzle. In this sense, the 

algorithm is similar to the one proposed in [5] but with the 
following differences: it incorporates an algorithm to detect 
termination in a decentralized way, which is an adaptation of 
the algorithm proposed by Dijkstra and Safra [8] [9]; threads 
accumulate a customizable quantity of nodes addressed to 
another thread before attempting their transfer, i.e. there are 
no transfers after each node generation; and a technique called 
Memory Pool is used to avoid performance degradation 
caused by alloc-free operations in a producer-consumer 
relation among different threads.  

The contributions are: 

 Carrying out experimental work running the HDA* 
parallel algorithm proposed, suitable for shared memory, 
on a multicore processor machine, using different initial 
configurations of the problem and varying the amount of 
threads/cores used, analyzing the performance obtained 
(speedup, efficiency) in each case.  

 Carrying out a comparison between the performance 
obtained by the parallel algorithm when active waiting or 
passive waiting is used while the thread is idle. 

 Documenting the benefits obtained when using the 
Memory Pool technique. 

 Carrying out a scalability analysis of the algorithm when 
the workload and amount of threads/cores used are 
increased. 

3 Characterization of the N
2
-1 Puzzle 

The N
2
-1 Puzzle problem consists in N

2
-1 pieces numbered 

from 1 to N
2
-1 placed on an N

2 
sized board [10]. Each square 

of the board contains one piece, so there is only one empty 
square.  

 A legal movement implies moving the empty square to an 
adjacent position, either horizontally or vertically, by 
moving the piece that was in the newly emptied square to 
the previous position of the empty square.  

 The objective of the puzzle is applying legal movements 
until the initial board becomes the selected final board. 
The solution to the problem should be the one that 



 

minimizes the number of movements required to achieve 
the final configuration from the initial given configuration.  

1.1. Heuristics 

Heuristic search algorithms use information about the 
problem to guide the search process, so they value the nodes 
based on the application of a heuristic function. Thus, they 
process first the node that looks more promising. The heuristic 
value of a node is an estimate and indicates how close it is to 
the solution node.   

A more polished heuristic will carry out estimates that are 
closer to the real cost; therefore, the algorithms that use it will 
need to process less nodes [1].  

The heuristic used by the algorithms presented for the 
resolution of the Puzzle problem is a variation of the sum of 
the Manhattan distance of the pieces with the addition of 
linear conflict detection among pieces, the detection of the last 
movements applied, and an analysis of corner pieces. The 
definition can be found in [11]. 

4  Sequential A* algorithm 

The A* algorithm [2] is a variation of the Best First 
Search technique where each node n is valuated in accordance 
to the cost of reaching it from the root of the search tree       
and a heuristic that estimates the cost to go from n to a 

solution node      . Thus, the cost function will be       
           . If the heuristic is admissible (i.e., it never 
overestimates the real cost), the algorithm will always find an 
optimal solution. 

The algorithm keeps a list of unexplored nodes (open list) 

ordered by the value of function   , and another list of already 
explored nodes (closed list) used to avoid loops in the search 
graph. Initially, the open list contains only one element, the 
initial node, and the closed list is empty. 

In each step, the node with the lowest    value (the most 
promising node) is removed from the open list and examined. 
If the node is the solution, the algorithm ends. Otherwise, the 
node is expanded (generating the children nodes by applying 
legal movements) and added to the closed list. Each successor 
node is added to the open list if it does not appear on either 
list, or if it does but its cost value improves that of the 
previous node (this verification is known as duplicate 
detection). 

Once the node that represents the final state has been 
found, the sequence of actions taken on the optimal path can 
be obtained by following the sequence of pointers to each 
parent node. 

5 HDA* algorithm for shared memory 

architectures 

The HDA* algorithm suitable for shared memory 
architectures proposed in [5] is based on the following: 

 Each thread has its own open and closed lists. 

 Each thread has an input queue known globally where the 
rest of the threads will deposit nodes that must be 

processed by this thread. The input queue must be 
protected by a lock to keep its consistency. 

 Each thread has a local output queue for each peer thread, 
which does not need to be protected since it will be for 
thread’s own use to avoid obstructions. 

 When a thread ti generates a node that belongs to another 
thread tj, it must be communicated by adding it to tj’s input 
queue at some point. In order to do this, the thread tries to 
take the lock associated to tj’s input queue. When the lock 
is obtained immediately, node transfer is done by copying 
the pointer, and then the lock is released (this enables 
subsequent access to the queue by another thread). 
Otherwise, the pointer is added to the local output queue 
for tj (there is no waiting time associated with this 
operation). 

 After thread ti carries out a certain number of node 
expansions from its open list: 

- For each non-empty local output queue, the thread tries to 
communicate the stored nodes on it to its owner thread. In 
order to do this, the thread tries to take the lock associated 
to the input queue of the corresponding thread. If the lock 
is obtained, all the pointers to node are transferred, 
leaving the local output queue empty. Otherwise, it is not 
forced to wait. 

- The thread tries to consume the nodes left by other 
threads on its own input queue. To do this, the thread 
must take the lock but it is only forced to wait if its open 
list is empty (in this case, it does not have any nodes to 
keep on working). 

Fig. 1 shows the communication scheme of HDA* 
algorithm for shared memory. Here the thread’s main local 
structures can be seen (open list, closed list, output queues) 
and also the global input queues. We can observe that thread 0 
and thread 3 have generated a node that corresponds to thread 
2; both of them attempt to take the lock associated to target 
thread’s input queue. On the one hand, thread 3 gets the lock 
immediately, copies the pointer and releases the lock. On the 
other hand, thread 2 does not get the lock immediately, so it 
adds the pointer to its local output queue for the target thread. 

The implementation was carried out with the tools 
provided by the Pthreads Library and Jemalloc, the dynamic 
memory allocator. The allocation of states to threads was done 
through the Zobrist Function. The input and output queues 
were implemented as a dynamic array that contain pointers to 
node. 

6 Implementations 

The implementations of the following algorithms were 
carried out in C Language. The compilation was done through 
Gcc, phase in which the memory allocator that is going to be 
used can be selected (in this case, it was ptmalloc [12] or 
Jemalloc [7]). 

6.1 Sequential A* 

The selected structure to implement the open list is a 
MinHeap [13] whose content is indexed by an Extensible 



 

Hash Table [14]. This structure allows nodes to be ordered 

according to the    function, so the operations of inserting a 

node, removing the node with the lowest    value and 
decreasing the priority of a node can be carried out in 
logarithmic order; at the same time, it enables carrying out 
searches to determine the existence of a node that represents a 
particular state in constant order. Additionally, an Extensible 
Hash Table[14] was used to implement the closed list, which 
allows the operations of insertion/ removal of a node and 
searching to determine the existence of a node that represents 
a particular state occur in constant order. 

The keys associated to the elements (nodes) stored in the 
Hash Tables are obtained by calculating the Zobrist Function 
[15] over the representation of the state. The Zobrist Table 
that was used is loaded from file and it will be the same for all 
the runs and instances of the problem selected as a case of 
study. The key will be represented with a 64-bit integer, 
which leads the function to assign the same key to different 
states of the search space (this happens because the number of 
possible problem states can be much higher than 2

64
). This 

case is not frequent during the run of the search algorithm. 

The kind of heuristic functions used is that which 
calculates the estimation of the cost directly, taking as input 
the representation of the state. Consequently, the heuristic is 
problem-dependent and can be selected before the compilation 
phase; this enables experimenting with different heuristic 
functions and analyzing the performance obtained. 

6.2 HDA* for shared memory 

A version of the HDA* algorithm suitable for shared 
memory similar to the one studied in Section V was 
implemented. Threads and synchronization mechanisms 
provided by the Pthread library were used. The assignment of 
states to threads was carried out through the Zobrist Function. 

Each thread will perform an A* search locally, keeping its 
local open and closed lists. The node communication strategy 
is based on the use of input and output queues. 

To avoid making an only thread detect the termination 
state by checking the state of the other threads and the state of 
their input queues, an adaptation of the Dijkstra and Safra’s 
termination detection algorithm was carried out, allowing all 
the threads to cooperate with such purpose. Each thread keeps 
a state (or color) and a counter of sent and received nodes - 
instead of the number of “communications” that were done

1
. 

The termination token will be represented with a shared 
variable with the following information: a counter of nodes in 
transit, a state (or color), and the identifier of the thread that 
owns the token at the moment; the data that corresponds to the 
token are not protected since only one thread will be able to 
modify them at a given point in time. The end of the 
computation will be communicated through a shared variable 
end. 

                                                           
1 The input queues do not count how many times a deposit was done over 

them, but the total amount of nodes that they store (logical dimension). 

Because of that, the amount of nodes in transit is calculated instead of the 

amount of “communications” or “deposits” that have not been received yet. 

This is a modification of the Safra and Dijskstra algorithm. 
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Fig. 1. Communication scheme of HDA* algorithm suitable for shared 

memory 

With the aim of making possible the pruning of nodes that 
will lead to suboptimal solutions, the threads share a pointer to 
the best solution found so far by all the threads (best_solution) 
and its cost (best_solution_cost). Both variables must be 
protected, since two threads can find two different solutions 
and try to update these values at the same time. 

The code that all the threads will run is identical, only 
thread 0 will be in charge of the additional tasks of generating 
the initial node and adding it to the input queue of its owner 
thread, initializing the common structures, detecting the 
termination state, and recovering from the shared memory the 
steps sequence that represents the solution to the problem 
once computation is finished. 

Each thread will carry out a series of iterations until it 
detects the end of the computation (through a change in the 
value of the variable end). In each iteration, the following 
phases are performed: 

 Phase of node consumption from input queue: the thread 
checks whether its own input queue is not empty. In that 
case, it tries to take the lock associated to the queue. When 
it obtains the access immediately, it takes all the pointers 
to nodes that were deposited on the queue, releases the 
lock, and then for each node whose cost is lower than 
best_solution_cost the thread performs the duplicate 
detection process adding them to the open list as 
appropriate.   

 Processing phase: the thread processes at least LNPI 
(Limit of Nodes per Iteration) nodes from its open list. 
When the thread removes a node, it verifies if its cost is at 
least best_solution_cost. If it is so, the thread empties the 
open list since the nodes on it will lead to suboptimal 
solutions. Otherwise, it checks if the node represents the 
solution and in that case it updates best_solution and 
best_solution_cost, after having taken the lock that 
protects them and having consulted again if the node cost 
is less than

 
best_solution_cost

2
. When the removed node is 

                                                           
2 This is necessary because two threads can find two solutions with different 

cost at the same time. If a solution had not been found yet or if the two 

solutions that have just been found improve the current partial solution, when 

the threads try to obtain the lock to update the shared data, the thread with the 

best solution could update the data first, and then the second thread could 



 

not the solution, it is inserted into the closed list, it is 
expanded (in this way successors are generated), and then 
for each successor the Zobrist Function is calculated so as 
to know which thread has to process it. When the node 
belongs to the thread that generated it, the thread carries 
out the duplicate detection and adds it on the open list as 
appropriate. Otherwise, the thread places the node in the 
local output queue for the target thread; when the amount 
of stored nodes on the output queue is higher than the limit 
LNPT (Limit of Nodes per Transference), the thread tries 
to take the lock of the target thread’s input queue and, if it 
obtains the lock immediately, it transfers the stored nodes 
leaving the output queue empty

3
. A node transfer simply 

means a pointer copy. When a thread is the first one that 
deposits nodes on the input queue of another thread (i.e., at 
that moment the input queue was empty) it must inform 
the action, just in case the other thread was idle waiting for 
work. 

 Idle phase: after the processing phase, if the thread stands 
idle because its open list is empty, it will send nodes 
stored on each non-empty output queue, and it will wait 
for any of the following events: 

- End of calculation: thread 0 detected the termination state 
and it changed the value of the end variable, so that this 
state can be known. 

- Termination token arrival: the thread must update the 
shared variables that correspond to the token, based on 
the termination algorithm, and pass it to the following 
thread, which means that the thread must change the 
value of the token owner field (informing the successor 
thread that it is the new owner). On the other hand, thread 
0 verifies if the termination conditions are given. If this is 
so, the value of the end variable changes. Otherwise, it 
starts a new round to detect termination. 

- Work deposit on its own input queue: the thread must 
obtain the lock associated to its input queue, it must take 
all the pointers to nodes that were deposited on the queue 
(leaving the input queue empty), and release the lock. For 
each node whose cost is lower than best_solution_cost the 
duplicate detection is carried out, adding the node to the 
open list as appropriate.   

The termination detection algorithm involves updating the 
variable state (or color) and the counter of the thread every 
time it adds nodes to the input queue of another thread or 
every time it removes nodes from its own input queue, either 
increasing or decreasing the local counter of nodes that were 
deposited and received respectively. 

To resolve performance degradation when an alloc-free 
relation between threads happens, a pool of pointers to node 
(Memory Pool) was incorporated to each thread, where the 

                                                                                                     
obtain the lock to carry out its update. If the condition about the cost is not 

verified again, the second thread could make effective the update and a 

suboptimal solution would be stored. 
3 This is different to the version proposed by Burns in which after each node 

generation that belongs to another thread tj, the thread tries to take the lock 

associated to tj’s input queue. Moreover, here when the lock is obtained all the 

nodes stored on the output queue for the target thread are communicated, this 

is another difference with Burns’ version. 

pointers to node that the thread wishes to “set free” for a 
further use are stored. This technique prevents access by 
thread A to the structures assigned to another thread B by the 
dynamic memory allocator, when the former wants to “free” a 
pointer allocated by the latter, situation that would produce 
contention. 

Finally, the possibility to compile the algorithm to carry 
out a wait in a passive or active way when the thread stands 
idle was incorporated. 

7 Experimental results 

For the experimental work, a machine with two Intel ® 
Xeon ® E5620 [16] processors was used. Each processor has 
four 2.4 Ghz physical cores. Each core has two L1 caches of 
64 KB for data and instructions respectively and one L2 cache 
of 256 KB. At the same time, all processor cores share a L3 
cache of 12 MB. Each processor has a memory controller, 
therefore, the machine’s memory design is NUMA and it uses 
a QuickPath Interconnect (QPI) interconnection of 5.86 GT/s. 
The machine has 32 GB of RAM, DDR3 1066 Mhz. 

The tests were carried out taking into account the 100 
initial configurations of 15-Puzzle used by [17], numbered 
from 1 to 100. Ten of the configurations with more steps for 
their solution [18] were also taken into account in the parallel 
algorithm scalability analysis, since for some of them 
resolution time is considerable. These were numbered from 
101 to 110. 

7.1 Sequential A* 

7.1.1 Effect in the use of Jemalloc 

The sequential algorithm was run with the 100 initial 
configurations and the final configuration suggested by [17] 
using the heuristic function presented in Section II.A and 
varying the dynamic memory allocator between ptmalloc and 
Jemalloc. Jemalloc was configured to work with 256 arenas, 
as this configuration will be used during the parallel algorithm 
tests.  

For each initial configuration, 10 runs were performed and 
the runtime in seconds for each test was calculated. From the 
results, it can be observed that the average runtime of each 
configuration obtained from the samples that use Jemalloc 
presents a reduction ranging between 0.9% and 15.8% with 
respect to the average runtime for the same configurations 
using ptmalloc.  

As it has been proved that when Jemalloc (configured to 
work with 256 arenas) is used with sequential A*, algorithm 
performance improves, the above mentioned allocator will be 
used in the tests from now on. 

7.1.2 Effects in the use of Memory Pool technique 

The sequential algorithm was run with the 100 initial 
configurations and the final configuration proposed by [17], 
using the heuristic function presented in Section II.A, 
Jemalloc (configured to use 256 arenas) and the pool of 
pointers to node “Memory Pool”. For each initial 
configuration, 10 tests were run. Then, the average runtime in 
seconds obtained for each configuration was compared with 



 

the results presented in the previous section that do not use the 
“Memory Pool” technique. 

From the comparison, it can be observed that the “Memory 
Pool” technique does not bring any advantage for the 
sequential application: 17 configurations suffered an 
increment of their average runtime of about 2% and 9%; 15 
configurations increased their average runtime between 1% 
and 2%; 43 configurations achieved a modest increase in its 
average runtime which goes between 0% and 1%; finally, 25 
configurations reduced their average runtime between 0% and 
6.45%. 

Generally, relevant variations in performance achieved by 
instances with a significant runtime are not observed. Thus, 
the sequential results obtained without using the “Memory 
Pool” technique will be used for the performance analysis of 
the parallel algorithm. 

7.2 HDA* for shared memory  

The HDA* parallel algorithm is nondeterministic, i.e. 
when different experimental samples are taken for the same 
initial/ final configuration and the same parameters, the results 
obtained by the algorithm may be different. That is possible 
because an initial configuration can have multiple optimal 
solutions and, as threads distribute the space of states 
dynamically among themselves, the nodes processed by a 
thread will vary depending on how asynchronous events occur 
in the system. 

In the tests, affinity was used to allocate each thread to an 
exclusive core using the function sched_setaffinity() [19]. In 
those tests with 4 threads 1 pair of threads was allocated to 
each machine processor, and in those tests with 8 threads 1 
thread was allocated to each physical core of the machine. 

The selected initial configurations are those used in 
Section VII.A whose sequential runtime is of at least 5 
seconds

4
. For performance analysis, the configurations 

numbered from 101 to 106 were also taken into consideration; 
sequential and parallel tests for configurations 107, 108, 109 
and 110 exhausted available RAM memory and were 
therefore aborted. 

The Jemalloc memory allocator, configured to work with 
256 arenas, and the heuristic function presented in Section 
II.A were used. For each initial configuration and each 
parameter group, 100 samples were obtained. The parameters 
are: the amount of cores/threads, whose values vary between 4 
and 8; LNPI between 1, 5, 50 and 500; LNPT was set in 26 
nodes. Then, the average runtimes resulting from the 100 runs 
for the same configuration and set of parameters, which will 
be called average sample, were obtained. 

7.2.1 Passive waiting vs. active waiting  

Two test sets were run using active waiting and passive 
waiting respectively, LNPT was limited to 26 and the Memory 
Pool technique was used.  

Average runtimes brought by the test sets do not show an 
apparent benefit for any particular waiting technique. This 

                                                           
4 Configurations are as follows: 3, 15, 17, 21, 26, 32, 33, 49, 53, 56, 59, 60, 
66, 82, 88, 100 

may be due to algorithm asynchronism, as most times threads 
perform attempts to take locks and in case they do not get it 
they keep on working. Additionally, each thread is run on an 
exclusive core. Therefore, either waiting actively or resorting 
to the Operating System to perform a passive wait does not 
cause drastic changes in performance. 

7.2.2 Effects in the use of Memory Pool technique 

Two test sets were run including the Memory Pool 
technique or not; LNPT was limited to 26, and active waiting 
was used. 

Average runtimes of the test set that uses Memory Pool 
reduced the average runtimes of the test set that does not use 
that technique between 4.5% and 12.82%. Generally, the 
reduction in the average runtime for the samples with 4 
threads is between 4.5% and 8.64%, while the reduction in 
tests with 8 threads is between 6.43% and 12.82%. 

Therefore, the advantage of this technique for reducing 
contention in the access to structures assigned to each thread 
by the dynamic memory allocator, in cases with an existing 
producer-consumer relation between threads by alloc-free 
operations, is shown. 

7.2.3 Performance Analysis 

The experimental tests discussed in the previous section, 
which optimized the results, were considered to assess parallel 
algorithm performance

5
. Moreover, tests were carried out for 

configurations 101 to 106 following the same strategy. Then, 
for each configuration and number of threads, the average 
sample that minimizes average runtime, i.e. the sample whose 
LNPI parameter value optimizes performance, was selected. 

To assess algorithm scalability, the average samples 
selected for each configuration were organized according to 
their sequential workload (sequential time). In this sense, 
escalating the problem means increasing the number of 
processed or generated nodes. On the other hand, the 
architecture is escalated by increasing the number of cores 
used to solve the problem. 

Fig. 2 shows the Speedup obtained by the average sample 
selected for each configuration using 4 cores and 8 cores, 
while Fig. 3 shows the Efficiency obtained. For tests with 4 
cores, the Speedup obtained varies from 2.95 to 4.01, while 
Efficiency ranges from 0.73 to 1.0034. Tests with 8 cores 
show a Speedup between 5.14 and 8.15, and Efficiency 
between 0.64 and 1.018.  

Both average samples that obtained a superlinear Speedup 
present a negative Search Overhead

6
 (-2.92 for the average 

sample with higher Speedup with 4 cores and -9.86 for the 
average sample with higher Speedup with 8 cores). Therefore, 
the parallel algorithm processes fewer nodes than the 
sequential algorithm. This situation is possible for this class of 
algorithms due to the causes explained in [20]. 

                                                           
5 The tests of interest are those that use active waiting, limiting LNPT in 26 

and using the Memory Pool technique. 
6 The Search Overhead represents the percentage of increment in the number 

of nodes expanded by the parallel algorithm against the sequential algorithm 

and it is calculated with the formula 100x(NP/NS -1), where NP= number of 

nodes processed by the parallel algorithm and NS = number of nodes 

processed by the sequential algorithm. 



 

 
Fig. 2. Speedup achieved by the HDA* algorithm for shared memory, by 

configuration 

 

 
Fig. 3. Efficiency achieved by the HDA* algorithm for shared memory, by 

configuration 

After analyzing the results shown in Fig. 2 and 3, it can be 
concluded that, for the same workload (initial configuration), 
if the number of cores is increased, the Speedup obtained is 
better. This proves that the problem is solved faster as more 
cores are used. However, efficiency does not normally remain 
constant. This decrease in efficiency is due to different 
factors, such as sequential parts especially at the beginning 
and at the end of computation, synchronization, idle time, load 
unbalance, search overhead increase, among other factors. 

It is observed that when the problem is escalated 
maintaining the same number of processors, efficiency 
generally improves or remains constant as overhead is less 
significant on total processing time. 

8 Conclusions and future lines of work 

A version of the HDA* algorithm that is suitable for 
shared memory architectures and incorporates an effective 
technique to avoid performance degradation when there is a 
producer-consumer relation between various threads due to 
alloc-free operations was presented. The algorithm was run 
taking the Puzzle problem as study case and a more polished 
heuristic with respect to the classical one. On the other hand, 
it was proved that using active or passive waiting when the 
thread becomes idle is irrelevant, as there are no significant 
variations in performance. 

This paper shows a scalability analysis of the parallel 
algorithm on a machine with multicore processors. From the 
results obtained, it can be concluded that the behavior 
exhibited is typical of a scalable parallel system, where 

efficiency can be kept constant when workload and 
architecture are escalated. 

Future lines of work focus on contrasting the algorithm 
presented in this paper against HDA* for distributed memory 
(implemented exclusively with MPI), comparing the 
performance achieved and the amount of memory used. 
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