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Abstract 

The occurrence of flood events has become more frequent in many parts of the world over the past 
30 years and, consequently, more people are exposed to flood damages. Modeling and 
computational simulation provide powerful tools which enable us to forecast, in order to reduce 
flood damages. This work is oriented to address input parameter uncertainty toward providing a 
methodology to tune the flood simulator and so achieve lower errors between simulated and 
observed results. Even a much reduced parameter set is considered to run the flood simulator, the 
search space is large. The results obtained by using a parametric simulation heuristic and a 
clustering technique are promising and a reduction of the search space was achieved, consequently 
we could reduce the computational cost of the search for the best scenario and the optimization 
scheme implemented enables us to get a better understanding of the problem. 

1. Introduction 
Flooding is one of the most common natural hazards faced by the human society. Future climate 
change and its impact on flood frequencies and damages, make this problem a serious 
environmental problem. Flood damage refers to all varieties of harm caused by flooding. The 
computational simulations are used extensively as models of real systems to evaluate output 
responses. In particular, computational models are used to reach a better understanding on 
inundation events and to estimate flood depth and inundation extent. For these reasons, simulation 
becomes a powerful tool for predicting flood events and minimizing their environmental effects. 

Predictions of flood simulation extent have been made possible by advances in numerical 
modelling techniques and increases in computer power. Nevertheless, a series of limitations cause a 
lack of accuracy in forecasting, such as the case of uncertainty in the values of the input parameters 
to the flood model. Hydrodynamic modelling of a fluvial channel involves defining certain 
parameters as input variables which, for various reasons, may incorporate uncertainties in the 
results. Firstly, these parameters are measured or estimated in certain particular points but the value 
of such parameters must then be interpolated to the whole domain. For example, levees height can 
be measured in some sections but then it is necessary to estimate the heights for the other sections. 
Secondly, the parameters measurement is not direct, as it involves an estimation error associated 
with the estimation methodology [1]. The parameters uncertainty has an important impact on the 
simulation output, which is far from approaching the actual observed data [2]. 

To overcome this problem, in our previous work, we implemented a parametric simulation in order 
to find the best set of parameters, or adjusted set, which will be used as the input set for the 
underlying flood simulator emulating an ''ideal'' flood simulator as much as possible. The main 
objective of this work is to add an optimization process to the classical prediction approach to tune 
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input parameters, in order to minimize the difference between real and simulated result. The 
optimization method results in a large number of scenarios carrying out the search for the optimal, 
or suboptimal, set of input parameters. This process requires a huge amount of computation and it 
is on possible with resources in parallel programming and high performance computing. 

Our work takes advantage of the results performed by the research group of High Performance 
Computing for Efficient Applications & Simulation at the University Autonoma of Barcelona, with 
close collaboration of the hydraulic engineering team at the National Institute of Water of 
Argentina. To conduct the research we selected the computational model EZEIZA V (Ezeiza), 
currently used as one of the tools of the Hydrologic Alert and Information System of the National 
Institute of Water (INA) at Buenos Aires, Argentina, in order to alert as early as possible on the 
occurrence of extreme water level events at the Paraná River basin, in South America [3]. The main 
limitations of this computational model are related to the reduced scale of the problem resolution 
(1D) and the inaccuracies in the river geometry representation. The model challenges are related to 
the uncertainty reduction in determining the flood peak arrival. This work goes in this direction by 
providing a better model calibration [4]. 

2. The flood wave simulator 
Our work starts using a computer model of a real system such as flood events. The computational 
model is the conceptual model implemented on a computer, and the conceptual model is the 
mathematical representation of the physical problem to be modelled [5]. The selected software, 
Ezeiza, is a computational implementation of a one-dimensional hydrodynamic model for a flow 
net, based on the Saint Venant equations [6].  

Ezeiza software family started to be developed in the '70s and its ongoing updating is performed by 
the INA staff.   This computational model was chosen because of its simplicity when exporting 
results to output files, which can be processed by statistical and/or mathematical software, and for 
its convenience when running parametric simulations by changing the parameters values in the 
input files [4]. These features are very useful to take forward the tuning methodology. 

An exhaustive study of the Paraná River model performance was carried out later by Ing. Latessa at 
INA, who stated the need to improve Ezeiza simulated results [7]. The utility of several efficiency 
criteria to evaluate hydrological performance model is addressed in [8] 

3. Paraná River Model 
La Plata basin is one of the most important rivers systems in the world. The Paraná River is one of 
the main rivers that form the basin. This is the second longest of South American rivers and it has a 
length of 4000 km alongside its major tributary, the Paraguay River (2550 km). The stretch of the 
Paraná River simulated by Ezeiza extends between the Yacyretá dam (Corrientes) to Villa 
Constitución (Santa Fe), both in Argentina. The Paraguay River runs from Puerto Pilcomayo 
(Formosa) to its confluence with the Paraná. Both river basins were divided into a number of 
sections, to measure rivers flow or height in each of them. 

Large areas of land along the Middle and Lower Paraná margins are frequently subject to extended 
floods, which cause considerable damage. During the highest floods, monthly discharges at Middle 
Paraná exceed twice, and even three times, the mean discharge.  A complete description of the 
highest floods at the Paraná basin and the possible climate forcing of such events are shown in [9]. 

The simulator Ezeiza prediction method is for height prediction in Parana River. In other words, 
Ezeiza is used to forecast daily water level variations at the Paraná River basin. The data required 
to define the modelled river system, as shown in Figure 1, is as follows: 
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• Initial conditions: levels and flow at every point of the river's domain. 
• Boundary conditions: time series of rivers levels and flow at upstream and downstream points. 
• Geometry data: data on the topography of the system. 
• Input Parameters: Manning values and levees height, at every river sections. 
• Observed data: water heights of Paraná River measured at each monitoring station. 

This information was provided by INA, including the observed (actual) data of 1994 - 2011 period 
of time whose values are daily heights measured at 15 monitoring stations placed along the Paraná 
River basin.  

 

Figure 1 Flow net topology 

Despite following 15 control stations, the levels are modeled throughout the length of the river. To 
define the flooding areas, the information of the modeled height should be crossed with ground 
levels. In general, every city has predefined levels of warning and evacuation. 

When a simulation is run, Ezeiza returns a time series of heights values, which are calculated at 
each one of the 15 monitoring stations. These simulated data and the observed data, for the 
simulated period of time, are compared with each other to determine a similarity index (SI) that 
will be used to measure the simulation accuracy, to which we will return later. 

The more sensitive input parameters of the flood routing models are the rugosity coefficient, or 
Manning values, and the levees height. Manning values for flood plains can be quite different from 
values for channels; therefore, manning values for flood plains are determined independently from 
Manning values for channel [10]. Finding an adjusted set of parameters is a key issue for our work, 
because it is the major step in order to develop a tuning methodology. 

4. The Tuning Methodology  

4.1.  Parametric Simulation 

The parametric simulation consists of changing the values of the internal input parameters and 
launching as many simulations as different combinations of parameters values are possible. In this 
kind of experiments it is possible to make deliberate changes in the parameters values. A scenario 
is defined by a particular setting of the set of parameters. 

The number of possible scenarios is determined by the cardinality, Ci, for each of the N parameters 
considered. For each parameter i we define an associated interval and an increment value, which 
are used to move throughout the interval. For example, given the parameter i we define the 

associated domain and step values with the tuple:   � ��������	� , �������
� �, ����� � 
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We show in equation ( 2) the cardinality expression for parameter i, where #Scenarios, in equation 
( 1), is the calculation of the total number of scenarios that we obtain after performing all the 
possible combinations of parameters values. As we perform an exhaustive parametric simulation in 
this phase, we define each new scenario by changing a single parameter, leaving the other fixed.  

Paraná River basin, which represents the model domain, was divided into 76 sections in order to 
measure river flow and height in each of them. Each section is characterized by a Manning value 
for floodplain, another value for riverbed and a levee height. Here we itemize the parameters 
domain: 

• Manning values for floodplain are within the [0.1, 0.2] range, with an ideal step of 0.01 
• Manning values for riverbed are within the [0.015, 0.035] range, with an ideal step of 0.005. 
• Levees height is within the 5m to 50m range with a step of 5m. (The step value is set according 

to the local geography) 

4.2. The Optimization Problem 

In order to tune the simulation, a specific objective of this work is to implement an optimization 
process to find the best set of parameters. We mean, our objective is finding the combination of 
input parameters that minimizes the deviation of the simulator prediction from the real scenario. 

Optimization is generally defined as the process of finding the best or optimal solution for a given 
problem under some conditions. Formal optimization is associated with the specification of 
mathematical objective function (called f) and a collection of parameters that should be adjusted to 
optimize the objective function. Mathematically an optimization problem can be stated as: 

��'/min+(')  

�,-.���	��	' ∈ � ( 3) 

Where x is the variable; f is a function (+ ∶ �	 → 	ℝ);  S is the constraint set, and  ∃	'6	 ∈ �  such 
that +('6) 	≤ +(')	∀'	 ∈ �,  for minimisation, and  +('6) 	≥ 	+(')			∀'	 ∈ �,  for maximisation. 

In this work, the optimization process, expressed by equation ( 3), can be defined as follows: We 

find the parameters vector '∗;;;;< = ['�
∗, '>

∗, … , '�
∗ ], N-dimensional, which optimize equation ( 3), 

where 	'∗	;;;;< 	 ∈ � and the domain �	 ⊆ 	ℝ� represents the constrain set defining the allowable values 

for the '∗;;;;< parameters. The search space of the problem is the S-dimension. In our problem, the 
search space consists of as many vectors as different combinations of parameter values are 
possible; so, we can say that S-dimension states the number of scenarios. Furthermore, we have to 
define a process to find a setting for the parameter vector '<, which provides de best value for the 
objective function  +('<). When there is no explicit form of the objective function and the parameter 
settings or design variables are discrete values, thus the optimization problems became discrete 
optimisation via simulation problems. We use the results obtained by [11] [12] 5.  
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As simulation is computationally expensive, in particular when we need a greater search space, i.e., 
when we include more sections in the parameters vector, a new alternative was explored. The 
Monte Carlo (MC) based approach is one of the most popular, even though if the yield solution 
could be not the global optima, but rather an approximate good solution. MC is a statistical 
sampling method used to approximate solutions to quantitative problems.  

4.3. Problem Delineation  

An exhaustive search always guarantees finding a solution, if there exist a solution. In order to 
determine that solution, it may be necessary to test each possibility and verify if it satisfies the 
statement of the problem. The computational cost is high because it is proportional to the search 
space dimension. The search space for this model’s parameters is determined tacking into account: 
a) the parameters corresponding to 76 sections along the river basin, b) considering that each 
section is divided into 3 to 5 subsections and c) the parameters domain, as we described in a 
previous section. 

In an initial approach, the search of the optimum was done through an exhaustive search technique, 
even though it implies a lot of search time, it is guaranteed that the optimum is found. We 
combined only the Manning values, leaving aside levees heights. On this basis, if we had 
implemented an exhaustive search to find the adjusted parameters we would have launched 11276 
simulations; this means that Ezeiza should have be executed 10154 times. With the aim to reduce the 
search space (ℝ�), we had implemented a parametric simulation algorithm combining the possible 
Manning values in sections 70 – 72 – 74 and 76. The domain experimentation cardinality, which is 
shown in Table 1, was calculated using equation ( 2). We run the simulator 4096 times: (4 x 2)4. 
Even with this reduced setting of the parameter vector dimension, the search space is large. The 
observed data and the simulated data are time series of daily river heights at each monitoring 
station. The period simulated was 365 days (1999 year).  

Manning Interval Cardinality C value 

Floodplain <[0.1, 0.2], 0.1> ((0.2-0.1)+0.1/0.1 2 

Riverbed <[0.010, 0.04], 0.01> ((0.04-0.01)+0.01)/0.01 4 

Table 1: Domain cardinality for Manning values 

We implemented a solution to the “search problem”, so we say to the “optimization problem”, by 
using a parametric simulation technic applied to the reduced search space. We used the root mean 
square error (RMSE) as a metric to calculate the SI index, in order to evaluate the simulator 
response for each simulation scenario launched with Ezeiza and to find the minimum SI. We 
described in detail the steps involved in this methodology in [13]. The improvement percentage 
experiences, regarding simulated results come from INA’s scenario currently used, ranges from 
33% to 60% in the best three predicted stations. Running a full simulation under the conditions 
stablished lasted 2 minutes. When we run the 4096 scenarios, the execution time lasted 8192 
minutes (137 hours). We used a master-worker approach to parallelize the method and reduce the 
computing time, this solution, however, is not sufficient when the dimension of the parameter 
vector grows. The computational cost grows exponentially in function of the number of section 
considered. In the future, it will be necessary to address this issue with a lower computational cost. 
Therefore, a better approach optimization technique, rather than an exhaustive search, must be 
used. Now, this approach, in a first phase, is using a computational process based on an iterative 
method of MC scheme, which is combined with a K-Means clustering method, in order to identify 
the regions where the optimum is. A second phase consists in a reduced exhaustive search [14]. 
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The selected scenarios that have a better mean SI value than the previous ones are accumulated, in 
order to reuse past information. The MC program stops when two consecutive iterations cannot be 
able to improve the SI value, i.e., it becomes stationary or asymptotic, and the MC stores the last 
time when the average mean value was improved. We mean, it stops when the prediction error 
cannot be improved by the method. At each MC iteration, the parameters values of the input 
scenario were randomly selected to be fed into the simulator Ezeiza. To evaluate the improvement 
achieved by the method, we measured the SI for each scenario, which provides an adjustment rate 
between simulated results and observed data at each monitory station, taking into consideration the 
complete time series.  

The final SI value is the mean of the RMSE calculated in the 15 output stations. The best SI value 
is compared with the SI reached by running Ezeiza with the INA scenario. The INA simulated 
results are the reference point to get the improvement rate achieved. This rate resulting of MC 
method can be expressed as follows:   

B����C�����DEFE�G� =
�-�(�BH�I, − �BDJK�FLMGN )	

�BH�I
 

( 4) 

where ������O�N   represent the best scenario, the  �BDJK�FLMGN  is the minimum prediction error and 
�BH�I is the INA prediction error. 

5. Experimentation 
The simulator is used as a black box, even though the more realistic the simulator is. We used the 
reduced search space of 4096 scenarios, which is the same domain configuration as the one used in 
our previous work. The same period of time was used to carry on the simulation and 4 section were 
selected, which are located at the lower Paraná. We remained the same conditions to evaluate the 
utility and reliability of this optimization method and compared both final results. 

The objective of the index SI is to provide a metric to select the best scenarios. Each scenario 
configuration is represented by the objective function, and this function depends on the vectors 

Sım;;;;;;;<		and		T-�;;;;;;;<, whose components are the simulated and the observed data respectively, for each 
output station and for each simulation day. The restrictions are the possible ranges of values that 
the parameters can take. This optimization problem is expressed mathematically in equation ( 5)  

U�����V�	���W������	�����	(�B) 					+(	XYZ;;;;;;;;<	,			[\�;;;;;;;;<)  

�,-.���		�� W���	 ∈ [01 − 01 − 1999	. . 31 − 12 − 1999] ( 5) 

 0.1	 ≤ U���cd��� ≤ 0.2  

 0.01 ≤ U���e�W ≤ 0.035  

 �������	 ∈ 	 g	��d����W	��������h ⊆ g76	��������h  

Table 2 shows the scenarios resulting of minimum average of the index SI. These are the scenarios 
that allow us to reach better simulated results than the INA scenario results, where M-F is the 
Manning value for floodplain and M_R for riverbed. We mean that the improvement rate, as we 
show in equation ( 4), are the best achieved.  

We are measuring the index mean for the 15 stations, so we cannot reach rates upper 15% yet for 
all the stations at the same time. In the other hand, some individual stations were improved in 30-
40% and sometimes two stations resulted enhanced (Rosario 28% and San Martín 25%, but these 
enhancement were achieved in different scenarios). This situation needs to be improved in the 
future. 
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 Section 70 Section 72 Section 74 Section 76 Improv. 

 M-F M-R M-F M-R M-F M-R M-F M-R rate 

Sce-1 0.02 0.1 0.02 0.1 0.03 0.2 0.03 0.1 14% 

Sce-2 0.02 0.2 0.02 0.1 0.03 0.2 0.03 0.1 13% 

Sce-3 0.03 0.1 0.02 0.1 0.03 0.1 0.03 0.1 12% 

Sce-4 0.02 0.2 0.02 0.2 0.02 0.1 0.03 0.1 11% 

Sce-5 0.02 0.1 0.02 0.2 0.03 0.1 0.03 0.1 14% 

Table 2: The best scenarios selected by the first phase of the optimization scheme 

Section 70 72 74 76 

Mann.RiverBed 0.02, 0.035, 0.03 0.02 0.02, 0.025, 0.03 0.03 

Mann.FloodPlain 0.1, 0.2 0.1, 0.2 0.1, 0.2 0.1 

Table 3: Restrictions to the parameters values for the second phase 

This phase was successful. The search returned 4 scenarios with an improvement rate between 30% 
and  40% in 3 stations. We selected the best: 

Section 70: (0.03, 0.2), Section 72: (0.02, 0.1), Section 74: (0.035, 0.1), Section 76: (0.030, 0.1) 

with an improvement rate of :  Station Rosario: 31% , Station San Martín: 35% and Station 
Diamante 38%. We point out that these ratios were achieved with the same scenario. 

6. Results and Conclusions 
In our previous work, the parametric simulation allowed us to test the goodness of the method and 
find 5 scenarios whose prediction error were less than the RMSE reached with INA’s scenario and 
the improvement was greater than 30% for each station. We run all the possible scenarios and we 
concluded that we could not get the same good results for more stations, at the same time and with 
the same scenario.  Now, in this work, we use a two phase scheme. Firstly, we get the best 
(adjusted) set of parameters using a MC asymptotic scheme. MC + K-means arrived to the end in 4 
steps, is said in 800 simulator running. If the new SI is not lower than the last one stored then there 
is no need to run MC again. We stopped the process when the new SI is not better than previous 
one. Secondly, we run a reduced exhaustive search for the reduced search space resulting from the 
previous phase, is said 76 simulator running were added. In this step we repeat the search used in 
the previous approach. We got an improvement of 30% to 40% and it is worth pointing out that we 
reduced the time of all the process. First, we needed to launch 4096 simulations and now we 
needed to launch 876 simulations. We have to enhance the prediction and adjust the heuristic 
technique but the results are promising and a better understanding of the problem was achieved. As 
future work, the MC method + K-Means clustering technique must be tested for all the sections and 
a huge amount of parameters values should be computed. Just this situation requires high 
performance computing. This will be a key resource to tune the simulator Ezeiza for a more 
accurate forecasting. 
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