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Abstract. The large amount of textual information digitally available today gives rise to the 

need for effective means of indexing, searching and retrieving this information. Keywords are 

used to describe briefly and precisely the contents of a textual document. In this paper we 

present a new algorithm for keyword extraction. Its main goal is to extract keywords from text 

documents written in Spanish quickly and without requiring a large training set. This goal was 

achieved using auto-associative neural networks, also known as autoencoders, trained using 

only the terms designated as keywords in the training set, so that these networks can learn the 

features characterizing the important terms in a document. 
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1   Introduction 

The large amount of textual information digitally available today gives rise to the 

need for effective means of indexing, searching and retrieving text documents quickly 

and without having a user to read them entirely, which in many cases is not feasible. 

Keywords are used to describe briefly and precisely the contents of a text document, 

so that a user can find documents relevant to him/her without having to read them 

beforehand. However, there are many documents without keywords and the task of 

manually assigning keywords to them is slow, difficult and highly subjective. For this 

reason it is beneficial to have tools that assist professional indexers by providing a list 

of terms candidates to be keywords. Some of the most known keyword extraction 

methods are described in Section 2. 

In this paper we present a new algorithm to extract keywords from text documents 

written in Spanish. This algorithm uses a set of example documents to build a 

classification model capable of learning the structural features of the terms considered 

keywords, and to recognize terms having these features in unseen documents. The 

model is built by training an autoencoder, which assigns a reconstruction error to each 

term of a document. This allows us to select the terms with lower reconstruction error 

as keywords. The proposed algorithm is explained in detail in Section 3. 
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One of the main goals of this algorithm is that such list of candidate terms contain 

the largest possible number of descriptive terms. Also it is desirable that the 

classification model can be constructed using a small training set. 

The results of the experiments carried out are presented in Section 4, and Section 5 

summarizes conclusions and future work. 

2   Related Work 

The discipline of machine learning has been attempting to tacke the problem of 

keyword extraction since a few decades ago. This approach aims to transform text 

data into a structured representation suitable for learning algorithms. Such algorithms 

work with a feature set calculated for each term of a document and consider keyword 

extraction as a classification problem, determining whether each term is a keyword or 

not. Supervised learning methods usually use the terms designated as keywords by the 

authors of the training documents as examples of one class, and the rest of the terms 

as examples of the other class. The latter, the class of the terms that are not keywords, 

is naturally much more numerous than the other class. This imbalance in the number 

of elements of each class, together with the inherent ambiguity of natural language, 

makes keyword extraction a very difficult problem to solve. 

In order to find a suitable representation for learning algorithms, many keyword 

extraction methods apply stemming, which consists of reducing each term to its 

morphological root, and filter terms using a stoplist, which is a list of terms with low 

semantic value (stopwords) such as articles, prepositions, conjunctions and pronouns. 

One of the first advances in considering keyword extraction as a classification 

problem to be solved through machine learning comes from Peter Turney [1]. Turney 

developed an algorithm called GenEx that applies a set of rules whose parameters are 

tuned in a first stage using a genetic algorithm. These rules are used to rank terms and 

select the ones that have the highest score in the second stage. GenEx has a pre-

processing step in which stemming is applied to terms and stopwords are filtered. 

Another significant example is KEA, developed by Ian Witten and Eibe Frank [2]. 

KEA uses TF-IDF [3] and position in the text as features of the terms, and a third 

attribute that represents the number of times a given term was selected as keyword in 

the training set, which requires that all the documents belong to the same domain for 

this attribute to have meaning. This algorithm uses a Naïve Bayes classifier that 

calculates for each term the probability of being chosen as keyword. Like GenEx, 

KEA also applies stemming and stopword filtering. 

In a previous paper we introduced a keyword extraction algorithm called LIKE [4]. 

That algorithm has the particularity of being completely language-independent as it 

does not use specific linguistic resources. As in the aforementioned works, we treated 

keyword extraction as a classification problem using a neural network to classify 

terms. Since the number of terms that are considered keywords in the training set is 

much lower than the terms that are not, the number of elements belonging to each 

class is heavily unbalanced, which greatly hinders the training of the neural network 

[5]. To deal with this problem a clustering algorithm was applied on the elements of 



the majority class to equate its number to the amount of elements of the minority class 

before training the network. 

One of the most recent proposals on the keyword extraction area is Maui, 

developed by Olena Medelyan [6]. Maui is an updated version of KEA which 

incorporates more attributes and replaces the Naïve Bayes classifier with bagged 

decision trees [7]. Like KEA, Maui uses a stemmer and a stoplist of the given 

language and it is built on top of the machine learning platform Weka [8]. Optionally, 

Maui gives the ability to use Wikipedia Miner [9] to extract information from 

Wikipedia and use it as a knowledge base to calculate more features such as the 

number of articles containing a given term. 

Unlike the aforementioned methods, the algorithm introduced in this paper does 

not use stemming nor stoplists, as such mechanisms are very well developed for 

English but are not on the same level of quality for Spanish and other languages. 

Also, the construction and validation of these resources must be supervised by 

linguists and language professionals to ensure its correctness. Nevertheless, we 

applied another mechanism to filter malformed or insignificant terms. This 

mechanism consists in tagging each word of the document according to its 

grammatical function (noun, adjective, verb, article, etc) and discarding the terms 

starting or ending with an article, preposition, conjunction, pronoun or verb, following 

the idea that keywords are usually formed by nouns and adjectives. 

3   Description of the Algorithm 

In this work, instead of considering keyword extraction as a discrimination 

problem (distinction between the elements belonging to each class), we consider it a 

recognition problem (learning of the properties that determine the membership of an 

element to a group) and to that end we apply an auto-associative classifier [10]. 

Auto-associative classifiers train using only the elements of the class of interest, 

which in our case are the terms designated as keywords by the autors of the 

documents of the training set, and are therefore more tolerant to class imbalance. This 

has the additional benefit that the training is conducted much more quickly than in the 

discriminant classifiers, since the latter need to analyze the examples of both classes. 

3.1   Pre-processing 

The first step of the proposed algorithm consists in splitting the text in sentences 

and words using two list of delimiters provided as parameters. These delimiters can 

be any character sequence and will not be part of extracted terms. Once sentences and 

words are obtained the algorithm proceeds to compute the features for the terms. 

Terms are represented by N-grams, which are sequences of N consecutive words in 

the same sentence, and for each one we compute a set of features relative to position 

and frequency of the term in the document. To avoid generating every possible 

N-gram from the text, many of which are probably not valid terms, we apply an 

algorithm of efficient generation of N-grams [11] reducing processing time. This 



algorithm requires the maximum length of the terms considered and the minimum 

frequency that a term must have in a document to be eligible as keyword. 

In order to further reduce the number of terms to be processed we apply a filter 

which discards N-grams that start or end with a word of a given grammatical 

category, like articles and prepositions. This filtering discards sequences of words that 

are not eligible as keywords, such as the Spanish sequence “de forma que”. This 

process is similar to the application of a stoplist, with the difference that we do not 

use an exhaustive list of terms to rule out but instead we assign part-of-speech (POS) 

tags to each word of the document based on its use. To this end we apply a maximum 

entropy model [12] trained with the tool OpenNLP [13] using a tagged corpus as 

training set. This filtering greatly reduces processing time, since it discards an 

important number of terms that should not be chosen as keywords. 

The POS tagging model for Spanish was trained using the tagged corpus 

Conll-2002 [14] and the grammatical tags defined by the EAGLES group [15]. The 

corpus was provided in the 2002 Conference on Computational Natural Language 

Learning to be used to train and evaluate algorithms of named entitity recognition 

(such as person names, places and organizations). The EAGLES group (Expert 

Advisory Group on Language Engineering Standards) is an organization with the goal 

of providing standars for large-scale language resources manipulation, both text and 

speech, computational linguistic formalisms and software tools. 

 

3.2   Term representation 

The defined representation consists in 8 attributes calculated for each term of the 

documents. These attributes are the same as those we used in LIKE. 

1 - Term Frequency (TF): the rate between the frequency of the term and the 

number of words in a document. 

2 - Term Frequency – Inverse Document Frequency (TF-IDF): consists in 

weighting TF with the frequency a term has in the entire corpus. TF-IDF favors terms 

that are unfrequent in the corpus but frequent in the given document. 

3 - First Ocurrence: the relative position of the first occurrence of the term in the 

text. It is calculated as the rate between the number of words that appear before the 

first occurrence of the given term and the number of words of the document.  

4 - Position in Sentence: a measure of the relative position of a term in the 

sentences it appears in. For each sentence s that contains term t, we count the number 

of words that appear in s before t, and we average these values. 

5 – Ocurrence in Title: this attribute is set to 1 if the term appears literally in the 

document title and 0 otherwise. It represents the notion that terms appearing in the 

title are important and hence are candidates to be keywords. 

6 – Ocurrence of Members in Title: this attribute, like the previous one, relates 

the importance of a term with its appearance in the title. The difference is that this 

attribute considers occurrences in the title of the individual words of the term. This 

allows considering terms whose occurrences in the title are not literal, such as when 

the words are in a different order or there are more or less lexical terms. It is the rate 

between the number of words of a term t that appear in the title and the length of t. 



7 - Normalized Sentence Length: it is a measure of the length of the sentences in 

which a given term appears in, calculated by averaging the lengths of these sentences. 

Such lengths are also normalized by dividing them by the length of the longest 

sentence in the document. 

8 - Normalized Frequency (Z-Score) [16]: consists in normalizing the term 

frequency using its mean frequency in the training corpus and its standard deviation. 

It measures the difference between the frequency of a term and its mean frequency in 

the corpus. 

Of these 8 features only TF-IDF and Z-Score depend on the entire training corpus 

for their calculation. The rest of the attributes use only information of the given 

document. 

3.3   Description of the Classifier 

The classifier used in this work is an auto-associative neural network, or 

autoencoder. Neural networks aim to learn a function that maps from elements of an 

input set to elements of an output set. In autoencoders the output set is the same as the 

input set, so that these networks attempt to learn the identity function of the training 

set. 

Given an input vector X ∈ R
n
 the network produces an approximated vector X’, 

which presents a reconstruction error defined as the sum of squared differences: 
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As training is carried out using the elements of the class of interest it is expected 

that new elements that are similar to the ones in the training set have a lower 

reconstruction error than those that are not. By determining a threshold, this allows to 

classify the elements as belonging to one class or the other [17]. In our case the class 

of interest is the class of terms that are keywords, and hence the training set is formed 

by the feature vectors of the terms designated as keywords by the authors of the 

training documents. 

The autoencoder has an equal number of input and output neurons, and is trained in 

the same way as a conventional neural network. In this work we used Resilient 

Backpropagation [18][19] as training algorithm. This algorithm uses a velocity 

coefficient for each weight of each neuron, so that it does not need a global learning 

rate. On weight update it only uses the sign of the gradient of the error surface instead 

of its magnitude, so that descent through the error surface is independent of the shape 

of this surface. This facilitates convergence to a minimum when the error surface is 

irregular. As Resilient Backpropagation removes the need of setting a learning rate, 

the remaining free parameters of the network are the hidden and output activation 

functions and the size of the hidden layer. 

As we mentioned earlier, the autoencoder assigns a reconstruction error to each 

element of a testing set, which represents the similarity between the element and those 

of the training set. Instead of determining a cutoff threshold to accept or reject a term 



as keyword we opted to select the R terms with lowest reconstruction error from each 

document of the testing set. This provides two benefits: first, we obtain a ranking of 

the extracted terms, and second, it is guaranteed that each document of the testing set 

will have terms to represent it, which does not necessarily hold with the use of a 

global threshold or a discriminant classifier. Besides, R is a parameter of the 

algorithm which gives more control and enables to adjust the output of the algorithm 

when more precision or more recall is preferred. By default, the number of terms to 

extract is the average number of keywords of the documents of the training set. 

4   Experiments and Results 

To assess the performance of the proposed method we used a set of scientific 

articles published between 1999 and 2012 in the Workshop of Researchers in 

Computer Science (WICC) [20], and another set of scientific articles published in the 

XVII Argentine Congress of Computer Science (CACIC) [21] in 2011. With these 

documents we formed three datasets of articles in Spanish: two of them from the 

WICC corpus, of 43 and 166 documents respectively, and one formed by 72 articles 

from the CACIC corpus. In this paper these datasets are called wicc1, wicc2 and 

cacic2011. 

The description of these three datasets is shown in the Table 1. The class 

imbalance can clearly be seen, which is a factor that severely affects training of 

traditional learning algorithms. 

Table 1.  Description of the datasets used in the tests 

 wicc1 wicc2 cacic2011 

Number of documents 43 166 72 

Total number of keywords 210 747 327 

Total number of terms 7297 33428 34875 

Number of keywords/number of terms rate 0.028 0.022 0.009 

 

We performed tests of the proposed algorithm over the three datasets and we 

compared its performance with the performances of KEA 5.0, Maui 1.2 and LIKE. 

The implementations of KEA and Maui are the ones developed by its respective 

authors. 

The metrics used were precision, recall and f1-measure calculated for each of the 

four algorithms. These metrics were applied considering a hit the matching between a 

term selected by an algorithm and a term designated as keyword by the authors of the 

given document. Thus, a false positive ocurrs when a method identifies as keyword a 

terms that is not included in the list of keywords by the author, and a false negative 

when the method fails to extract a keyword contained in that list. In our case precision 

measures the proportion of extracted terms that match assigned keywords, and recall 

measures the proportion of keywords correctly identified by the method. 

The methodology of evaluation we applied is 10-fold cross validation. This 

evaluation process was repeated 30 times to obtain a significative sample over which 

we can average the results. We configured all algorithms, with the exception of LIKE, 



to extract three keywords because this is the average number of keywords per 

document on the three datasets. Since LIKE is a discriminant classifier without a 

ranking criterion, the number of extracted terms cannot be limited. 

In our experiments we used an autoencoder with 10 hidden neurons, a maximum of 

500 epochs, and the logistic function as activation function in the hidden and output 

layers. For LIKE, we also used 10 hidden neurons and a maximum of 500 epochs, and 

a learning rate of 0.1, the logistic function in the hidden layer and the hyperbolic 

tangent in the output layer. For KEA and Maui we applied the Spanish stemmers and 

stoplists provided with the implementations. In these experiments the terms extracted 

by the four methods have a maximum length of four words and a minimum frequency 

of three ocurrences in the document. 

The average precision, recall and f1-measure of the 30 runs of the cross-validation 

for each algorithm on each dataset are shown in the Table 2, identifying the algorithm 

introduced in this work as AE, for autoencoder. 

Table 2.  Precision, recall and f1-measure of each method in the three datasets. 

 wicc1  wicc2  cacic2011 

 P R F  P R F  P R F 

AE 0.362 0.343 0.344  0.266 0.249 0.256  0.138 0.177 0.153 

KEA 0.132 0.082 0.101  0.178 0.119 0.142  0.038 0.025 0.030 

Maui 0.342 0.210 0.258  0.308 0.207 0.247  0.179 0.119 0.142 

LIKE 0.117 0.587 0.175  0.137 0.680 0.218  0.019 0.660 0.035 

 

 

The tests results show that the algorithm proposed in this paper has the highest 

f1-measure in the three datasets. F1-measure is the harmonic mean between precision 

and recall, and therefore it is a good measure of the global performance of a given 

method in similar datasets. Also it can be seen that even if the f1-measure achieved by 

Maui is close to the one of our algorithm, in the three cases we achieved higher recall.  

In order to verify that these differences are statistically significant, we conducted 

hypothesis tests on the difference of the means of the three metrics using the 30 

samples of cross-validations of our algorithm and Maui. The tests showed that the 

differences are significant in all cases with a significance level of 0.05. 

A high recall is important because it allows to comprise the maximum possible of 

eligible terms, which in turn gives the possibility of suggesting descriptive terms that 

were not chosen by the authors. However, getting a high recall at the expense of 

precision is not benefitial, since the quality of the extracted terms will be inferior. 

Hence it is necessary to find a balance between precision and recall. 

On the other hand, in the cacic2011dataset all algorithms had a lower performance 

because, as we show on Table 1, this is a much more unbalanced dataset than the 

other two, since it has less keywords in relation to the total number of terms and thus 

it is a more difficult dataset. 



5   Conclusions and Future Work 

In this paper we presented a new algorithm for keyword extraction from Spanish 

documents. Our proposal uses only examples of the class of interest to train the 

classifier, and therefore training is conducted in a faster and more efficient way giving 

comparable or even better results than other algorithms. It is important to highlight 

the need to use a representative, comprehensive and noise-free training set to achieve 

better performance, even when such training set is small. 

Given the inherent difficulty of this problem due to class imbalance and 

subjectivity of natural language, we consider interesting that an algorithm can learn 

from examples which are the features that determine whether a term is important or 

not. 

Also, we consider important to achieve a high recall so that the algorithm can 

capture more terms eligible by different human observers, with the goal to act as a 

recommendation system of possible keywords. The only language-dependent of our 

method is the POS tagging model, thus replacing this model with a model trained with 

documents in another language would allow us to apply our method in such language. 

Finally, given that the number of terms to extract is a parameter of the algorithm 

the user can adjust the expected level of precision or recall from the terms suggested 

by the system. 

As future work we aim to enrich the term representation including semantic 

attributes related to the grammatical structure of the language considered. We are also 

interested in refining the grammatical filtering in order to reduce further the class 

imbalance and to consider the use of more sophisticated classification strategies. 
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