
Model-Based Design of Volatile Functionality in Web Applications∗

Gustavo Rossi12, Andres Nieto1, Luciano Mengoni1, Nahuel Lofeudo1,
Liliana Nuño Silva1, Damiano Distante3

1LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
2Also CONICET

3RCOST : Research Centre on Software Technology, Department of Engineering, University of Sannio, Italy
{gustavo,anieto,lmengoni,nlofeudo,lilica}@sol.info.unlp.edu.ar, distante@unisannio.it

Abstract

In this paper we present a model-based approach to
integrate dynamic and volatile functionality in Web Ap-
plications. Our approach comprises an extension to the
OOHDM design method and a software framework which
supports the injection of volatile functionality into the de-
sign model. We first motivate our work by discussing the
problems which arise when dealing with volatile function-
ality; some meaningful examples are presented. We briefly
describe our design approach, showing how to decouple
volatile functionality from the core design model. We finally
describe an implementation framework which supports the
presented ideas extending Apache Struts with the notion of
services and service affinities. Finally, we compare our ap-
proach with others’ and present some further research we
are pursuing.

1. Introduction and motivation

Complex Web applications evolve permanently and even
after being “finished”, having satisfied the initial require-
ments, they often have to be expanded to accomodate new
functionality. Some of this new code and design will be-
come a permanent addition to the applications, and some of
it it will be discarded after a short time.

Among many others, web portals and e-commerce sites
are a clear example of evolution over time. Pressure from
the market, the availability of new technologies and unfore-
seen business opportunities sometimes force the developers
to quickly add code that they know it will be discarded a few
days or weeks later, not justifying a complete redesign or
test of the whole application. For example, an e-commerce
site devoted to sell CDs could be expanded to sell the tickets

∗This paper has been partially funded by SECYT under project PICT
13623

to a band’s concert; but the sale should only appear for as
long as the band is in tour. A related real-world example of
this is Amazon.com’s “Fishbowl performance”, which adds
rich content (online video) to the pages that refer to any
artist that participate on the program, but only for the time
it lasts.

Figure 1. Fishbowl performance in Amazon.com

Another example could be a system to accept donations
for a relief fund when a catastrophe occurs; clearly there
is no time to redesign or test a complete application in this
case because time is of essence, and it will only be needed
as long as the emergency exists.

In the rest of this paper we will use the term "volatile" to
refer to this kind of functionality which is by its own nature
available for only a short amount of time. The word has
been chosen to describe the ephemeral nature of the service
or services added to an existing application.

Another, more complex example also based on volatile
functionality can be seen in Figure 2. In this case EMI and

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

Amazon.com organize a draw of tickets to assist to a Rolling
Stones’ concert. In the top right corner of the figure, one can
see the additional content that was added to the standard CD
page.

Figure 2. Draw of tickets for a concert in Amazon.com

It is clear that all these examples encompass some kind
of volatile requirements. In the first example, Amazon.com
may eliminate the video if it is not widely used and perhaps
when the program is canceled. In the case of the relief fund,
the donations will be needed only while the emergency ex-
ists. In the last one, we even know in advance that the func-
tionality will be eliminated after the concert.

There are many alternatives to deal with this kind of
volatile requirements. One possibility is to clutter design
models with new extensions. In an object-oriented ap-
proach, such as OOHDM [13] or UWE[8], this would mean
to add new classes, or new attributes and methods to exist-
ing classes. For the previous example all CDs could have
an attribute which contains the video performance and a
method to support operations on video. This solution has
an additional problem: as not every CD will support video
operations we might be defining attributes which are not al-
ways usable.

Creating sub-classes (e.g. VideoEnhancedCD) is not a
good solution because it introduces spurious specialization
criteria and the sub-classing prevents us to add or suppress
the video fragment dynamically on a particular instance.

In the example of the rock concert, meanwhile, we need
to add the link to the tickets draw and the functionality to
support it.

The main problem with the previous approach is that
it involves intrusive editing of the existing code base and
therefore it may introduce mistakes as new functionality is
added or changed.

A second possibility is to consider that volatile func-
tionality does not deserve to be designed (as it is usually
temporary) and deal with these changes only at the imple-
mentation level. This approach is not only error prone but
it also de-synchronizes design documents with the running
system, therefore introducing further problems.

In this paper we present a model-based approach in
which not only we model and design volatile aspects, al-
lows the core application model to remain oblivious to the
introduction or removal of the volatile functionality, keep-
ing the benefits of model-based design in a seamless way.

Our approach, based on a simple strategy of separation of
concerns and inversion of control in design and a powerful
integration environment, can be easily incorporated into the
design armory of existing methods.

The main contributions of this paper are:

• A rationale for treating volatile services using a model-
based instead of an implementation-based approach.

• A design approach for clearly separating volatile func-
tionality, in both the conceptual and the navigational
level of the application.

• An implementation architecture and framework which
supports the seamless integration of volatile function-
ality.

The rest of the paper is organized as follows: In Section 2
we introduce our approach. In Section 3 we discuss the high
level architecture of the support framework and in Section
4 we illustrate it with a case study. In Section 5 we detail
the framework components. In Section 6 we discuss how to
refactor this kind of functionality when it becomes part of
the application’s core. In section 7 we compare our work
with other related approaches and finally in Section 8 we
present some concluding remarks and further work on this
area.

2. An overview of our approach

The rationale behind our approach is that even the sim-
plest volatile functionality (e.g. the links added to the page
in Figure 2) must be modeled and designed using good en-
gineering techniques. It is evident that adding a link to a
single page can be easily handled using modern implemen-
tation environments, and perhaps without much burden at
the code level. However, by surpassing the need to design
volatile functionality, we not only compromise the relation-
ships among design models and the actual application but
also lose reuse opportunities, as many times a new volatile
feature might arise in different contexts. A model-based ap-
proach, instead, allows increasing the level of abstraction of

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

these features, improving comprehension and further evolu-
tion. Additionally, it can be automated to produce running
implementations [10].

We next present the basic elements of our approach.

2.1. The OOHDM design framework

OOHDM as other development approaches such as
OOWS [12] UWE [8] or WebML [2] partitions the de-
velopment space into five activities: requirements gather-
ing, conceptual design, navigational design, abstract in-
terface design and implementation which have been ex-
tensively discussed elsewhere. As OOHDM follows the
object-oriented paradigm, when the application evolves new
classes emerge, new behaviors or attributes are added to
corresponding classes, and new node and link classes are
incorporated to the existing navigational schema, therefore
extending the base navigation topology.

There are two problems with this approach when we use
it in the context of volatile functionality: first, as explained
before, it is based on intrusive editing of design models;
and, as shown in the examples, volatile functionality might
follow irregular patterns, e.g. not all instances of a class
may support a new feature, not all pages of the same type
contain the same link or host the same information. A naïve
use of the object-oriented paradigm would result in the def-
inition of new sub-classes which, as indicated in the intro-
duction may solve the problem but at a high cost regard-
ing modularity and further evolution. In the following sub-
sections we elaborate our design strategy for coping with
volatile functionality.

2.2. Modeling volatile functionality in OOHDM

Our approach is based on four basic principles:

• We decouple volatile from core functionality: we de-
fine two design models; a core model and a model for
volatile features (called VService Layer).

• New behaviors, i.e. those which belong to the volatile
functionality layer are modeled as first class objects,
e.g. following the Command [4] pattern.

• We use inversion of control to achieve obliviousness
of the core model , i.e. instead of making core classes
aware of their new features, we invert the knowledge
relationship. New behaviors know the base classes on
top of which they are built.

• We use a separate integration layer to bind core and
volatile functionality. Thus we achieve reusability of
core and volatile features and manage irregular exten-
sions.

2.3. The volatile services layer

In our approach we consider services as a combination
and generalization of Commands [4] and Decorators [4]. A
service1 is a command because it embodies an application
behavior in one class, instead of a method. It can be con-
sidered also as a decorator because it allows adding new
features (properties and behaviors) to an application in a
non intrusive way. In our approach, services might be new
behaviors which are added to the conceptual model (and
which might encompass many classes) or full-fledged nav-
igation models, containing new nodes, links and even rela-
tionships with conceptual classes. We treat each volatile re-
quirement as a self-contained sub-system and model it using
the OOHDM approach. The development process is shown
in Figure 3.

Figure 3. Development process for volatile functionality

Given a new (volatile) requirement we first model its
conceptual and navigational features in a separate layer us-
ing the OOHDM approach; then we indicate the relation-
ships among services and existing conceptual and naviga-
tional classes; finally (and not shown in the picture) we in-
dicate the way in which volatile and core models are inte-
grated. In Figure 4 we show the resulting OOHDM model
corresponding to the example in Figure 2.

Figure 4. The OOHDM comprising the VModel

In the left of Figure 4 we show the base model contain-
ing core (stable) application abstractions and in the right we

1We use the term Service to refer to a piece of volatile functionality.
This term shouldn’t be confused with the popular concept of Web Service
as it embodies a more general feature.

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

present the specification of the volatile service. On the top
we show the two conceptual models (core and volatile) and
on the bottom a single class representing a part of the navi-
gational model.

Notice the knowledge relationship among the Draw class
and the Record Company class which inverts the “naïve” so-
lution in which the company knows the draw (thus coupling
both classes), and the absence of links between the CDNode
and the DrawNode classes. While the former is character-
istic of Decorators (we are wrapping the model with a new
service) the latter gives us the flexibility to specify different
integration strategies; for example we can either link the
new functionality from the application (as shown in the ex-
ample of Figure 2) or insert it in the base node (as in Figure
1). For the sake of simplicity we don’t show in Figure 4
the process for determining the winner of the Draw, nor the
procedure to notify the winner (perhaps an email) which are
part of the volatile functionality.

2.4. The connection layer

VServices are connected to the application level using
an integration specification, decoupled both from services
and core classes thus making these classes oblivious to the
integration strategy. The specification indicates what nodes
will be enhanced with the volatile service, and how the nav-
igation model will be extended (e.g. adding a link, inserting
new information in a node, etc). The set of nodes affected
(or enhanced) by a service is called the Affinity of the ser-
vice and was inspired by [11]. We specify affinities with the
same query language used in OOHDM to specify nodes [7,
13]. Those nodes which match the query are affected by the
service.

A query has the form: FROM C1..CJ WHERE PRED-
ICATE in which the Cj indicate node classes and the predi-
cate is defined in terms of properties of model objects. As in
OOHDM, the qualifier subject allows to refer to conceptual
model objects. A query expression also indicates the kind of
integration between application nodes and services, which
can be Extension or Linkage. An extension indicates that
the application node is enhanced to contain the service in-
formation (an operations) while, in a linkage the node “just”
allows navigation to the service and does not support new
behaviors. In the case of linkage extensions we can also
specify additional features such as attributes or anchors that
have to be added to the extended node. For example:

Affinity Draw
From CDNode
where (performer = Rolling “Stones”)
Integration: Linkage (DrawNode)
Additions: [DrawSpec: Text.

Conditions: Anchor (ToConditions)
Results: Anchor (ToResults)]

The affinity named Draw (corresponding to the example
in Figure 2) indicates that all instances of a CD performed
by Rolling Stones will have a link to DrawNode. Notice
that the integration specification does not compromise the
granularity of Draw, which might be a Singleton (only one
instance) or not.

Service classes might of course have more than one
instance; for example in the case of the first motivating
volatile functionality, fish bowl performances may be ded-
icated to different singers, book writers, directors, actors,
etc. Each single fish bowl program has its own data and the
most important remark, may have its own integration style
into core nodes. Thus, we may have to specify an affinity
for each service instance, which is called an Instance Affin-
ity to differentiate it from a Class Affinity. The functionality
in Figure 1 has the following integration rule:

Instance Affinity RobThomas (Fishbowl)
FROM CDNode

WHERE title = ’Something to Be’
AND performer = ’Rob Thomas’

Integration: Extension

Other example of the same volatile service is the inter-
view to Stephen King, talking about his last novel “Cell”,
which is only available in the book’s page

Instance Affinity StephenKing (Fishbowl)
FROM BookNode
WHERE author = ’Stephen King’

AND bookTitle = ’Cell’
Integration: Extension

Notice that we could have integrated this service instance
using another strategy if necessary.

Our approach has many advantages, the most important
being:

• By decoupling the integration from the services and
the core model, we can use different integration
schemas at different time and for different instances.
For example, with new CDs it is reasonable to extend
the CD with the live performance; we can later use a
Linkage relationship and, once the CD is no longer a
novelty, eliminate the access to the service entirely.

• Using different affinity specification we can fine tune
the way in which different objects are affected by the
service.

• Obliviousness allows the evolution of core and service
classes independently from each other and from the in-
tegration specification.

An affinity specifies a temporal relationship between a ser-
vice and the core model which can be evaluated either

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

during the compilation of the model, thus requiring re-
compilation each time the affinity changes, or dynamically
during page generation, as will be explained in section 4.

2.5. Service composition

As services are modeled using standard OOHDM primi-
tives, we can also treat them as core models regarding other
services which might apply to them. In this way we can
compose services seamlessly and particularly we may use
core (sub) models as services if necessary.

An interesting example of this reflective property of our
approach relates with the functionality described in Figure
2. Suppose that our store offers a travel service. This service
may be defined as a full-fledged sub-system and accord-
ingly modeled with OOHDM; the service might be accessed
from a Landmark as the sub-systems in www.expedia.com,
and once selected it may require that the user enters the kind
of service (car rental, hotels or flights), destination, dates,
etc.

Additionally, we can arrange with a travel company to
offer our travel service as part of the draw of tickets to the
Rolling Stones concert in a given city by allowing to include
the hotel booking in the Draw. In this case we will specify
an affinity between the travel service and the Draw service
as below:

Affinity TravelService
From DrawNode
where (Subject.toAssistTo.place= ’Paris’)
Integration: Linkage (HotelNode)

When the user enters his data for the draw, he can addi-
tionally book a hotel in the city by choosing the newly of-
fered link. The integration specification (here presented in
an oversimplified style) could contain the necessary adapta-
tion to make the two services work together.

Once again we obtain a clear separation between services
and their target objects (being them core application nodes
or other services). The Travel service can be used in multi-
ple other situations just by specifying corresponding affini-
ties.

3. From Models to Running Applications. The
Architecture in a Nutshell.

We have implemented on top of Apache Struts a frame-
work, named Cazon, which supports semi-automatic trans-
lation of OOHDM models including the instantiation of
Web pages from the OOHDM navigational schema, and
their integration with volatile services. The framework also
provides a set of custom tags to simplify the user interface
development according to the guidelines of the OOHDM

abstract interface specification [13]. A high-level descrip-
tion of the architecture of the framework is depicted in Fig-
ure 5.

Figure 5. Architecture of Cazon

Cazon is a light-weight framework which aims to:

• Allow the specification and the straightforward imple-
mentation of a web application navigational model,
which contains nodes and links primitives such as
those defined in OOHDM.

• Provide support for dynamic integration of volatile
functionality

As shown in Figure 5 the two main components of Cazon
are the OOHDM and the VService modules. The former
deals with the definition of navigational constructors (basi-
cally nodes and links), and can be used with or without the
latter. The VService module is in charge of augmenting the
application nodes with volatile functionality in accordance
with each node’s properties.

3.1. OOHDM module

The OOHDM module provides tools to represent a nav-
igational layer between application domain objects and the
user interface. We use the standard Struts controller ob-
jects to act as navigation controllers and to perform the in-
teraction with conceptual objects. In this module the de-
veloper defines actions and links which allow representing
the concepts in a navigation schema. Cazon offers support
for defining nodes that contain the information which will
be displayed in a page and profits from Struts custom tags
for defining interface issues. Nodes contain Struts actions
to manage navigation logic which is completely delegated
to the Struts basic engine.

The OOHDM module receives the navigational model in
a configuration file (NavConfig.xml) in which the designer
specifies nodes, links and other navigation primitives. The
information is transformed into navigational objects which
constitute the navigational layer of the application.

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

3.2. Volatile Services Module

The volatile service module supports the integration of
volatile functionality in a non-intrusive way by releasing
the developer from re-factoring existing classes or configu-
ration files. This module is in charge of the administratioon
and and composition of volatile services in the target ap-
plication, and uses the OOHDM module as a collaborator,
delegating controller and navigation tasks to it.

As mentioned before, a service is composed of a set of
navigational nodes and conceptual objects that comply with
a specific requirement. For each service, the developer must
indicate the “home” service node; this is the node where the
service (being activated from an application node) starts. In
the case of an integration of type “Extension”, this node
will be inserted into those nodes which match the service
affinity. If the integration kind is “Linkage”, a link to the
”home” node will be added to the selected nodes.

Node affinities are computed according to the actual state
of the node’s context which is defined as the set of direct
and indirect relationships with other nodes and conceptual
objects. The developer also provides all service information
through a configuration file.

4. Cazon in action. An example

Cazon comprises a library of personalized tags which
encapsulate navigation functionality and integration of
volatile functionality into Struts JSP Pages. The most rele-
vant tags are the following

• node:attribute: shows a node’s attribute

• node:agregatedList: refers to an aggregation of nodes
without using parameter or control structures in lists

• node:aggregated: inserts an aggregated node which
can belong to a list

• node:action: performs an action specified in the actual
node.

We have also defined a custom tag for adding volatile func-
tionality: vservice:insert, which also supports variations ac-
cording to the integration type.

As an example we next show a simple CD store portal
with the kind of volatile functionality shown in previous
sections.

4.1. Modeling the OOHDM structure

The OOHDM conceptual schema is mapped in a
straightforward way onto a class schema (e.g. in Java); as
(conceptual) volatile functionality is developed using well-
known design patterns its transformation does not deserve

further explanation; therefore we devote this section to the
specification of navigational functionality, regarding both
the core and volatile models.

In Figure 6 we show the configuration file specifying
(part of) the navigational schema of our application, which
is derived from the OOHDM navigational model. Notice
that this XML file also shows the specification of the navi-
gational objects which correspond to the volatile service.

Figure 7 shows the look and feel of the CDView page
generated from the specification using Cazon custom tags.

Figure 6. Part of the navigational model

4.2. Modeling Volatile Services

In Figure 8 we show part of the servConfig.xml file
which specifies the integration of the EMI draw volatile
functionality into CDView nodes. Figure 9 shows the re-
sult of this integration.

5. Inside Cazon

In this section we describe the most important architec-
tural decisions behind our framework. Our intent is to show
those design features that might be useful in similar endeav-
ors. For the sake of conciseness we devote to the highest
level and most outstanding modules

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

Figure 7. CDView from the specification in Figure 6

Figure 8. The XML file for service integration

5.1. OOHDM Module and Controller

The OOHDM Module comprises:

• Core objects in charge of the life-cycle of navigational
nodes.

• Mediation objects which interact with the Struts con-
troller, intercepting the ordinary request flow, and
communicating with Cazon’s core objects to perform
the navigation activity.

• A small set of custom tags to ease the presentation of
information units inside a JSP.

The life cycle of an application derived from the framework
begins when the modified Struts controller initializes it. At
this moment, a customized plugin object creates a Cazon

context to be used later by the application. A node factory
is subsequently created to work with the navigational model
(defined by the corresponding configuration file).

When the application receives a request to perform some
action, the action’s mapping is delegated to the Cazon re-
quest processor.

Figure 9. Request life cycle until the JSP is generated

The main task of this processor object is to override the
way in which the default Struts processor creates actions.
This implementation consists basically in wrapping the re-
quested action when it involves a node. The wrapper object
performs some activities with Cazon’s OOHDM core ob-
jects before and after the action is executed. Before delegat-
ing the execute method, the wrapper populates the node in-
formation from which the request has been triggered. Once
the execution is delegated to the wrapped action, the node
factory is asked to provide the node that complies with the
forward specification. Once we have the node, we include
it as the current node to be used by the JSP, and proceeds
with the normal Struts request flow. We show a detail of the
request flow using a UML sequence diagram in Figure 10.

5.2. The Volatile Service Module

The implementation of this module is divided in two
parts:

• An extension of the OOHDM Controller and a volatile
services administrator.

• A sub-module responsible for calculating matches be-
tween services affinities and node surroundings.

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

5.2.1 The Controller Extension. This extension, called
ServiceNodeFactory (SNF), acts as a decorator of the stan-
dard OOHDM node factory. It delegates all operations to
the base factory except for the getNode() operation, which
is the facade of the navigation behavior of the OOHDM
Module. To perform this operation, the SNF collaborates
with the OOHDM factory to obtain the target node and aug-
ment it with the corresponding volatile functionality. This
latter process is performed by the volatile service manager,
according with node surroundings and services affinities, as
shown in the sequence diagram of Figure 10. Once the
node has been augmented the request life cycle proceeds
normally.

Figure 10. Interaction of objects in the VService module

5.2.2 The Affinity Processor The affinity processor ana-
lyzes an affinity query which is a part of a dynamic service
specification, and decides whether or not to apply it on the
current node. A class schema showing the main abstrac-
tions in the affinity processor is shown in Figure 11. Affin-
ity queries are specified in a pseudo SQL query language.
A typical query has the form:

FROM NODE-SPEC WHERE COND-SPEC
A node-spec may be a node class, a set of classes,

the literal “*” to indicate that all classes are candidates
to be enhanced with a service, or a nested query. The
cond-spec admits all kind of comparisons, unary or bi-
nary logical expressions, and data transformations such as
length (string) which are applied to attributes or relation-
ships among classes in the application models.

The Affinity processor decomposes the query, generating
an expression tree that represents the node set to which the
affinity applies (node-spec) and the conditions which nodes
have to satisfy (condition-spec). The queries (in particular,
the node-spec) can be nested to describe more accurately
the selected nodes. Figure 12 shows an example expression
tree for one of our examples.

The affinity processor is activated after the NodeFactory
has obtained the actual node that has to be presented to the
user, and before its transformation into an HTML page (that
will be sent as the response to the actual request).

Figure 11. Diagram of AffinityProcessor collaborators

Figure 12. Example of a simple expression tree

The affinity processor is invoked from a Query object,
along with the previously mentioned node. The Query first
obtains (from its node-spec) the set of nodes to which it
can apply the affinity. If the node is an element of the set
defined by the node-spec, the affinity condition is evaluated
on it, and if the evaluation is successful, the Service object
communicates to the ServiceManager to apply the service
to the actual node.

6. Refactoring Volatile Functionality

Volatile Services pose another challenge to the designer:
what should be done when this kind of functionality be-
comes part of the business core? In other words, how should
our design evolve according to this type of system evolu-
tion?

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

This software design problem has been recently analyzed
in a broader sense [3]. Following an object-oriented per-
spective, refactoring means to re-design the base class ab-
stractions and their relationships in order to incorporate ab-
stract classes, introduce the use of appropriate design pat-
terns, etc, to achieve better modularity in order to improve
further maintenance.

While it is not one of the paper’s objectives to discuss
refactoring of volatile functionality in detail, there are cer-
tain issues to consider in order to address the problem. First,
by clearly decoupling volatile functionality we aimed at
reducing the need to refactor core classes when the func-
tionality is removed. From this point of view, we consider
that most functionality which has been labeled as “volatile”
will be removed. However, as a (small) percentage of this
functionality might be later considered as core functional-
ity, we need a systematic strategy to integrate it seamlessly
into the core. Taking into account that both the core and
volatile models are specified using OOHDM, this is rather
straightforward and can be easily systematized; we perform
the refactoring process by applying the rules (which are just
outlined) below:

• When volatile functionality follows a regular pat-
tern, i.e. when all instances of a class must be
affected/enriched with these additional features, we
make commands (services) evolve into corresponding
class methods. Additionally we refactor the affected
node classes adding corresponding links (for Linkage
integration) or attributes (for Extension ones).

• In the case of irregular functionality, e.g. functional-
ity which is applied to specific instances of a class,
as shown in previous examples, create a role type
[14] supporting the extensions and make correspond-
ing class objects (at the conceptual and navigational
level) play the role. This can be done by defining a
builder object [4] which decides (by checking object
features) if the role will be instantiated and plugged
onto the current class instance at the conceptual level,
or instead it will define the corresponding JSP features
at the navigational level.

7. Related Work

Volatile requirements have been recently dealt by the
requirements engineering community; particularly in [9]
the authors propose an aspect-oriented approach to model
volatile concerns. Pattern Specifications are used to weave
different concerns (core and volatile). Our approach fo-
cuses more on design than on requirements issues; instead
of an aspect-oriented approach we use the concept of ser-
vice affinity to weave functionality.

Well known Web Engineering approaches such as
OOHDM, UWE and OOWS has early focused on separa-
tion of concerns to improve application evolution. None
of these methods have already explicitly dealt with volatile
functionality. In [1] the authors present an aspect-oriented
approach for dealing with adaptivity. The concept of affin-
ity could be easily introduced to mediate in the context of
service integration of adaptive aspects weaving in UWE.

8. Concluding Remarks and Further Work

In this paper we have presented a model-driven approach
for dealing with volatile functionality in Web applications,
i.e. for integrating those services which arise during evo-
lution and are either known to be temporary or are being
tested for acceptance. We have shown that volatile func-
tionality poses several problems in the development cy-
cle: introducing such functionality in the core model might
clutter design abstractions with features that will be later
removed; meanwhile, ignoring these aspects and treating
them as code patches causes an impedance mismatch be-
tween design and implementation.

Our proposal implies the addition of a separate layer for
modeling volatile functionality comprising both its concep-
tual and navigational aspects. To weave core and volatile
models we use an integration specification which makes
them oblivious with respect to the integration style. We use
the concept of service affinity to determine the application
pages which will be affected by the service. We have also
presented an application framework which allows mapping
our modeling constructs into a running application support-
ing volatile services. The framework acts as a light exten-
sion to the well known Apache Struts architecture. We are
now pursuing several research directions: We are studying
the implication of service inheritance and composition and
analyzing the integration of external services (e.g. Web Ser-
vices). We are also extending the affinity query language to
support more complex specifications; we are extending our
approach to the requirement stage by analyzing how volatile
functionality is expressed using User Interaction Diagrams
[5]. We are finally porting Cazon to other similar architec-
tures like JSF and Shale [6].

9. References

[1] H. Baumeister, A. Knapp, N. Koch and G. Zhang.
"Modelling Adaptivity with Aspects". 5th International
Conference on Web Engineering (ICWE’05). Springer Ver-
lag, Lecture Notes in Computer Science.

[2] S. Ceri, P. Fraternali, and A. Bongio: "Web Modeling
Language (WebML), A Modeling Language for Designing
Web Sites". Computer Networks and ISDN Systems, 33(1-
6), June (2000) 137-157

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

[3] M. Fowler: "Refactoring. Improving the design of
existing code". Addison Wesley, 1999

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides: "De-
sign Patterns. Elements of Reusable Object-Oriented Soft-
ware", Addison Wesley 1995.

[5] N. Güell, D. Schwabe, P. Vilain. "Modeling Inter-
actions and Navigation in Web Applications". ER (Work-
shops) 2000. (Utah,USA, October 2000) 115-127

[6] Java Server Faces Home page. In
www.jsfcentral.com/

[7] W. Kim, "Advanced Database systems", ACM Press,
1994.

[8] N.Koch, A. Kraus, A., and R. Hennicker: "The
Authoring Process of UML-based Web Engineering Ap-
proach", Proceedings of the 1st International Workshop on
Web-Oriented Software Construction (IWWOST 02), Va-
lencia, Spain (2001) 105-119

[9] A. Moreira, J. Araujo, J. Whittle: "Modeling Volatile

Concerns as Aspects", to be presented in CAiSE 2006, Lux-
emburg, June 2006.

[10] OMG Model-Driven-Architecture. In
http://www.omg.org/mda/

[11] M. Nanard, J. Nanard, P. King: IUHM: "A
Hypermedia-based Model for Integrating Open Services,
Data and Metadata", Proceedings of Hypertext 2003, ACM
Press, pp 128-137.

[12] O. Pastor, S. Abrahão, J. Fons: "An Object-Oriented
Approach to Automate Web Applications Development",
Proceedings of EC-Web, 2001: 16-28.

[13] D. Schwabe, G. Rossi, "An Object-Oriented Ap-
proach to Web-Based Application Design", Theory and
Practice of Object Systems (TAPOS), Special Issue on the
Internet, v. 4 nr.4, October, 1998, 207-225.

[14] F. Steimann: "On the Representation of Roles
in Object-Oriented and Conceptual modeling". Data and
Knowledge Engineering 35 (2000) 83-106

Proceedings of the Fourth Latin American Web Congress (LA-WEB'06)
0-7695-2693-4/06 $20.00 © 2006

