Cross Platform Networ king Framework to Simplify
Mobile Application Development

Federico Cristing Sebastian DapotoPablo Thomds Patricia Pesadd

1
Instituto de Investigacion en Informatica LIDI

Universidad Nacional de La Plata
2

Comisién de Investigaciones Cientificas de la Promide Buenos Aires
La Plata, Argentina

{fcristina, sdapoto, pthomas, ppesg@tdi.info.unlp.edu.ar

Abstract. The need for sharing information among mobile desiexists in

many applications, and almost every data exchargjeeen these devices
involve the same requirements: a means for disauy@®ther mobile devices in
a wireless network, establishing logical conneajoncommunicating

application data, and gathering information relatedhe physical connection.
This paper presents a cross platform open-sounsglaj®er-oriented framework
that acts as a support layer for host discoverya gammunication among
devices, and quality of service monitoring. Itsgmge is to simplify the issues
related to networking for mobile application deyeos. Currently, the

framework is implemented for different platformsch as Android, J2SE, and
J2ME.

Keywords: mobile devices, host discovery, communication, Q@Syorking

1 Introduction

A currently increasing trend in mobile environmerits the development of
applications in which several devices on a netvgtrdre real time information. These
applications rely on some sort of connectivity suppn order to achieve the proper
interaction among devices. This support can bepgdunto three main categories or
services: (1Host discovery, a means for searching other reachable devicely tea
communicate in a network, (d)ata communication, a service for handling the
specific exchange of information between devicew] &3) Quality of service, a
monitoring service that provides QoS related infation. Since these services are
application-independent, a framework has been imefged in order to support
specific aids, simplifying the network-related asgefor developers. The main goal
of the proposed framework is to meet these req@resn The features provided
allow several types of implementations with diffgraetwork configurations, such as
a typical client/server architecture or a centeditlecentralized peer-to-peer solution.

Even though there are several development framewfitk 2] none of them
propose an open source, cross platform solutioh thie proposed features in this
paper. Some of these frameworks refeméworking features as simply retrieve
wireless connection information, but no additiofiahctionality is supported (e.g.
PhoneGap [3], Titanium [4]). Other frameworks cotrese features, but as a part of
a complete solution for a specific domain like gardevelopment (e.g. Unity3D [5]).
Lastly, some frameworks are proprietary paid sohgifor mobile-apps development
(e.g. Corona [6]).

The reason for choosing Android as the primary Wspraent target for the
proposed framework is based on its widespread ndgapularity [7]. However, two
additional benefits should be mentioned. Firsts ian open source software released
under the Apache License. This allowed severalaféioial versions such as Android
for x86, ARM, and MIPS architectures. Some exampjieen in the present paper
were tested on these versions running in a Viltathine, without the need for real
devices. Second, Android Java is functionally catilgle with J2SE in matters of
network communication. This means that the frantkwApplication Program
Interface (API) can be referenced from both type3ava projects. Given that one of
the purposes of the framework is to achieve crdagoom compatibility, a J2ME
version was developed, allowing interoperabilityween the other platforms. The
current implementation of the project can be foah{B] hence the description in this
paper will be far from explaining the code (or cafigails).

The remainder of this paper is organized as folloWse next section describes the
proposed framework API. Afterwards, a general @iy of the framework and how
applications interact with it is provided. The lfaling section presents several
applications which make use of the framework fezgtur Finally, the results and
benefits of using the framework and an outlook wtnrie work are described.

2 API definition details

This section will present the main classes andfiates of the framework from an
application developer point of view. The highesteleof the API is directly focused
on application support features (e.qg. initial fravoek configuration) and the lowest
level is divided into three main parts, as showhim 1:

* HostDiscovery, for handling the information related to hostst thie ready to
communicate to/from each device. As its name suggésostDiscovery
services/operations include searching for hostgoanmbsts status.

* NetworkCommunication, for handling the specific exchange of information
between applications. Basically, NetworkCommunaratshould include the
necessary send and receive services/operatioapjpications.

e QoSMonitor, for providing the user and/or programmer the Bsagy
information on signal quality as well as performanimdexes such as
available network bandwidth.

The initial aim for each part is to achieve a veimple interface for the developer,
simplifying the APl usage as well device programilitgb As a general concept, the
framework is designed to support different impletations for each of the services
(Discovery, Communication, and QoS). ThroughAdnstract factory pattern [9], the
developer can specify which implementation shoddibed in each case. The details
explained in this section go beyond any implemémmatcovering the issues at a
higher level of abstraction.

Application

Application Support

+ configureStartup(AppSpecific_NetworkProducer, AppSpecific_ NetworkConsumer, ...);
+ doStartup(startHostDicovery, startCommunicationService, startNetworkBroadcast):

HostDiscovery NetworkCommunication QoSMonitor

+ thisHost - producer + scanResults

+ otherHosts - consumer - logCounters

+ startDiscovery() + startService() + calculateldealMPS()
+ stopDiscovery() + startBroadcast() + estimateRealMPS()

+ removeHost() + sendMessage() + retrieveLoggedMPS()
+ sendMessageToAllHosts()

Fig. 1. API Main Components

2.1 Application Data, Producer, Consumer

Generally, the framework will require a data prosly@ data consumer, and the data
itself to be transferred among hosts. The threé bl instances of user-developed
classes which extend/implement a specific classfate. Based omnversion of
Control [10, 11], these instances will be passed to tlaenéwork as arguments.
Specific methods of the instances will be callednfrthe framework in order to
generate new data, process incoming data, hamilevdoost in the network, etc.

The base class for the application-level data i thbstract class
NetworkApplicationData. This class will be the superclass for any infaiorato be
sent/received through thidetworkCommunication services. Subclasses must augment
the initial data structure as needed.

The producer class is in charge of generating puated local information to be
sent to the other hosts. This class must implemerihe
NetworkApplicationDataProducer interface. This interface only requires one method
to be implemented, which returns an instance of abclass of
NetworkApplicationData with the actual data. This method will be callegtipdically
if the periodic Broadcast feature from tRetworkCommunication service is active. If
this feature is not desired, then there is no resd for a Producer class to be
implemented. However, it is advisable to centratize creation of data in a specific
class.

The consumer handles every type of incoming infoiona mainly related to
application data from other hosts as well as regifons of arrivals and departures of
hosts to/from the network. Every time a new messagwes, the framework will
invoke a specific method so that the application aat accordingly. A subclass of

NetworkApplicationData object is received as a parameter, containingtheal data.
When theHostDiscovery service identifies some network change relateldots, the
corresponding method will be called. This allowsglagations to behave in a specific
way under these events (e.g. a host joining olingahe network).

2.2 Host Discovery

As mentioned above, this service is responsible siarching new hosts in the
network as well as exchange host status perioglichile status of a host is simply an
online/offline flag in order to know if the host ready to receive information at a
certain moment. The discovery service will make filaenework to look/listen for/to
new hosts, calling a specific method each timest juins or leaves the network. The
service can be stopped at any time, and this implather sending local status nor
receiving other hosts status anymore.

The periodicity a host sends its status can bedspending on the application
requirements. Support for deactivating discoveryell as the periodicity value are
necessary features for the programmer in order awee hcontrol on energy and
communication overhead/usage. The current list adth which are part of the
network can be accessed so that at any time, thigation would be able to search
for specific hosts available and the total numifenasts with which could exchange
information.

2.3 Network Communication

Network communication services allow hosts to erggaapplication-level data in
different ways, depending on the specific needthefapplication being developed.
Client/server, broadcast, and Producer/Consumer nuolitation models are
available for the applications. Once started, tl@vise waits for incoming
connections from other hosts. An established cdiorewill be used for sending and
receiving the application-level data. When a messageceived, &onsumer will be
able to process the incoming information.

Sending a message simply implies specifying thgetanost and the data to be sent
(using NetworkApplicationData, as mentioned above). Additionally, a host might
need to send information to every online host ia tletwork. The service can be
stopped if it is not needed anymore, and this wltise all currently established
connections.

Sending data to all hosts periodically is also sufgal. In this case, the framework
will require the updated local information in easgnding. AProducer will have to
generate this information. This feature is usefutases when a constant exchange of
data among hosts is needed at regular intervalspstance in a network game. The
application-level periodic data broadcast can bpstd at any time. The periodicity a
host sends data can be set depending on the amplicaquirements.

2.4 QoS Monitor

A useful set of QoS features were developed sodhelh application will be able to
decide if it is possible to run under the curreatwork bandwidth, signal strength,
etc. At the lowest level of abstraction, an appiara should be able to ask for the
current available bandwidth, so that it will be gibte to model the time required to
send a message of n data items. Also, some of fhegermance indexes would
depend on wifi signal strength, so it would be uk&b provide the application with
the current signal strength as well as some prewalues so that the tendency would
be able to be estimated [12, 13, 14].

From a higher level of abstraction, a method suwtakulateMPS is desirable for
an estimation of the number of application-datasages per second would be able to
be exchanged. The key aspect of this featureabt@n an almost real value based on
the network current status at an application-lewaas, opposed to the estimations
provided by the Android API which ignores uppertaaire layers which implies an
overhead in communications.

In order to validate this feature, a testing amglan was developed which
calculates the maximum amount of messages per dg¢baha host can exchange in
the current network. Fig. 2 shows the results eér@es of tests using both alternatives
with a fixed size application-data message, comsigechanges in the signal strength
based on the distance of the device to the wiredesess point. As expected, the
amount of messages per second decreases as thé figmgth also decreases. In
average, the Android API returns too optimistidraated values compared to the real
ones obtained with the implemented solution.

MPS Comparison

o ﬁ\k
1000

-
c
8 200 \
&
H
] 600 =il APl Android
E wdpe Fram ework
o 400 == —
= \
200 —
0
1(93%) 5 (85%) 10 (51%) 25 (25%)

Distance in Mts (Signal Strength %)

Fig. 2. QoScalculateMPS vs Android API bandwith funcion, depending on Sib8trength.
Values are normalized tdessages Per Second for a correct visual interpretation.

3 Framework interaction

This section will discuss in detail the interactaspects of the proposed architecture.
In order to understand how applications interaghvihe framework, a simplified
example involving the main components of each wdrbe shown.

3.1 Framework configuration

Before starting any service, the framework requiee®roducer (a subclass of
Networ kApplicationDataProducer), a Consumer (a subclass of
NetworkApplicationDataConsumer) and throughout the execution, the information to
be exchanged (a subclass\atworkApplicationData).
Fig. 3 shows an example where an application imphamthe following three
main components:
* AppSpecific_DataProducer,
produceNetwor kApplicationData() method.
* AppSpecific_DataConsumer, implementing methods such agwData(),
newHost(), byeHost().
* AppSpecific_NetworkData, where the default information to be exchanged is
augmented with membeialue.

implementing the

Application Suppart

NetworkApplicationData NetworkApplicationDataConsumer

NerworkApplicationDataProducer

+ sourceHost + produceNetworkApplicationData() + newData{NetworkApglicationDatz cata)
+ nawHost{Host aHost)

+ bycHosi{Host aHost)]

"""""""""""" [i
: Application :

AppSpecific_NetworkData

- aValue

AppSpecific_DataProducer

+ procuceNetworkApplicationData() {
AppSpecific_NetworkData data;
data = new AppSpecific_NetworkData(}:
data.aValue = foo();
return data;

AppSpecific_DataConsumer

+ newData(NetworkApplicationData data) {
hancl=({{AppSpecific_MatworkData)data)

avaluz);

'

+ newHost(Host aHost) {

1 hanclcNewHost(host);
1

Fig. 3. Framework (top row) and application (bottom rowgiminteraction components.

3.2 Framework interaction sequence

Fig 4. presents a sequence diagram for a typiealas®. The first stage represents a
new host joining the network. Discovery service will detect it and inform
AppSpecific_DataConsumer about this event so that it can work accordinghythis
case, the application decides to establish a cdiometo this new host, and simply
involves calling aConnection service method. Afterward§ommunication service
will periodically askProducer for new information to be sent to other host. ©héy

task forProducer is simply return an updated instanceAppSpecific_NetworkData.
This information will be handled by the frameworlind once it reaches the
destination hostCommunication will notify its consumer that new data has arrived
(through thenewData() method). At some point, a host may leave the odtvand
Discovery will inform this situation to th€onsumer.

Discovery Consumer Communication Producer
»

newHost/Host aHost)

connectToH ost(Host aHost)

e

produceN etworkApplicationData()

1 i
1 1
[
1 I
L i
I I
1 1
1 I
1 1
1
I I
1 i

I

I
newDataNetworkA ppData dara) :S

1,

I

I

byeHost(Host aHost)

Fig. 4. Sequence and interaction diagrdscovery andCommunication are components of
the framework.Consumer andProducer are application-level subclasses of
Networ kApplicationDataConsumer andNetworkApplicationDataProducer.

4 Examples

This section will present real examples in which tietwork requirements for each
application differs considerably, among other fegtoThe first one is a competitive
multiplayer Asteroids-like game (referred to asekstds, from now on). The second
one is a two players Tic-Tac-Toe game, both culyeninning in Android. The third
example is a simple chat application implementetth o Android and J2ME in order
to show cross platform communication. The fourtaraple is a Client/Server Wi-Fi
remote control running on Android for an image thgpserver running on J2SE
(from now on, WiFiRemote), in order to show hetenogous application interaction
from a platform point of view.

These projects amdmpletely built on top of the framework project [8], i.eetle is
no access to other services beyond those provigdetiebframework. The complete
code of the first two examples can be found at @& [16] respectively. For the
third example, the J2ME version of the chat apfiicais built on top of the J2ME
version of the framework project [17].

B Lo Derect

T =]

jid l- i £ D
‘ Mi IP: 163.10.22.163

De 163.10.22.227: Say Android|
byt By estinmettyia Image 02 description...
w | Target IP
i : g [163.10.22.227]
l Message
De 163.10.22.163: Soy J2\ [Soy JZME! | e
‘ [m) PREVIOUS
e e 11
cee . 123 e
Soy Android!
4 v > (]
]
P20 o mmm.

Fig. 5. Asteroids running on three Android x86 v2.2 vittoechines (top left), b) Tic-Tac-
Toe running on two Samsung Galaxy Sl mobile deviegh Android 4.0.3 (top right), c)
Chat application running on Android x86 and J2ME Eatar (bottom left), d) WiFiRemote,
server running on desktop J2SE and client runnmgmdroid 4.1.2 (bottom right).

4.1 Asteroids

Multiplayer Asteroids is a very simple game, in @lhia ship (controlled by a user)
must destroy enemy ships firing laser shots. Egéiy corresponds to a user in a host
(e.g. mobile device, tablet) in the network, asvamdan 5a. The local ship will be
rendered in green and remote ships will be renderétle. An example video of the
game can be found at [18], where it is also shdvat the entire example is run on
virtual machines with Android.

Although very basic, the application is represéwain terms of CPU and network
usage of a class of game applications: the gamé ocmminuously update its local
model, share local information among all hostsersx and update remote hosts
information, and render the corresponding graph@snsidering an update rate
equivalent to 30 frames per second, the networlswmption is considerably high
and grows proportionally to the number of playérarthermore, the game uses the
Periodic Broadcast feature from th&€€ommunication service.

The data defined to be sent/received through theank includes ship position
and heading, as well as shots position and hedbatghe ship shoots when the user
triggers the fire action.

4.2 Tic-Tac-Toe

Tic-Tac-Toe has been selected as a representatarapte of a completely different
type of application, compared to the Asteroids gasiece Tic-Tac-Toe is a two-
players game, turn-based and there is no need faordinuous sending of
information, specific events (players taking turtig)ger communications.

Fig. 5b shows a running example of the game on $amsung Galaxy devices
with Android 4.0.3, and an example video of the gammning on a virtual machine
and a Samsung Galaxy can be found at [19]. WhéeTikh-Tac-Toe game imposes a
very different usage of the network during the g&tnens, non-periodic messages,
etc.) as compared to the Asteroids game, otheliceerequirement such as those
related to host Discovery remain the same.

The data structure for this application is very @en an action value representing
the possible states of the game: a) resolve wHastaitt the game, b) set a cell with an
X or an O - in this case a position value is alseded, or c) restart the game. Since
there is no need for a periodic update of locat idermation, noProducer has to be
implemented.

4.3 Crossplatform chat application

A simple chat application has been selected in rotde show cross platform
networking capability, requiring only the commurioa features. By simply
specifying an IP address and a message, the cphatesquls the corresponding text to
the target host, the which shows its content on display. Fig. 5c¢ shows the
achieved interaction among two virtual devices, @nening the application on
Android, and the other running on J2ME.

The biggest problem in this case is the seriabizatieserialization issue. Each
platform implements (if it does) a specific sedation method, which can or cannot
be compatible with the other platforms. In ordesolve this problem, the framework
defines a NetworkSerializable interface, containing the definition for the
networkSerialize and networkDeserialize methods. Applications must contain a class
which implements this interface in a consistent wayeach platform. At run time, the
framework then delegates the serialization-deseaitdn work to these classes.

4.4 WiFiRemote

WiFiRemote is a Client/Server implementation usififferent application platforms.
It consist of a server application that displaysag®s running on J2SE, and an

Android application that controls the slideshovkédlia remote control) on the cliente
side, as shown in Fig. 5d.

Thus, a user can then control the images beindagisg, for instance selecting the
previous or next image. For each image displatreziserver also sends to the client
the image metadata, which will be displayed inAlneroid device.

In this case, the required data structure is cgiitgle: an action code that goes from
the client to the server and the details of thegenthat returns to the client.

This is an example of how the framework is alsofulsien applications in which
implementation logic differs in each host.

5 Conclusions and futurework

This paper presented the advances achieved imghlementation of a framework
designed for easily handling network-related issimeshe development of mobile
applications, calletletworkDCQ [20].

The framework covers a wide range of features sashhost discovery, data
communication and broadcasting, and QoS monitoriigis designed to support
different implementations for each of these sewjicgaining flexibility, and
versatility. Its main goal is to fill a gap in tlmeobile development frameworks area,
where currently there is no open source, crosdophat solution with the features
explained in this paper.

The proposed API and reference implementationtisadly useful for several types
of applications, network requirements, and configjons. The examples shown cover
applications with a wide variety of network-relatedjuirements like continuous data
broadcasting, event driven communication, and bggreous platforms. These
examples evidence the considerably small amounteffért needed in the
development of applications with networking cap#pil thanks to the features
included in the framework.

Although the framework is fully functional for Angid and J2SE, currently there
is no available version for iOS. Completing th&sk is a short-term objective.
Implementing the complete set of features for Wimsldviobile, and BlackBerry 10
are mid to long-term objectives.

References

1. Markus Falk, Mobile Frameworks Comparison Chart, :httpvw.markus-
falk.com/mobile-frameworks-comparison-chart/.

Digital Possibilities, Mobile Development FramewsrlOverview, http://digital-
possibilities.com/mobile-development-frameworks+oiew/.

PhoneGap, http://phonegap.com/.

Titanium, http://www.appcelerator.com/platform/titam-platform/.

Unity3D, http://unity3d.com/.

Corona, http://www.coronalabs.com/products/cororid-sd

N

ousw

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

StatCounter, Top Mobile & Table Operating SysterosnfrApril 2013 to April 2014,
http://gs.statcounter.com/#mobile+tablet-os-ww-rhgn201304-201404.
NetworkDCQ for Android Project, https://code.googtem/p/networkdcq/.

Gamma E., Helm R. , Johnson R. , Vlissides J., Defigtterns: Elements of
Reusable Object-Oriented Software, 1994.

Martin, R. C., The Dependency Inversion Principle, 994,
http://www.objectmentor.com/resources/articles futif.

Fowler, M., Inversion of Control Containers and thepBndency Injection Pattern,
http://martinfowler.com/articles/injection.html.

Joel Gongalves, Luis Lino Ferreira, A Framework oS-Aware Service-based
Mobile Systems, 2010, in press.

Rabia Ali, Dr. Fareeha Zafar, Bandwidth EstimationMmwobile Ad-hoc Network
(MANET), 2011, in press.

R.Sivaraman, V.R.Sarma Dhulipala, L.Sowbhagya, B.MisRnabha, Comparative
Analysis of QoS Metrics in Mobile Ad Hoc Network Eronment, 2009, in press.
Asteroids for Android Project, http://code.googerep/asteroidsa/.

Tic-Tac-Toe for Android Project, http://code.goagtam/p/ticatacatoe/.
NetworkDCQ for J2ME Project, https://code.google.f@metworkdcq-j2me/.

Asteroids for Android Example Video,
http://www.youtube.com/watch?v=HiRTk8daqi4.
Tic-Tac-Toe for Android example video,

http://www.youtube.com/watch?v=mrfOlputSec.
Cristina F:, Dapoto S., Tinetti F., Encinas D., Tlaen®, Pesado P., NetworkDCQ: A
Multi-platform Networking Framework For Mobile Agpéhtions, 2013, in press.

