
Customizing Business Processes in Web Applications

Gustavo Rossi(*),Hans Albrecht Schmid (**), Fernando Lyardet (***)

(*)LIFIA-Universidad Nacional de La Plata, Argentina
e-mail: gustavo@sol.info.unlp.edu.ar

(**) University of Applied Sciences, Konstanz, Germany.
e-mail: schmidha@fh-konstanz.de

(***) Technical University of Darmstadt
e-mail: fernando@tk.informatik.tu-darmstadt.de

Abstract In this paper we discuss several issues related to the introduction of
business processes in the life cycle of Web based E-commerce applications. We
first argue that business processes have been so far neglected by modeling and
design methodologies treating them as by-products of conceptual and
navigational design artifacts, and as a consequence introducing different design
and usability problems in the final products. We introduce a novel approach in
which processes and activities are treated as first class citizens during
application modeling and design. In the core of the paper we analyze the
problem of customizing business processes to different user profiles or
individuals. We show that using our approach we obtain modular and evolvable
solutions.

1. Introduction

With the introduction of new technological advances brought by the World Wide
Web, the Internet is being used as a platform for the implementation of complex
business applications. Even the most simple e-commerce application includes some
kind of embedded business process that must be correctly executed to guarantee the
success of the application. The growing trend on automating business tasks by making
the underlying applications interoperable using the Internet, brings new problems to
software designers. However while there has been a considerable amount of work
related with the specification and implementation of business processes in the context
of conventional workflow-like applications [7], or with the use of the Internet
platform for supporting complex interactions between distributed processes (e.g.
using Web Services) [1], the interplays between processes and the usual navigational
paradigm of Web applications remains barely unexplored. Moreover, mature Web
design methods like OOHDM [9] or WebML [2] either neglect processes or just treat
them as by-products of the navigational specification thus introducing design and
usability problems.
In [8], we introduced a novel approach for designing business processes in Web
Applications by extending the OOHDM design framework with processes and
activities both in the conceptual and navigational models. This approach is built on
sound software engineering principles: it treats business processes and activities as

first class citizens in the development life cycle; by further decoupling activities from
the processes in which they are executed, and by clearly separating process control
flow from the navigational behavior of the overall application, our approach improves
activities reuse and helps to get rid of inconsistent states and incorrect execution
behaviors. This kind of behaviors arises as the result of the interplay between
navigation (the usual way of exploring the Web) and the execution of the business
process. Objectifying processes and clearly indicating the effect of navigation in the
state of process objects is one of the key strategies of our approach. In this paper we
elaborate our previous ideas and discuss the problem of customizing business
processes.
The structure of the paper is as follows: we first summarize our approach for
introducing business processes in OOHDM emphasizing the interplays among
processes and navigation. We next present our approach to customize processes to
different user profiles or individuals and then present some concluding remarks and
further work.

2. Modeling and Designing Business Processes in Web Applications

Introducing business processes in software applications is a difficult task, and it is
widely recognized that the different components of a business process should be
treated as first-class objects. For example, in [7] the authors introduce components for
processes, synchronization features, histories, etc., in the context of a general
architecture for workflow applications. We have put our focus in the integration of
typical concepts of business process execution with the usual navigational semantics
of the WWW. For achieving this objective, instead of defining a new approach from
scratch, we decided to enrich OOHDM, a state-of-the-art design method for
“conventional” Web applications design, with process features. The result has been
appealing as we could use the standard mechanisms for extending the OOHDM
framework (namely adding new meta-classes and refining existing behaviors).
OOHDM (as other Web design methods like [2]) focuses on three different design
concerns: conceptual or application modeling, navigation design and interface design
(we ignore interface issues in this paper). During conceptual modeling, domain
classes and application functionality are described using UML [3] primitives.
We partition the conceptual model in two types of classes (described using UML
stereotypes): entities and processes. While entities model usual business objects,
processes represent set of activities that must be performed to achieve a goal. A
process is a composite [4] of activities, which encapsulate their own state (active,
suspended, etc); control flow is further decoupled from activities and represented in
the corresponding process.
In Figure 1 we show the OOHDM conceptual schema of a simple CD store. At the
bottom of Figure 1, we show entities like CD, or ShoppingCart, and at the top of
Figure 1, process and activity classes. The conceptual model shows that a business
process like CheckOut is typically composed of several activities like the Login Act,
ConfirmItems Act, ShippingAddress Act, DeliveryOptions Act, ConfirmAll Act, and
PaymentOptionsAct. This is represented by an aggregation relationship in the

conceptual schema. Control flow between activities can be represented using UML
activity diagrams (we omit them in this paper for the sake of conciseness). The main
consequences of treating activities as first class objects are that we are able to reuse
the same activity class in different business processes, and that we can implement
different flow of activities for the same process, for example to customize it to
different users (as shown in Section 3).

CreditCard Act
<<activity>>

MoneyOrder Act
<<activity>>

CD

name
performer
price
comment
related : Anchor

<< entity >>

CheckOut Act
<<activity>>

Login Act
<<activity>>

PaymentOptions Act
<<activity>>

ShippingAddress Act
<<activity>>

Item
quantity

<< entity >>

ConfirmItems Act
<<activity>>

DeliveryOptions Act
<<activity>>

Customer

name
address

<< entity >>

PaymentOptions
<< entity >>

ShippingAddress
street
no
city
country
code

<< entity >>

ShopCart

addCD()

<< entity >>

Delivery Options
<< entity >>

Order
orderID

<< entity >>

Figure 1: Conceptual Schema of CD store with processes

In OOHDM, the navigational model describes the objects that the user will perceive
(i.e. the nodes), and the navigation topology (links and indexes); node classes
represent a view of conceptual classes, while links represent the hypermedia
counterpart of application relationships. OOHDM structures the navigational space
into navigational contexts. A context usually represents a set of nodes in a particular
task the user is performing. For example a customer can search and access CDs of a
particular group, CDs in a musical gender, or CDs in a period of time, etc. Each time
he accesses a particular CD of one of these sets, we may provide him with context-
related features such as going to the next or previous CD in this set. We can also
allow or prevent the user from performing certain actions according to the actual
context.
We have slightly extended the OOHDM meta-model by defining activity nodes (the
process counterpart of nodes) as shown in Figure 2.
In the navigational model, activity nodes, like LoginAct Node and
ShippingAddressAct Node (Figure 2 right) play the same role as navigational nodes.
They describe, in an abstract way, the visible attributes, anchors and operations with

which the user will interact during process execution. The interface of an activity
node (for example a Web page) will contain buttons like “cancel” or “next” that
control the input processing of an activity and the control flow to a subsequent
activity. Activity nodes like LoginAct Node are shown in the context of the
corresponding process node to which they belong (a composite in OOHDM), like the
CheckOutAct Node. This is indicated by drawing the activity nodes within the box of
the process in which they are actually executed. Incoming links (like “resume” from
CD node) do not point to activities but to the process node; when a process node must
be activated, it gives control to the current activity (e.g. the one that has been
suspended or that must be initiated).

MoneyOrderAct Node
<<act node>>

CheckOutActNode Container
<<actnode Container>>

CreditCardAct Node
<<act node>>CD Node

name
performer
price
comment
related : Anchor

addToCart()

<<entity node>>

related

resume

LoginAct Node
<<act node>>

ConfirmItemsAct Node
<<act node>>

suspend

ShippingAddressAct Node
<<act node>>

PaymentOptionsActNode Container
<<actnode Container>>

DeliveryOptionsAct Node
<<act node>>

check-out() {
 CheckOutAct.start()
}

HomePage Node
<<entity node>>

terminate

ShoppingCart Node

check-out()

<<entity node>>

start

addToCart

Figure 2:Navigational Schema of CD store with activity nodes

We have added some new types of links to the OOHDM meta-model, namely
“suspend”, “abort” and “terminate” links in order to deal with those links whose
source node is an activity node. Suspension links complement the usual link
navigational semantics by triggering a message to suspend the activity that
corresponds to the source node. In our example, when the user navigates from the
ConfirmItems activity node to the CD node (following the “suspend” link), the
process is suspended (and will be later resumed in the corresponding state). Abortion
and termination links are similar to the suspend link.
The use of activity nodes and associated links help to overcome the usability
problems occurring when implementing business processes in the Web by emulating
them as navigation sequences. In our approach, when an activity is left, it is
suspended, aborted or terminated and the corresponding process is aware of this
change of state. This awareness is achieved as the outgoing links trigger the change of
state in the corresponding activity/process.
When the process is resumed it can then be started in the corresponding activity
because, as previously mentioned, when a process node is started/resumed it gives
control to the corresponding child activity; at the same time, as activities are modeled
as first class objects, they can store their state and be re-initiated safely.
A further problem arises when leaving a process using a navigation link. For example
in the checkout process, we can navigate to a CD page from the ConfirmItems activity
as shown in Figure 2. Should the user be allowed to add the CD to the shopping cart

again, while the checkout process is suspended, and if so what would be the semantics
of this action? We may not want to allow this operation since the checkout process
may already have created the order with the items currently in the shopping cart.
Therefore, an item added during navigation would not be taken into account when the
checkout process is resumed, thus confusing the customer. More generally, when a
business process is suspended, a user should not perform operations that modify the
state of resources being used by the process.
A good solution is to remove the action: “add to cart” from a CD node, when we
access the CD after leaving the checkout process. We can achieve this objective easily
by combining processes with OOHDM navigational contexts. In our approach, every
process defines a navigational context: this means that when a user suspends a
process, navigation occurs in the navigational context of this process. The
navigational context of a process specifies, in the same way as a usual navigational
context, which restrictions or additions apply to a node when it is accessed in the
context of this process. In this way, we can make a “fine-tuning” of the features of
nodes when accessed in the context of a business process or even from a particular
activity in the process.

3. Customizing Processes

Customization has become hype in areas such as electronic commerce; we can find
hundreds of applications that claim to be fully customizable to different user profiles
or individuals. There are many different customization patterns: for example we may
personalize the links allowing different users to explore different pages such as in
Amazon recommendations; we can adapt the contents and/or the structure of a page to
let different users access individualized contents, as in my.yahoo.com, etc.
Regarding business processes, we may also have many alternatives: for example in
the checkout process of www.amazon.com, a new customer has to follow the
previously mentioned step by step procedure (one page for each activity), while a
registered customer just confirms all data in one page as shown in Figure 3; a
customer can also sign for what is called “one-click” check-out in which the process
is “automatic”, etc.
A more elaborated customization policy may provide special offers for holders of a
particular credit card; in this case we may need to “expand” the normal process
control flow to add a new activity to let the user select from a number of offers.
Notice that many of these customized behaviors may require modifying the
application code, e.g. the process classes; thus, the way in which we design processes
and activities is critical to achieve modular and painless software evolution. For the
sake of conciseness we will only focus customization to the user profile, i.e.
personalization, ignoring other customization criteria such as date, time, actual
network connection, etc. However, the principles exposed here are easily applied to
the most general customization case.

Figure 3: One page checkout in Amazon for registered users

We have claimed elsewhere [10] that customization should be addressed using a
design more than an implementation view. This means that once we understand what
we want to personalize, we have to express this personalization feature using the
corresponding design primitives, before deciding how it will be implemented.
Treating processes and activities as first class objects, and modeling them in the
context of the OOHDM framework allow us to apply most of the design rules defined
in [10] for achieving seamless process customization.
The simpler example of process customization consists in providing different
navigation/interface functionality for the same process or activity to customize it to
different user roles. For example when an Amazon employee performs the checkout
process he may be provided with different navigational options that a regular user can
not see; in OOHDM this is achieved by defining different navigational schema,
providing different linking topologies, one for each user role as shown in the
simplified diagram of Figure 6. Both navigational views in Figure 4 share the same
conceptual model (e.g. the one in Figure 1). However, while performing checkout the
customer can navigate to the CDs in the cart while the employee can also access
information about benefits related with the products he is buying. Notice that this
“pure” navigational customization is transparent for process and activity classes.

C D N o d e

C h e c k O u t A c t N o d e

C o n firm It e m s A c t N o d e

C u s t o m er V iew E m ployee V iew

CheckOu t Ac t Node

CD Node

Confirm Item s A c t Node

 Bene fits Node

Figure 4: Customizing processes using OOHDM views

We may want to provide a simplified checkout interface for registered users like the
one in Figure 3. Again, the OOHDM viewing mechanism allows specifying the
ExpressCheckOut activity node containing all the information provided by the former
simpler activities as shown in Figure 5.

ExpressCheckOut Act Node
shippingAddress : Address Node
shippingOptions : SelectBox
shippingPreferences : SelectBox
itemList : Item Node
paymentMethod : Payment Node

CD Node

resumeCheckout()

Figure 5: Modeling an express checkout activity node

This activity provides an interface in the spirit of OOHDM composite nodes. Each
component node, e.g. item List or shipping address, replaces the corresponding
activity in Figure 2. Notice that each of these attributes belongs to a type (e.g. Item
Node), which is itself a full-fledge node class. There is no need to define an “internal”
control flow; however, if this activity is left following an anchor, the semantics of
suspension and resumption remain as discussed before, as well as the notion of
navigational process context.
However there is a subtlety in this example regarding the process state and the control
flow: when the checkout process is started it has to check whether it is dealing with a
registered user to define the corresponding activity view.
An elegant solution to this problem consists in delegating the decision about which
activity must me started, to a user profile object; the profile object then returns the
corresponding (activity) view as shown in Figure 6. The process object will then be
ready to receive the “done” message to finish processing, for example defining its
current state as being in the ConfirmAll activity

start (profile)

state:=profile.initState(self)
self.start (profile.activity(self))

CheckOut Act

start()

Profile

ac tivity()
ini tState()
setActivity()
setInitState()

Figure 6: Customizing different views of the same process

In Figure 6 the start method in CheckOut asks the profile to return the initial state and
then starts the corresponding activity, also provided by the profile object. Notice that
class Profile also contains methods for defining states and activities; in this way we
avoid having to sub-class Profile for different user profiles.
Finally, we might want to completely customize the control flow between activities
according to the user profile. For example certain customers that paid a special fee
when registering have a express delivery option, and thus they do not have to choose
one of the options; or a set of cheaper products may be offered to customers paying
with a Visa card and thus, a new activity has to be introduced. If we want to achieve
complete process customization according to the user profile, the best solution is to
decouple the control flow from the process object and delegate it to the corresponding
profile object as shown in Figure 7.
In the micro-arquitecture of Figure 7, the behavior for deciding which is the “next”
activity is delegated to the profile object as well as the information on the current
state.

Profile

activity()
initState()
setActivity()
setInitState()
next()
state()

CheckOut Act

start()
next ()

next (profile)

state:= profile.state (self)
self.start (profile.next(self))

Figure 7: Decoupling process control flow for achieving customization

A generic architecture for achieving more complex customization policies such as
those related with network connection, interface appliances, etc., is described in [5]. It
further decouples those policies from the application code (in particular from the
process objects) in order to separate the different concerns involved in the problem:
the customization rules, the process (and domain) objects and the profile. Our

approach can be easily used in the context of this architecture just by further
separating the rules that guide processes to a separate component.

4. Concluding Remarks

In this paper we have elaborated our approach for introducing business processes in
Web applications to show how to customize business processes. We have shown that
treating processes as first class citizens allows us to model different customization
strategies: for example we can adapt a business process either to an individual or to
different user profiles in a seamless way, i.e. without having to deal with messy code.
For the sake of space we have not discussed other possible customization examples.
For example it is not difficult to adapt the process control flow to the context in which
the process is being executed by combining the idea of navigational context with the
requirements posed by customization.
We have used the proposed design method successfully for a number of Web
applications, both in student projects and in cooperation with software houses in real
world projects. Some of these applications are a customer relation management
system for small and medium sized shops and companies, which embodies different
business processes, a cooperative travel agency where users can share traveling
opportunities, and several Web shops. We are currently working on defining a
software arquitecture to implement business processes in Web applications by
extending the Model-View Controller paradigm [6] with a new layer: the process
layer. In this way we can overcome the well-known disadvantages of the MVC when
used in applications with complex logic. In the same direction we are studying how to
improve our notation by including some advanced UML features such as stereotypes
and constraints. We are finally studying how to extend the OOHDM meta-model to
include features related with workflow applications in which different users can
collaborative participate in the execution of the same business process.

References

1.Business Process Specification Schema, www.ebxml.org
2. Ceri, S., Fraternali, P: Web Modeling Language (WebML): a modeling language
for designing Web sites. Proceedings of the 9th. International World Wide Web
Conference, Elsevier 2000, pp 137-157.
3. Conallen, J., Building Web Applications with UML. Addison Wesley 2000.
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
reusable object-oriented software. Addison Wesley 1995.
5. Kappel G., Retschitzegger W.. Modeling Ubiquitous Web Applications: The
WUML approach. International Workshop on Data Semantics in Web Information
Systems (DASWIS-2001), Springer Verlag LNCS, 2001.
6. Krasner, G. Pope, S.: A cookbook for Using Model-View-Controller interface
paradigm in Smalltalk 80. Journal of Object Oriented Programming,
August/September 1988, 26-49

7. Manolescu, D. and Johnson, R. A micro-workflow component for federated
workflow. OOPSLA Workshop on O-O Workflow, available at http://micro-
workflow.com
8. Schmid H. A., Rossi, G.: “Modelling and Designing Business Processes in Web
Applications” in Proceedings of EC-Web 2002, the International Workshop on E-
Commerce and the WWW, Springer Verlag LNCS, 2002.
9. Schwabe, D., Rossi, G.: “An object-oriented approach to web-based application
design”. Theory and Practice of Object Systems (TAPOS), Special Issue on the
Internet, v. 4#4, pp.207-225, October, 1998.
10. Schwabe, D, Rossi, G, Guimaraes, R: Cohesive Design of Personalized Web
Applications. IEEE Internet Computing, pp 34-43, March 2002

