
Integrating Software Metrics for Fortran Legacy
into an IDE

Mariano Méndez and Fernando G. Tinetti⋆

III-LIDI, Fac. de Informática
Universidad Nacional de La Plata

50 y 120, La Plata
Argentina

Abstract. Software Metrics have being used since the 70s, their pur-
pose is to measure different software attributes, such as complexity and
maintainability, to name a few. Software Metrics help programmers ob-
tain valuable information about programs. That information is essential
when working with legacy systems. Scientists have been producing For-
tran programs for the last six decades, and some of those programs be-
came legacy years ago. We have implemented a set of well known software
metrics for Fortran into a widely used IDE (Integrated Development En-
vironment) by means of AST (Abstract Syntax Tree). This integration
allows developers to obtain software metrics from their source code while
they are programming.

Key words: Fortran Legacy Systems, Software Metrics, Integrated Develop-
ment Environments

1 Introduction

Software attributes measurement and software process improvement has been
a research topic for many years. The idea of improving software processes that
can be tracked down [34,23] while measuring software attributes has been deeply
treated since the 70s [22,17,24]. In this paper, we will focus in software metrics:
“A function whose inputs are software data and whose output is a single numer-
ical value that can be interpreted as the degree to which software possesses a
given attribute that affects its quality” [18]. Most of the relevant studies focus-
ing on software metrics initially concentrated on Fortran Programming Language
[6,22,24], among others. Fortran is one of the most long lived programming lan-
guages [2] which has been widely used by scientists to produce large amounts of
source code ever since it came into existence, it has become as the “de facto”
scientific programming language [26,3,21,28,29]. Throughout its long lived ex-
istence it has experimented a particular evolutionary process since it was the
first programming language to be standardized [2]. Fortran has passed through

⋆ also Comisión de Investigaciones Cient́ıficas de la Prov. de Bs. As.



10 different versions: fortran i, fortran ii, fortran iii, fortran iv, for-
tran 66, fortran 77, Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008.
Six of those versions resulted in standards [19,13,20]. The Fortran standard has
passed through several revision processes during the last decades (1966, 1978,
1991, 1997, 2004, 2010). As a matter of fact, Fortran is considered to have passed
through a “seven ages” evolutionary process [27].

Fortran evolution has also been described as pragmatical, given the fact that
updated versions of Fortran are fully backward compatible with older versions of
the language. Updated versions have kept full compatibility even with obsoles-
cent features already deleted from the language standard, with minor exceptions:
“Unlike Fortran 90, Fortran 95 was not a superset; it deleted a small number
of so-called obsolescent features. This incompatibility is more theoretical than
real however, as all existing Fortran 95 compilers include the deleted features as
extensions” [7]. Annex B of the Fortran 2008 Standard (ISO/IEC 2008) enumer-
ates the obsolescent features of the language that have not been deleted, some of
which may be found in the fortran 66 and fortran 77 specification. Fortran
2008 was released in 2010, and it is the current revision of the Fortran standard.

Taking into account the Fortran evolution described above, it seems to be
paradoxycal that there are a few tools implementing software metrics for For-
tran [38,37]. Furthermore, most of them (if not all) have closed source and com-
mercial/paid licences. In addition, there are no modern IDEs including metrics
for the Fortran language. In this article we will contribute with an implemen-
tation for Fortran of some of the most widely used software metrics, and we
will integrate them in Photran, “a Fortran IDE and Refactoring tool based on
Eclipse” [36].

2 Software Metrics

As defined in [18], a software metric is “A function whose inputs are software
data and whose output is a single numerical value that can be interpreted as
the degree to which software possesses a given attribute that affects its quality”.
We will focus on a set of well known software metrics that have been used for
the last 30 years by programmers and software scientists. All of them will be
implemented to be used on Fortran programs.

2.1 Cyclomatic Complexity

In 1977, the “cyclomatic number V (G) of a graph G with v vertices, e edges,
and conected components is V (G) = e−n+p ” is introduced [24]. The proposal
is to “measure and control the number of paths through a program”, and it
was called Cyclomatic Complexity (CC). In other words, the CC measures “the
amount of decision logic in a source code function” [33]. Also, there was a tool to
obtain the CC on PDP-10 Fortran programs [24]. One remarkable aspect about
the CC is the possibility to determine a number or a threshold to characterize
programs such as that suggested CC upper bound per routine: 10 [24,33]. A



set of thresholds were defined [12] related to software risk evaluation, as shown
in Table 1. The CC is a widespread software metric even though has its own
detractors [30,31].

Cyclomatic Complexity Risk Evaluation

1-10 A simple module without much risk
11-20 A more complex module with moderate risk
21-50 A complex module of high risk
51 and greater An untestable program of very high risk

Table 1. Cyclomatic Complexity Range Description

We have implemented the CC to measure routine’s complexity, and taking
into account that the CC has different variations to be calculated, our approach
is the same as that published in [4]. Each Fortran program is assumed to have
a unique entry and exit point in order to simplify the complexity calculations:
“For programs with unique entry and exit nodes, this metric is equivalent to one
plus the number of decisions and in this work, is equal to the one plus sum of the
following constructs: logical if, if-then-else, block-if, block if-then-else’s, do loops,
while loops, and’s, or’s, xor’s, eqv’s, neqv’s, twice the number of arithmetic
if’s, n-1 decision counts for a computed Go To with n statement labels, and n
decision counts for a case if with n predicates”.

2.2 Halstead Complexity Metrics

A set of metrics derived from source code in order to measure computational com-
plexity was proposed in the 70s [15,17,16]. A set of independent properties that
could be obtained from an algorithm regardless of the programming language in
which it had been written was defined, trying to determine if an algorithm “may
possess a general structure which obeys physical laws”. The proposed properties
were based on classifying program entities as either operators and operands [15].
The properties are:

– Number of different operators occurring in an algorithm η1.
– Number of different operands occurring in an algorithm η2.
– The total occurrences of operators in the program N1.
– The total occurrences of operands in the program N2.

And the metrics are defined using those properties:

– Unique Entities, also know as Program Vocabulary, η: the number of unique
operators plus the number of unique operands in the program. Calculated
as η = η1 + η2.

– Accumulated Entities, also know as Program Length, N : the total number
of operators plus the total number of operands in the program. Obtained as
N = N1 +N2



– Program Volume, V : “consists of the product of the total number of entities
occurring, N , and the number of binary digits which would be required to
specify each such entity among distinct entities” [15]. Program Volume is
calculated as V = N log2 η.

– Level, L: “has a maximum value of unity, which will be reached whenever
both the number of distinct operators is at its minimum value of two, and
no operand has been mentioned more than once” [15]. Program Level is
obtained as L = 2/η1 ∗ η1/N2.

– Difficulty, D: defined as D = 1/L.
– Effort, E: defined as E = V ∗D

Just like CC, Halstead metrics have different variations to be calculated [6,4],
and our approach is the same as that published in [4].

2.3 Maintainability Index

While Software Maintenance were gaining momentum, software development
practices were also maturing. Different authors argue that software maintenance
represents the highest cost in the software development process. By 1975, “The
total cost of maintaining a widely used program is typically 40 percent or more
of the cost of developing it” [5]. In 1979, the software maintenance costs was
reported to be 67% [35], in the 1990’s this number was about 75% [10], and in
the 2000’s 90% of the entire project cost was calculated [11]. A maintenance
index based on a three dimensional approach was proposed in [8], where the
three dimensions are:

– Control structure.
– Information structure.
– typography, naming and commenting.

The maintenance metric is a result of the analysis of different regression models.
“The regression model that seemed most applicable was a four-metric polynomial
based on Halsteads effort metric and on metrics measuring extended cyclomatic
complexity, lines of code. and number of comments” [8]. As a result, the main-
tenance index was defined as :

171− 3.2 ∗ ln(V )− 0.23 ∗ CC − 16.2 ∗ ln(LoC) + Comments

where V is the volume as defined in the previous section, 2.2, CC is the Cyclo-
matic Complexity, and LoC is the number of Lines of Code. Our implementation
is based on a slight modification, resulting in [39]:

MI = Max(0, (171− 3.2 ∗ ln(V )− 0.23 ∗ CC − 16.2 ∗ ln(LoC)) ∗ 100/171)

3 Fortran Software Metrics Implementation

In order to implement metrics described in section 2 we have based our devel-
opment on Photran [36], a multiplatform integrated development environment



(IDE) for Fortran based on Eclipse. As an IDE, photran integrates editing, source
navigation, compilation, and debugging into a single tool. Furthermore, as it uses
make for compilation, it can work with virtually any existing Fortran compiler.
It is also equipped with error parsers, which help to interpret error messages
from popular compilers and associate error markers with the appropriate lines
of code [36].

Photran infrastructure uses a compiler-like approach to represent a Fortran
program by building an Abstract Syntax Tree (AST) as a program represen-
tation. An AST “represents the hierarchical syntactic structure of the source
program.” [1]. Each construct occurring in the source code of the program is de-
noted on a tree node. It is called “abstract” because the AST does not represent
every detail which appears in the real syntax, see Figure 1. The Photran AST

Fig. 1. A Complete AST Structure for a helloworld.f90 Program

is based in the Fortran language definition, as expected, but also adds its own
information, so that it is possible to modify the AST (which is why it is usually
known as rewritable AST) an (re)generate the Fortran program.

In order to extract metrics from the source code of the Fortran programs
we have built a set of java classes that implement the visitor pattern [14], as
shown in Figure 2. While traversing/visiting the AST we are able to collect
as much information/data as we need. Thus, metrics are easily implemented
by collecting data in the AST in a uniform way. This general strategy greatly
simplifies the implementation of the metrics presented in this paper as well as
new ones, depending on specific project and software analysis needs. Even when
some data is nos fully contained in a single AST node, each visitor is implemented



Fig. 2. Gathering Fortran Metrics

so that collects and aggregates data from the proper AST nodes, depending on
the specific metric.

After the information about the selected editor is gathered it is shown in
a specific IDE view called “Metric View”. Thus, we take advantage of the so-
called Views defined by Photran. The Metric View in Figure 3 shows three
specific metrics: Cyclomatic Complexity, Maintainability Index and Source Lines
of Code per routine. The information in the view is updated each time a new
editor is selected. We have added a small colored circle (red, yellow, green) that
is displayed in the CC column indicating the color according to the range shown
in Table 1.

Fig. 3. The Metric View: CC, MI, and SLoC per Routine

The information contained in the Metric View is consistent with the source
code shown in the editor as shown in Figure 4. It is expected to aid the program-
mer to identify the location (routines) of potential problems regarding possible
“bad smells” in the source code, such as too complex or too large routines, for
example. Colors could be added to other columns (e.g. to the MI column) on
demand, and it would change only the Metric View (or, more specifically, the
corresponding column in the Metric View).



Fig. 4. The Selected Fortran Editor and the Corresponding Metric View

4 Related Work

Integrating metrics data into a broadly used IDE is a relatively new idea. On the
one hand Microsoft Visual Studio (which was initially known as Visual Studio
97 starting on May 1th, 1997 and passed through at least 8 product versions),
has included metrics on its last 4 versions (Visual Studio 2008, 2010, 2012, 2013)
[9]. On the other hand, Eclipse (from which Photran is derived) does not provide
software metric data information in any of its distributions, but there are a set of
plugins that allow the user to gather metrics data for Java and other supported
programming languages.

Regarding software implemented using Fortran, available tools to obtain soft-
ware metrics are not integrated to an IDE, and they are stand alone tools [38,37].
Fortran development tradition has been more naturally associated to a develop-
ment tool chain instead of using an IDE (such as Photran).



5 Conclusions and Further Work

We have shown an implementation and integration into a modern IDE for the
Fortran programming language of some of the most widely used software met-
rics. The metric gathering process has been implemented with a compiler-like
approach using ASTs. The obtained information has been integrated in a Pho-
tran (an Eclipse derivation) view in order to make it available to the programmer
while performing all the regular programming activities.

As our main interest is focused on Fortran source code transformation and
Fortran Legacy source code handling [25,32], we will continue working on:

– Adding new metrics to the Metric View.
– Allowing user customize the Metric View.
– Adding a column that shows Fotran obsolescent and deleted features used

in the source code.
– Integrating new legacy-aware functionality to the IDE.
– Integrating Static Analysis information as Photran Views.

References

1. Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers:
principles, techniques, & tools, volume 1009. Pearson/Addison Wesley, 2007.

2. J. Backus. The History of Fortran I, II, and III. ACM SIGPLAN Notices,
13(8):165–180, 1978.

3. David W Balmer and Ray J Paul. Casm-the right environment for simulation.
Journal of the Operational Research Society, pages 443–452, 1986.

4. Victor R. Basili, Richard W Selby Jr, and T Phillips. Metric analysis and data
validation across fortran projects. Software Engineering, IEEE Transactions on,
(6):652–663, 1983.

5. Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley, 1975.

6. Necdet Bulut, Maurice H. Halstead, and Rudolf Bayer. Experimental validation
of a structural property of fortran algorithms. In Proceedings of the 1974 annual
conference-Volume 1, pages 207–211. ACM, 1974.

7. Malcolm Cohen. Fortran: A Few Historical Details. http://www.nag.co.uk/nag-
ware/NP/doc/fhistory.asp, October 2004.

8. Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate
software system maintainability. Computer, 27(8):44–49, 1994.

9. Microsoft Corporation. Visual Studio . http://msdn.microsoft.com/en-us/library/-
bb385914(v=vs.90).aspx, May 1997.

10. A. Eastwood. Firm fires shots at legacy systems. Computing Canada, 19(2):17,
1993.

11. L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17–
23, 2000.

12. John Foreman, David A Fisher, Michael Bray, Kimberly Brune, and Mark Gerken.
C4 software technology reference guide-a prototype, 1997.

13. A. FORTRAN. X3. 9-1966. American National Standards Institute Incorporated,
New York, 1966.



14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley Reading, MA, 1995.

15. Maurice H. Halstead. Natural laws controlling algorithm structure? ACM Sigplan
Notices, 7(2):19–26, 1972.

16. Maurice H. Halstead. Elements of Software Science (Operating and programming
systems series). Elsevier Science Inc., 1977.

17. Maurice H. Halstead and Rudolf Bayer. Algorithm dynamics. In Proceedings of
the ACM annual conference, pages 126–135. ACM, 1973.

18. E. Iee. IEEE Std 1061-1998. IEEE Standard for a Software Quality Metrics
Methodology, 1998.

19. ISO. ANSI/ISO/IEC 1539-1:1997: Information technology — programming lan-
guages — Fortran — part 1: Base language.

20. ISO. ANSI/ISO/IEC 1539-1:2004(E): Information technology — Programming
languages — Fortran Part 1: Base Language. pages xiv + 569, May 2004.

21. Alan H Karp. Programming for parallelism. Computer, 20(5):43–57, 1987.
22. Donald E Knuth. An empirical study of fortran programs. Software: Practice and

Experience, 1(2):105–133, 1971.
23. Meir M Lehman. The programming process. internal IBM report, 1969.
24. Thomas J. McCabe. A complexity measure. Software Engineering, IEEE Trans-

actions on, (4):308–320, 1976.
25. M. Méndez, J. Overbey, and F. G. Tinetti. Legacy fortran software: Applying syn-

tactic metrics to global climate models. In XVIII Congreso Argentino de Ciencias
de la Computación, Oct. 2012. Available at https://lidi.info.unlp.edu.ar/~fernan-
do/FortranLegacy/.

26. Michael Metcalf. Has fortran a future? Computer Physics Communications,
38(2):199–210, 1985.

27. Michael Metcalf. The seven ages of fortran. Journal of Computer Science and
Technology, 11(1):1–8, 2011.

28. R. Miranda, F. Braunschweig, P. Leitao, R. Neves, F. Martins, and A. Santos.
Mohid 2000, a coastal integrated object oriented model. Southampton, UK: WIT
Press, Hydraulic Engineering Software VIII, 2000.

29. Miriam Schmidberger and Bernd Brugge. Need of software engineering methods for
high performance computing applications. In Parallel and Distributed Computing
(ISPDC), 2012 11th International Symposium on, pages 40–46. IEEE, 2012.

30. Martin Shepperd. A critique of cyclomatic complexity as a software metric. Soft-
ware Engineering Journal, 3(2):30–36, 1988.

31. Martin Shepperd and Darrel C. Ince. A critique of three metrics. Journal of
Systems and Software, 26(3):197–210, 1994.

32. F. G. Tinetti and M. Méndez. Fortran legacy software: source code update and
possible parallelisation issues. ACM SIGPLAN Fortran Forum, 31(1):5–22, April
2012.

33. Arthur H. Watson, Thomas J. McCabe, and Dolores R. Wallace. Structured test-
ing: A testing methodology using the cyclomatic complexity metric. NIST special
Publication, 500(235):1–114, 1996.

34. Maurice V. Wilkes, David J. Wheeler, and Stanley Gill. The preparation of pro-
grams for an electronic digital computer.

35. M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon. Principles of software engineering
and design. Prentice Hall Professional Technical Reference, 1979.

36. Photran, an Integrated Development Environment and Refactoring Tool for For-
tran. http://www.eclipse.org/photran/.



37. SimCon Ltd., FPT and WinFPT Reference Manual - Command-line Commands.
http://www.simconglobal.com/fpt ref index.html.

38. The Numerical Algorithms Group 2014, NAG Software Developer
Tools. Essential Tools Underpinning your Technical Programming.
http://www.nag.co.uk/nagware.asp.

39. Code Analysis Team Blog, Maintainability Index Range and Meaning.
http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-
index-range-and-meaning.aspx.


