
Engineering Web Applications using Roles

Gustavo Rossi1, Jocelyne Nanard2, Marc Nanard2 and Nora Koch3

1 Facultad de Informática, Universidad Nacional de La Plata and Conicet Argentina
gustavo@sol.info.unlp.edu.ar

2 LIRMM, CNRS/Univ. Montpellier, 161 rue Ada, F34392 Montpellier cedex 5, France
[jnanard, mnanard]@lirmm.fr

3 Institut für Informatik, Ludwig-Maximilians-Universität München and
FAST GmbH, Germany

nora.koch@ifi.lmu.de, koch@fast.de

Abstract. Although role modeling is a topic that has been treated over years in
the object-oriented community, its use in the life cycle of Web Engineering, and
particularly in object-oriented web design methods, has been seldom discussed
and used yet. In this paper, we introduce roles in the modeling and design ar-
mory of existing Web engineering methods and show how it improves their ex-
pressive power and help to solve design problems that appear frequently in web
applications. We first survey the state of the art of web engineering modeling
approaches. A simple example is used to point out some situations in classic
web engineering modeling where it is not possible to express that objects or
nodes should change their properties (attributes or behaviors) according to the
collaborating subject (the objects which send them messages or the nodes
which are linked to them). Next, we introduce the object-oriented role concept
and discuss how it has been used so far in the software engineering community
and how it can be useful for web engineering modeling. Existing methods (like
UWE and OOHDM) are used as an example to show how to introduce roles
during the web engineering process. We compare our approach with others and
conclude with some further research we are pursuing.

1 Introduction

The increasing use of the Web as a software platform together with the advance of
technology has given raise to a completely new generation of Web Applications;
these applications allow ubiquitous access from fixed and mobile devices, provide
personalized features to individuals, support complex business processes and work-
flows, etc. The Web engineering community has already discussed and hopefully
solved many of the design problems arising from this complexity [7], [11], [27], [42].
In this paper we focus on one important issue that has been so far ignored (or at most
only partially addressed): how to specify, using a high level notation, those object or
node aspects which vary according to their involvement in different collaboration or
link relationships. Particularly, we are interested in how to model object and node
classes in which there are properties (attributes, behaviors, outgoing links) which are
intrinsic to the class and others which depend on the collaborating object (i.e., the ob-
ject which sends a message) or the incoming link.

Usually, application objects must be designed to provide different services (data,
behavior) according to the context in which they are accessed. For example, suppose
an academic application used by the administration staff; when a person gets enrolled
in the university, she is treated as a student. This means that the corresponding object
has the message protocol of students. Later, the same person may then become a
teaching assistant in a course or an employee of the university: the corresponding
software object(s) will presumably exhibit slightly different behaviors. The same per-
son might, at the same time, behave as a student AND as a teaching assistant. Accord-
ingly, the corresponding software object must behave both as a teacher and as a stu-
dent as if it belongs to two different classes.

In a typical e-commerce Web application, the same product object will provide dif-
ferent services according to the application object interacting with it, e.g., in the con-
text of a stock application, when being part of an order, when accessed as a recom-
mended item, when treated as a gift to an employee, etc. In the www.amazon.com
web site, for example, when we access a CD in our recommendation list, the CD ex-
hibits a link that explains why the CD is recommended. However, if we access the
same CD following another path (for example from the list of novelties), the link is
not available.

Notice that, in these two examples, application objects (persons, products) or nodes
(CDs) vary their features when interacting, collaborating, or being accessed by other
objects or nodes, as if they were dynamically changing their base class. This variation
occurs not only when we send specific messages to those objects, but also when we
navigate them, even in simple Web applications. The example above shows only a
small sub-set of the different kinds of situations in which some semantic flexibility is
needed for mo deling.

As we show later in the paper, we can not solve the problem by using a naïve com-
bination of object-oriented abstraction primitives (such as building a class hierarchy
of Persons, Employees, Students, etc.) because class hierarchies do not support ob-
jects (or nodes) belonging to two different classes or changing their class dynami-
cally.

 Some of the situations above could eventually be solved (at the design level) by
using combinations of well-known object-oriented primitives or patterns (See for ex-
ample [41]). However, it is important to deal with these concerns at the correct level
of abstraction; in particular, we need a clear way to express this kind of variability at a
higher level, while modeling the application. We argue that we can solve some of the
modeling problems, in an elegant and clear way, by introducing the role concept.

Informally, a role is the set of properties which are important for an object to be-
have in a particular context (or when participating in a certain relationship). When the
object behaves as expected in that context, we say that the object is playing a role. In
everyday life, we usually say that a person is playing a role (e.g., student) when he
acts as expected when being a student. We know by our experience that the same per-
son might play different roles according to whom he is interacting (e.g., the student
might play the role of son, when interacting with his parents). However, there are cer-
tain, say “intrinsic”, properties of the person (his name, age, etc.) that are independent
of the role, while others only make sense when playing the role (e.g., the student
number).

In software meanwhile, a CD in a store’s catalogue may play different roles ac-
cording to whom (which other object) is interacting with it. While its intrinsic proper-
ties (e.g., name, performer, etc.) will be shared in every role, it might exhibit different
properties and behaviors when being accessed by different objects.

Surprisingly, the role concept has been rarely used so far in the hypermedia com-
munity and thus has been barely ignored in the Web Engineering community. Re-
markable exceptions are the work in [1] and [11], which, though a bit different from
our approach, will be addressed in the Related Work section.

We argue that the role concept is critical in the context of Web applications be-
cause:

• Web applications embody complex and comprehensive domain models
(which are then used by different specific applications), and thus it is usual
that the same application object might have to assume different roles during
the application life cycle or in the context of different applications.

• Being the Web a realization of the hypermedia paradigm, a model in which
relationships are fundamental, roles represent an important tool for express-
ing node’s variations when involved in different relationships.

In this paper, we discuss why roles should be used as first-class citizens in Web de-

sign methods, and propose some simple ways of introducing them in some well-
known design approaches, like UWE [27] and OOHDM [43]. The contributions of
this paper are two fold:

• We show that the introduction of the role concept improves existing meth-
ods. In doing so, we aim to make the Web Engineering community aware of
some modeling problems and we explain how to deal with different design
concerns using roles.

• While comparing our approach with others using roles, we clearly show
when roles should be used and when other design structures or patterns are
preferred.

The rest of the paper is organized as follows. We first discuss the state of the art of

Web Engineering modeling approaches and show some drawbacks of pure “class-
based” approaches. Next, we introduce the concept of roles and briefly compare our
notion with others in the literature. Then, using a common example, we show how to
introduce roles in existing Web applications design methods. Finally we compare our
work with other similar approaches and present some further research we are pursu-
ing.

2 Modeling Web Applications. State of the Art Approaches, and
Problems

In this section, we explain how existing methods model and design a Web applica-
tion; our intent is not to discuss minor syntactic differences between design methods,
but to show which are the common primitives and abstraction mechanisms and iden-
tify a set of design problems that remain unsolved.

Throughout this paper, we use a simple example to show why the concept of roles
is needed (in different development stages) and how we use it in web engineering
methods. Suppose a Museum of modern art which organizes exhibitions of artworks
and at the same times acts as an Auction house for those artworks whose owners are
interested in selling their artworks. From the application point of view, we must sup-
port the organization of exh ibitions, i.e., indicating the room in which each artwork
will be placed, and the organization of auctions. Auctions can take place in different
places and a calendar of auctions for a particular artwork should be maintained. Art-
works may be in restoration; in this case, besides the basic artwork information, we
aim to know the restorer’s identity and the date in which the restoration will finish.

We aim to build different Web applications according to the intended task. In an
application for exploring the museum virtually, users can navigate all artworks (even
those who were sold), information about artists, restorers, etc. They can even add
comments on artworks that might be useful for administrator to assess which artworks
are more “popular”. Another Web application must support the work of administra-
tors, allowing to “tag” artworks to be sold in auctions, included in exhibitions, or put
into restoration. Expert evaluations are also dealt with in this application. Finally, we
might be interested in an application to proceed with the auction on-line (as in www.
sothebys.com). For the sake of clarity, we will next present the most important model-
ing and design activities in existing Web Engineering methods and then argue why
more design primitives are needed by analyzing some problems which we illustrate
on the Web museum example. A summary of the design problems is presented in a
separate sub-section.

2.1 Design Activities in Web Design Methods and Analysis of the Problem

Web application development methods like UWE [27], OOHDM [43], OO-H [16],
OOWS [35], WebML [7], and WSDM [11] partition the development space in (at
least) five different activities: requirement gathering and specification, conceptual,
navigational, and presentational design, and implementation. They usually provide
modeling primitives for at least the first three design activities. Some of these meth-
ods (UWE, OOHDM, OO-H and OOWS) are based on the object-oriented paradigm,
i.e., they integrate structure and behavior in the same component (a class). Others,
like WebML and WSDM, are based on well-known data modeling approaches, like
the E/R [8], or the ORM [22]. The conclusions of this paper can be easily applied to
any object-oriented approach, and therefore, to focus our discussion we assume that
the basic modeling primitives are those in the object-oriented paradigm. A discussion
on the application of these ideas to other, non-object-oriented, approaches, though in-
teresting, is outside the scope of this paper. For the sake of conciseness, we focus on
conceptual and navigational design and ignore subtle notation differences between ex-
isting approaches.

2.1.1 Conceptual Design

There is a consensus in Web Engineering that, during conceptual design, a model of
the underlying application domain is built; application objects, behaviors, relation-

ships, and eventually business processes are specified using well-known notations
such as UML [34] or the E/R model. Some approaches consider the conceptual model
as “just” a content or data model [7]. Others [27, 35, 43] treat the conceptual model as
a full-fledged domain model which must include in a cohesive way all intended object
behaviors, their relationships with application objects, together with their dynamics
and state changes. In this paper, we will assume the latter interpretation. In general,
the conceptual model is built as being navigation-neutral, i.e., navigation design is-
sues are not included in the conceptual model. For data modeling approaches, this de-
cision is natural as the conceptual model only specifies contents. Object-oriented ap-
proaches tend to specify the conceptual model as a general domain model which can
be used regardless the navigation topology specified in later stages, which usually im-
plies analyzing the core domain behaviors and properties.

A simplified class model for our example application is shown in Figure 1. For
conciseness, we omit the presentation of sequence diagrams, state models, and other
artifacts needed to completely specify the domain.

Figure 1: Conceptual model of the Museum application

The conceptual model in Figure 1, as it may result from a “conventional” object-
oriented method, shows that the Museum offers exhibitions which are composed of
Artworks which themselves are placed in Rooms. Artworks produced by an Artist in a
certain Historical Period can have anonymous Comments (added by visitors of a web
site) and Evaluations done by Experts. All Artworks have an Owner and, for simplic-
ity, we assume the owner to be a person. An Artwork in restoration also knows the re-

storer’s identity. The Auction Manager can put an Artwork in Auction and knows the
owner in order to eventually negotiate the conditions of the Auction. Though not in-
cluded in the diagram, Auctions for an artwork are organized in a particular date and
place. An Artwork can be in exhibition and at the same time being scheduled for an
Auction.

The model above has basically two problems:
• The responsibilities (informational and behavioral) in class Artwork are

many, as artworks are objects that collaborate with many others in the sys-
tem. Some of those collaborations are only specific to a certain collaboration
context. For example, when being scheduled for an Auction, an artwork has
to “acquire” knowledge about the schedule (knowledge that by the way is ir-
relevant when it is only an artwork in exhibition). In the same way, the con-
cept of current price of an artwork (e .g., as the answer of a method with that
name) makes non-sense for most artworks in exhibition which don’t have a
price. The same problem appears with artworks in restoration. The notion of
date only makes sense in the specific case that an artwork is in restoration.
Notice that while some properties of an artwork are intrinsic to the artwork
(e.g., its name, the date in which it was created, etc), other properties arise
when the artwork participates in some relationship, such as the relationship
with an auction or a restorer.

• Though less important, the modeling of Owner, Artist, and Expert as sub-
classes of Person also show another face of the previous problem. If the
same person is the artist which painted an artwork and the owner of the same
(or another) artwork, the model shown above doesn’t work fine. Once again,
the intrinsic properties of a person (e.g., her name) are mixed with those
which pertain to a relationship in which the person is involved, such as being
the creator of an artwork.

A naïve solution to the first problem above could be to define a class hierarchy of

Artwork classes, to model the variations (e.g., ArtworkInAuction, ArtworkInRestora-
tion). This approach does not work as the same artwork might have to belong to dif-
ferent classes (e.g., when it is being auctioned and in restoration) or even worse it
might have to “change” its base class frequently. A more subtle solution could be to
consider “in restoration” and “in auction” as possible states of an object and try to
model the differences according to the state. In this case, even if we use a modular so-
lution such as the State pattern [15], we have the problem of an artwork being in mu l-
tiple states at the same time (situation not considered in the State pattern).

The essence of the above problems lies in their nature. In fact, the problem is that
the same object needs to exhibit different properties (behaviors or information) ac-
cording to the relationship in which it is involved (or different behaviors according to
the subject which sends it a message), and this is only possible if we can separate the
intrinsic properties from those properties which depends on a relationship. In the ob-
ject-oriented paradigm, there are no “native” constructs that allow separating the in-
trinsic properties of an object from those which depend on the context in which the
object is being used. As shown in the next sub-section, this is a base problem of the
paradigm which manifests itself in slightly different ways during conceptual and navi-
gational design.

As a simple example, when an artwork is being accessed from an Auction, it must
behave as expected by the auction. Meanwhile, when it is accessed from an exhib i-
tion, it behaves “just” as a plain artwork. Even though this problem exceeds the do-
main of Web applications (it is a general software design problem), the fact that many
different Web applications are usually built from the same conceptual model, e.g., for
accommodating to different audiences (as in [11]), makes the problem outstanding in
this domain, as we need to emphasize modularity and simplify evolution. In other
words, if our conceptual model is built to be an integrated domain model and there-
fore its classes need to provide the above flexibility, we need to solve these, say, mi-
cro-architectural problems.

Notice that if a new application arises in the model (e.g. a new type of audience not
previously foreseen), and the navigation model requires some “new” operations to be
performed in the domain model, then the (shared) domain model must evolve to ac-
commodate to this new situation; this evolution is only possible if we are able to en-
sure modularity, when application classes must support new sets of behaviors.

A design solution to this family of problems is to use the Decorator pattern [15] to
manage object behavioral and structural extensions. By keeping the intrinsic proper-
ties in the base class, we separate the additional (relation-oriented) properties and
specify them in the corresponding decorator which is composed with the base object.

However, while the Decorator provides a hint to the solution, it has two problems:
first, it provides a solution of a somewhat low-level nature (more targeted to imple-
mentation) and consequently might obscure the conceptual model; second, its intent is
too broad (which is reasonable given that it belongs to the concern of design and not
just modeling) and needs to be refined to the target problems described before.

What we need is a higher-level concept and a corresponding notation to express the
same idea. As we will show from Section 3 on, the role concept (and its realization
using object composition) gives an elegant conceptual tool to solve these kinds of
problems.

2.1.2 Navigational Design

Being Web applications a particular kind of hypermedia software1, navigational de-
sign aims at defining which hypermedia objects the user will perceive and how he
will navigate them; hypermedia primitives such as nodes, links and indexes are used
in this modeling activity. Nodes and links are generally defined in terms of applica-
tion objects and relationships, using a mapping mechanism for all classes that are
relevant for navigation. As different types of users will have different tasks to perform
using the system, a separate navigation model might be specified for each type of
user, e.g., administrator, art lover, bidder etc. Following our example on the museum,
a simplified navigation model showing the most important classes of nodes and links
is presented in Figure 2. We assume an art lover as the user of the application which
results from this navigation model.

1 Some Web applications might not follows exactly the hypermedia paradigm. Even though

many of the theoretical ideas exposed in the paper can be applied to a broader range of appli-
cations (See [47]) we will limit our explanation to Web applications in which there is some
navigational behavior, i.e. in which nodes are connected with links.

The navigation model (Figure 2) shows the result of a first step in the navigation
modeling process. It consists of the visualization of navigation nodes and navigation
links, showing the navigation paths that the user can follow while browsing through
the museum application. The navigation model also comprises the so called access
structures. Access structures are, e.g., menus or collections, indexes, and guided tours.
The names of the modeling elements used for these access structures as well as their
graphical representation vary from method to method. For example, UWE divides the
navigation design stage in two sub-stages, one is completely devoted to access struc-
tures. Thus, for the sake of simplicity, we will not present here a complete navigation
model.

Figure 2: Sketch of the Navigation Model for the Museum

As we show in Figure 2, we can access an artwork node by following different
paths: we can see artworks in an exhibition, or navigate to an artwork from the artist
node. Similarly, we can see an artwork after examining the historical period in which
it was created. We can access an artist from an artwork and also from the museum.

This simple and naïve diagram, however, poses a problem. A well-designed web
application should provide information taking into account the actual navigation path.
In other words, when reaching an artwork from the exhibition in which it is included,
it would be nice to read a short biography of the artist; meanwhile, while navigating
to the same artwork from the artist node, the biography does not make sense. Simi-
larly, when accessing the artwork from the historical period node, we would like to
read some additional explanation on the context in which it was created and, perhaps,
have access to other links (not meaningful in other navigation paths). In the left of
Figure 3, we see the artwork when accessed from the Artist node; it does not show
any information on him. In the right, the same artwork is accessed from the exhibition
node and presents a brief summary on Leonardo’s life and a link to Leonardo’s node.

Figure 3: Navigating to an artwork from different paths

Notice that the problem above is somewhat equivalent to the one arising in the
conceptual design activity: we want that some nodes “behave” differently according
to the navigation path, in this case by showing different information; more generally,
we want the behavior of the node to change according to the incoming link.

One possible solution could be to add a decision choice when the node is opened
(thus solving the problem “procedurally”), which will tangle the decision into the
code for opening the node. Another solution is to define different Artwork nodes in
Figure 2 (each one being a view on the Artwork class in Figure 1). This solution
forces us to repeat information on each view with eventual maintenance problems.
Eventually, we could also build a class hierarchy of Artworks, but this solution intro-
duces a spurious specialization criteria, which may conflict with other future exten-
sions.

Similarly to the problems solved in the conceptual model, the solution can be
found by using a compositional role -based approach. As we show in the following
sections, this approach is easily modeled using object-oriented roles.

2.2 Summary of design problems

To summarize the discussion above, object-oriented Web Engineering approaches fail
to address the following problems:

During conceptual design of the Web application domain:

• It is not easy to separate different behavioral concerns. For example when the
same object (e.g., an artwork) should behave differently according to the cli-
ent object (i.e., the object which sends the corresponding message). An art-
work which is in an auction should have an interface which includes mes-
sages to add a new bid or to get the best bid; an artwork in restoration does
not need these behaviors but others.

• As a consequence of the above problem, how to indicate that certain infor-
mation (e.g., an attribute or relationship) of the object is only meaningful in
the context of a specific context of collaboration. For example, the date of an
auction corresponding to an artwork makes only sense if the artwork has
been tagged to be auctioned. In this context, the artwork might also exhibit
relationships to the auction house, etc. Specifying different Artwork sub-

classes (e.g., In Auction, In Restoration) is not a solution, as it is far too
rigid. If the same artwork can be in two different situations (e.g., In Restora-
tion and later in Auction), a class hierarchy prevents us to assign different
classes to the same object.

During navigation design:

• How to cleanly and compactly indicate that a node (such an artwork) might
exhibit different information when accessed using different paths. For exa m-
ple how to specify that when navigating from the Historical Period, the art-
work node shows some attributes which are not meaningful for other paths.

• How to indicate that a node provides links which depend on the path in
which we have accessed a node. For example, when accessing the Artwork
node from the HistoricalPeriod node, we might wish to define other outgoing
links that allows further exploration of historical issues related with the art-
work.

The core of these problems lies in the nature of relationships between objects in the

object-oriented paradigm. Objects are usually agnostic with respect to the subjects
which send them messages (usually known as clients): i.e., objects always react in the
same way regardless which object sent the message. At the navigational level, the
problem seems different (as it seems that no message exchange is involved), but it is
essentially the same.

From the modeling point of view, we need a way to indicate the previously in-
tended variations. In the following section, we introduce the concept of object roles
and, in further sections, we show how we use it to solve the previously illustrated
problems.

3 The Role Concept and its use in Web Engineering

There exist a couple of different definitions and semantics of the “role” concept in
computer science [47]. The “role” concept has been used in different levels of ab-
stractions: as a primitive in conceptual modeling [47, 48 or 49], as a tool for imp rov-
ing design expressions [38, 39 or 40] and even for extending programming languages
and environments like Smalltalk [30]. The term “role” is used by analogy to the thea-
ter where an actor “plays a role”, thereby takes actions which characterize the role.
For an object, all definitions share the same intent: to let the object have different
properties and behavior in different situations at different times. In this section, we
clarify which is the definition of the role concept our approach is based on. Insofar as
we extend object-oriented web engineering methods, we adopt the same view on roles
as in the object-oriented programming world [30]. We first introduce informally the
role concept as considered in this view. Thereafter, we precise the corresponding
definitions related to roles. Finally, we argue on the visual notation to use by a brief
comparison with other definitions of roles.

3.1 Background and Definition

An object may have various behaviors and properties at different times according to
the set of objects it is involved with in some well identified situation. We say that the
object plays a specific role in this situation. For example, an artwork, as an object, can
play two roles: being “in exhibition” in a museum and being “scheduled for an auc-
tion”. However, objects of different types may play the same role. For example, an
artwork object and a manuscript may be “in exhibition” (in the same exhibition or in
different exhibitions).

Fundamental for understanding the relationships between roles and objects is the
distinction between natural types and roles, originally introduced by Sowa [46].

“A natural type is a semantically rigid and non-founded type insofar as an entity
that has the type cannot stop being of the type without loosing its identity and does
not depend on any collaboration”. As an example, consider the Type Artwork : an ob-
ject of type artwork exists independently of a role it can play in relationships with ob-
jects of other types such as an exhibition or an auction. It is not possible that an object
end being an artwork without loosing its object identity. On the contrary, it can stop
playing the role of being scheduled for an auction at some time without ending to be
an artwork.

On the contrary, “a role type is a founded and semantically non-rigid type insofar
as it characterizes an entity by some role it plays in relationship to another entity or
other entities, and if left, does not give up identity of entities”. An example of role
type is “scheduled for an auction”. It characterizes specific properties and behavior
that an artwork object or a manuscript acquires as soon as the auction manager puts it
in auction. These characteristics are lost when that auction on the object is finished.
Thereby, a role type characterizes the dynamic state of an entity when it is involved in
some collaboration with others.

Let us remind in a more abstract way the definitions in [30] that we adopt. The role
type x of an object y refers to those additional properties of y (attributes and behav-
iors) that are critical for the object in a particular kind of collaboration, i.e., when in-
teracting with other objects in a certain context. We say that y is playing the role x.
Those properties of y that exist independently of any role are called intrinsic proper-
ties; they are defined by the natural type; meanwhile the properties that the object
“acquires” when playing a role are called extrinsic. More formally, in an object-
oriented world, both x and y may be defined by classes; a role type x defined by a
class X thus specifies the abstract structure of instantiations of role x that belong to X,
i.e., the extrinsic properties of y. Meanwhile, the intrinsic properties of y are modeled
by its natural type defined as a class Y. A role instance is dynamically bound to an
(intrinsic) object when it begins playing the role. Such role instance has a specific
state and a specific behavior.

3.2 Our Notation for Roles

It is not our aim to describe all different notions of role (the reader can refer to [47])
and their corresponding notations in the literature; however, in order to explain the
notation we choose, we can distinguish between two broad groups of works.

The first group is represented by data models that derive from the popular entity-
relationship (ER) model, the most representative being the object-role modeling tech-
nique (ORM). ORM pictures the world in terms of objects (entities or values) that
play roles in relationships [22]. Objects do not have attributes; instead they are “built”
according to the relationships in which an object is involved and potentially each ob-
ject’s attribute is defined in terms of a role. In ORM, roles improve typical ER rela-
tionships by indicating with a name, the role of each participating object. ORM pro-
vides a rich notation, a set of primitives for indicating constraints of relationships,
roles and objects and a set of heuristics for deriving relational tables from a concep-
tual model. ORM does not provide means to distinguish between intrinsic and extrin-
sic attributes; besides, ORM is a data model, which means that its aim is describing
objects’ data more than objects’ behavior.

The second group encompasses object-oriented approaches which basically con-
sider role as “enrichment” of objects while they interact with others in a similar way
as we do (see for example [31). Extreme applications of this same idea are [40] and
[37] where role models are used as higher-level abstractions than class mo dels. In
both cases, a role is defined as a set of behaviors and a role model describes a set of
interacting roles. While in [38] and [39] this approach is used to specify design pat-
terns that will be later instantiated by making application classes play the correspond-
ing roles, in [37] a role model is defined in the early steps of a development method-
ology (see Figure 4.b).

(a) Steinmann’s notation

ThisClass

Role A Role B

ThisClass

Role A
<<Type>>

Role B
<<Type>>

<<roleOf>> <<roleOf>>

ThisClass

Role A Role B

(b) Riehle’s notation

(c) Hinz & Kappel’s notation (d) Depke´s et al. notation (e) Jadlowski et al.notation

ThisClassRole A

Role B

ThisClass

Role A

Role B

Figure 4. Notations for roles

Approaches such as [23], [10], and [24] incorporate the role concept in the design
armory by a heavyweight extension of the UML meta-model. They focus on the rela-
tionship between a base class and a set of classes that define the roles that class can
play. Each of these approaches defines a “role of” relationship, which can be applied
at class and object level. Hinz and Kappel [23] following [19] introduce a UML
roleOf relationship between classes (see Figure 4.a). It is represented as a stereotyped
inheritance relationship at class level, but it has the semantic of inheritance on in-
stance level (see Figure 4.c). [10] defines the role-of relationship as a subtype of the
UML metaclass association, but combining characteristics of generalization and

composition. Contrary to a generalization, they suggest to depict the role-of relation-
ship also in object diagrams (see Figure 4.d). Similarly, Jodlowski et al. [24] propose
a notation that visually resembles both the composition (filled diamond) and the in-
heritance (triangular arrow) notation of the UML (see Figure 4.e) stressing that the
role relationship is characterized by the mix of their properties. They also use the
same symbol at class and object level.

To summarize, insofar as we extend object-oriented web application design meth-
ods by considering role in a similar way of [30], we chose the Riehle’s notation (see
Figure 4.b). “ThisClass” is the class which defines the natural type of an entity. “Role
A” defines A as the type or class of a role an entity of class ThisClass can play in the
situation defined by a diagram where ThisClass appears with a possible “Role A”. Let
us remark that for UWE which is based on UML, we will introduce in section 5 a new
notation in order to eliminate confusion introduced by notations represented in figures
3.a, 3.c, 3.d, and 3.e, as explained above.

3.3 Using Roles in the Web Engineering Life-cycle

3.3.1 Conceptual Modeling

From previous definitions, it is clear that the role concept improves the expressivity of
object-oriented conceptual models by clearly separating and indicating those objects’
features (structure and behavior) which depend on the context of invocation (i.e., the
sender of the message) from the intrinsic object properties. Introducing roles in con-
ceptual modeling as first class entities makes it possible to solve problems such as
those mentioned in section 2. For example, insofar as objects (as instances) might be
involved in many relationships, an object y may play several roles (e.g., x and z) at
the same time. It can even play the same role x twice (in different places). For in-
stance, an artwork object may be in exhibition in two different museums (for example
it may be exhibited at different times of the day). Besides, a role type can be “as-
signed” to different natural types (for example polymorphic types) or even to other
role types. For example, a same Person y can play the role of Artist as the person in-
volved in the relationship “creator of an artwork” and might additionally play the role
of Owner as long as she has not sold it.

It will now be possible to distinguish explicitly extrinsic properties (attributes and
behaviors) that objects acquire by playing some role when they are involved in some
situation, from their intrinsic properties as defined by their natural type which remains
the same whatever be their situations. By doing so, we will be able to model applica-
tion behavior and navigation precisely and solve the problems mentioned in section 2-
2: particularly, express which properties and behaviors an object has when being in-
volved in a relationship or specifically when a collaborating object communicates
with it. For example, an artwork in an auction will have, besides its intrinsic proper-
ties, the initial bid for that artwork (property which does not make sense in another
context).

We show a sketch of the corresponding schema in Figure 5. A similar schema can
be defined to improve the definition of the different roles a person can play: Owner,
Artist and Expert. In Figure 5, we show the two role types: InAuction and InRestora-

tion which contain the extrinsic information and behaviors which artworks must in-
clude when involved in relationships which need to treat them accordingly to the role.
The Artwork class exhibits those two roles (denoted with the syntax of Figure 4.b); an
association which has a role as the target indicates that the artwork will be playing
that role, which means that its structure and behavior is enriched with the structure
and behavior indicated in the role. Associations which have the origin in a role are
only visible when the object is playing that role. An additional advantage of using this
approach is that we can add new roles to the Artwork class without having to modify
Artwork.

Artwork

- name
- year

- artist ()
- owner ()

InAuction

InRestauration

InAuction
- schedule
- place
- bids
- addbid ()
- bestBid ()

InRestauration

- restorer
- date

Figure 5: Different roles for the Artwork object

As conceptual schemata in object-oriented Web design models follows well known
practices in the object-oriented paradigm, the reader is referred to [30] for further is-
sues such as role composition and inheritance. A comprehensive approach for dealing
with roles and role models in object-oriented systems can be found in [3].

3.3.2 Navigational Design

The first way of using roles during navigational design is to profit from role defin i-
tions in the conceptual model to derive nodes. For example, we can define a naviga-
tion class Owner whose information is derived from the role (class) Owner associated
to persons. Notice that owner nodes will contain attributes taken from both the intrin-
sic person object and from the corresponding role object.

Another simple way to use roles defined during conceptual modeling arises when
building an application for a particular user profile, e.g., the Auction administrator. In
this case, we will design artwork nodes such that they provide interfaces for those be-
haviors that correspond to the auction’s role as shown in Figure 5. In this case, corre-
sponding nodes will be built as views on the InAuction’s role of the Artwork class, as
this application only needs to consider artworks in auction. This previous example is
interesting to note, especially when the audience of the Web application (the auction
administrator) coincides with one specific role defined during conceptual mo deling.

 However, these two uses of roles do not increase the expressive power of naviga-
tion design. They are just a smart way to profit from the improvement of information

and expressivity in the conceptual design (i.e., the addition of object roles) to create
new class of nodes. Of course, this improves the overall application functionality.

Being hypermedia (and as a consequence navigation design) a discipline in which
relationships (materialized as links) constitute an important feature, it is clear that the
role concept can be applied in a simple and intuitive way to allow nodes to exhibit
different characteristics (such as displayed information or outgoing links) when ac-
cessed with different links, i.e., when they are related with different nodes. Particu-
larly, roles allow to:

• Express that a same object displays different features according to the navi-

gation path followed by the reader. For instance, it will be possible to ex-
press that a short biography of the artist should be displayed when accessing
an artwork from the exhibition. Meanwhile, this same biography does not
make sense when accessing the same artwork from the artist.

• Express that a node provides links that depend on the context in which it is
accessed. For example, when accessed from the historical period node, an
artwork node offers outgoing links for further exploration of historical issues
related to the artwork which are not offered when accessing the artwork from
the auction node.

In our example, an application for art lovers and focusing on artwork nodes (de-

fined from the conceptual class Artwork), we can decide whether we want the artwork
to show different attributes or behaviors (as shown in Figure 6) by analyzing the dif-
ferent incoming link types. For example, when an artwork is accessed from the exh i-
bition node, we may want to include the biography of the author and some comments
related with the place of the artwork in relationship with the exhibition; we might also
provide a link to other relevant artworks in the same exhibition. Meanwhile, when we
navigate to the artwork from the artist page, we might not want to show the author bi-
ography and just show the “bare” artwork. More generally, we could eventually de-
fine different role types for each incoming link type of a node class. In Figure 6, the
InExhibition role type contains an attribute and two outgoing links (to Artist and to
Artwork) which indicate that when an artwork is accessed from the exhib ition page, it
will exhibit an additional attribute and these links.

Artwork

Exhibition Artist

InExhibition
Biography

Figure 6: Improving navigation design using roles

3.3.3 Conceptual vs Navigational Roles
The use of roles in conceptual and navigational design follows slightly different ra-
tionales as explained before. We analyze here those situations in which we combine
roles in the conceptual and navigational models.

The first situation arises when a class is enriched with roles in the conceptual
model, but not in the navigation model. This is the case both for classes which are not
useful during navigation (e.g. Person and its roles), or for purely behavioral roles,
such as an Artwork in auction. In this case, the conceptual role is necessary but there
is no equivalent role in navigational design.

The second situation appears when a conceptual class is not enriched by a role, but
the corresponding navigational class is enriched by a role. This is the case with art-
works in an exhibition. While a role is not necessary to express additional attributes or
behaviors in the conceptual model, we use it in the navigational model to allow dif-
ferent information to be provided during navigation.

Finally, there are situations in which we can enrich roles in the conceptual model
with roles in the navigation model. For example, suppose the web application built for
supporting auctions (not just exploration of artworks). In this application, the naviga-
tion class Artwork is built from the InAuction role class, as we may want to provide
users with new facilities (e.g. to add a bid). However, an artwork node might also ex-
hibit different information according to the way we reach it. For example, when we
access the artwork from an artist, we may want to provide links to other artworks of
the same artist, which will be auctioned shortly; similarly, when accessing the artwork
from the index of open auctions, we may want to have links to other artworks in auc-
tion at the same time. In both cases, we are finally refining the conceptual role InAuc-
tion, with different navigational roles (for different ways of accessing artworks).

3.4 Discussion

An interesting issue to be discussed is whether the role construct is necessary in the
Web design methods armory; in other words, could we solve the same problems ad-
dressed here, without using roles?

The literature on object-oriented design has extensively discussed the previously
mentioned problems and their variants [15, 30]. Examples in the literature abound
with respect to the need to support the kind of variations in objects’ features we have
previously discussed.

A first conclusion stated before is that the base object-oriented primitives and ab-
straction mechanisms are not enough to design objects whose properties must vary
(dynamically) according to the collaboration context. In other words, it is not possible
to easily separate the intrinsic properties of an object from those properties which
arise during the collaboration with another object.

Inheritance might be used in some cases but the introduction of sub-classes in these
situations introduces additional problems. As discussed before, defining sub-classes
of Artwork to indicate that an Artwork is in restoration or in an auction is a bad solu-
tion because one object can not change its class, nor it can belong to two different
classes at the same time, for example if the artwork is both in restoration and in auc-
tion.

Similarly, defining sub-classes of the Artwork node class to indicate differences
according to the incoming link pollutes the class hierarchy which might contain other
sub-classes defined with a better rationale like Painting, Sculpture, etc. Another alter-
native could be to define different views on class Artwork to define subtly different
node classes. However, once again, we neglect to separate intrinsic from other node’s
attributes and outgoing links (those that pertain to each possible incoming link). In
this way, we have to repeat the definition of the intrinsic properties in each view, thus
compromising modularity.

Good object-oriented designers have solved this kind of problems once and again
using design patterns. We mentioned before the Decorator pattern [15] which aims to
enrich a class with new behaviors in an instance basis (e.g., different class instances
might exhibit different behaviors).

Closer to our approach, the Role Object pattern [4], specializes the decorator by
focusing to a more specific problem and similar to the work of [30] analyze different
role variants. We believe that this is a better solution though the diagrams in [41] are
quite complex; they are targeted to low-level design and, thus, they are not supposed
to be used during the modeling stage. If designers solely rely on existing modeling
and abstraction mechanisms (e.g., in the object-oriented paradigm), they might end
with difficulties to read diagrams in which high level decisions are cluttered with spu-
rious compositions, aimed for exa mple to express the needed decorations to specify
the intended functionality [15].

Instead, we propose to enrich existing object-oriented Web modeling approaches
with a new primitive: the role construct; therefore, we add expressivity with a very
low cost in diagram complexity as we show in Section 4.

The use of the role concept has an important impact in the modularity of the design
structures and, therefore, allows improving evolution, maintenance, and reuse. First,
by avoiding to create spurious sub-classes to accommodate structural and behavioral
variances, we keep base classes (those that implement natural types) concise and fo-
cused to the concept. By separating role classes, we improve reuse of the natural
types, as they are just concerned with the core ideas of the type, and we also improve
reuse of the role classes, as they are not bound to the natural type, but evolve inde-
pendently. For example, the role InAuction (previously described) could be used in
applications which do not involve Artworks but other kinds of material. This
shouldn’t have been possible if InAuction were defined as a sub-class of Artworks.
Regarding evolution, we can create sub-classes of Artwork regardless of their in-
volvement in auctions or exhibitions; in other words, the engineering of artworks is
not coupled with a particular relationship in which artworks are involved. In the same
way, by separating the core concepts of a node (e.g. artwork) from the contexts in
which it is accessed, we can add new contexts without caring about the properties of
the core node abstraction.

4 Putting Roles to Work in Web Engineering Methods

The role abstraction mechanism complements existing object-oriented modeling con-
cepts mainly the class concept. The sole introduction of this concept in the modeling

armory gives us the possibility to think about applications in a higher-level way, by
indicating how the behaviors of objects change in the context of a particular collabo-
ration. However, the introduction of the role concept in existing methods has to be
done in a seamless way, in order to maintain the coherence of the corresponding nota-
tion. In this section, we show how to improve two existing Web engineering methods
with roles.

We have chosen OOHDM and UWE for some simple reasons. First, they are ob-
ject-oriented (i.e., their base abstractions are collaborating objects); thereby they can
easily benefit from the motivations behind this work. They are also well recognized in
the community. Second, and not less important, two of the authors of this paper have
a huge experience with the engineering of these methods and, therefore, they can bet-
ter use their own extension philosophy and mechanisms; however, the discussion be-
low can and should be applied to other methods. As introducing a new concept in an
exis ting methodology involves much more than improving a notation, the sub-
sections below are just the starting point for a much wider discussion in the Web En-
gineering community. For the sake of comprehension, we describe each method sepa-
rately and as a last sub-section we discuss implementation issues. We show that not
only roles help to solve the problems mentioned in section 2 but also greatly improve
these methods.

4.1 Introducing Roles in OOHDM

In OOHDM, the conceptual model is described using a notation similar to UML.
Therefore, and as discussed in section 3 and illustrated in Figure 5, we can introduce
roles in the conceptual model by using the notation in Figure 4.b. Roles (or role at-
tributes) in the conceptual model can easily be mapped into nodes (respectively, node
attributes) by using the viewing notation of OOHDM [43, 44, or 45]. We no longer
detail the application of roles in the conceptual model as discussed in Section 4.1.
Rather we focus on a more original contribution, the introduction of “pure” naviga-
tional roles. In OOHDM, the navigational model represents a view on the conceptual
model for a specific user profile. The navigational structure of the application is
specified with a navigational schema and a navigational contexts schema. The naviga-
tional schema shows the node and link classes of the application; their semantics are
the usual in hypermedia applications; nodes contain anchors for links.

Museum
- name
- exhibitions (Index)
- artworks (Index)

Artwork

- name
- year
- artist (Anchor)
- image

Exhibition
- openingDate
- themes
- artworks (Index)

Artist
- name
- period (Anchor)
- biography
- artworks (Index)
- image

HistoricalPeriod
- dates
- mainEvents
- artworks (Index)

offers

exhibits

contains

created

createdBy

artworks

Figure 7: Navigation Schema in the Museum Example

In Figure 7, we show, according to the OOHDM notation, part of the navigational
schema for the museum example, considering as the application’s audience art lovers
exploring the museum. Using plain OOHDM we can not express any difference in the
contents of an Artwork node when we access it from an exhibition or from an artist
node.

In Figure 8 meanwhile, we show the navigational schema of Figure 7, but now ex-
hibiting the different roles that nodes can play according to the corresponding naviga-
tional path.

Museum
- name
- exhibitions (Index)
- artworks (Index)

Artwork

- name
- year
- artist (Anchor)
- image

Exhibition
- openingDate
- themes
- artworks (Index)

Artist
- name
- period (Anchor)
- biography
- artworks (Index)
- image

HistoricalPeriod
- dates
- mainEvents
- artworks (Index)

offers

exhibits

contains

createdcreatedB
y

ar
tw

or
ks

InExhibition
authorBioArtistHistory

historyContext

InPeriod
context livedIn

Figure 8: Improving the OOHDM navigational schema with roles

Artwork nodes exhibit two roles depending on whether they are accessed from Ex-
hibition or HistoricalPeriod; analogously, when we access a historical period from an
artist, it includes a short contextual description of the artist in the period. Notice that
in this last case, for each artist we will get a slightly different description of the pe-
riod. Notice that, by decoupling this description from the period itself we manage to
provide different information when navigating from an artwork (in the exhib ition
role).

An original feature of OOHDM is the introduction of the notion of navigational
context defined as a set of nodes sharing some property, e.g., artworks of an artist, art-
ists that lived in a certain period, artworks in an auction, etc. When a node is navi-
gated in a particular context, it might exhibit specific features, which are specified by
using InContext classes, which enrich the corresponding node class. As contexts are
sets of nodes, the kind of information added by InContext classes relates with improv-
ing access to the set; for example links pointing to the following or previous node in
the set can be added. For example, Artworks could be organized by date and dis-
played chronologically, or by technique and, given one technique, all artworks that
correspond to that technique could be displayed sequentially. Since nodes involved in
a navigational context play a specific role when being accessed in the context, it is
natural to use now our role-based notation for representing different features of those

nodes in the context. For example, in Figure 8, we would have two new roles for Art-
work: ByTechnique and ByDate; each role will have two anchors (Next and Previous)
and corresponding links to allow sequential navigation in the set.

To summarize, roles improve greatly the old OOHDM InContext classes in two
different ways: first, their aim is more general, consequently one can use roles for
solving problems which do not involve sets, and second, the semantic of roles is of a
higher level of abstraction compared with InContext classes. While roles are a model-
ing construct, InContext classes are an opportunistic design solution. The addition of
the role concept in OOHDM does not imply additional diagram complexity. Figure 8
is understandable by any OOHDM designer accustomed to using InContext classes.
Moreover, being of a higher-level of abstraction, it is easier to introduce to non-expert
users, as it clearly transmits its intent.

4.2 Introducing Roles in UWE

The UWE methodology [27] is also an object-oriented approach but purely based on
the standard UML, i.e., the notation and diagrams of UWE are restricted to those pro-
vided by UML. The UWE metamodel defined as a conservative extension of the
UML metamodel is the basis for the UWE notation, which is defined as a light
weighted UML profile, because it uses UML extension mechanisms such as stereo-
types, tagged values, and OCL constraints [34]. The advantage of this approach is that
UWE can benefit from all tools that support UML.

While the conceptual model in UWE uses plain UML primitives, the UWE profile
introduces some specific modeling elements for navigation and presentation. In par-
ticular, the navigation model is represented by a stereotyped class diagram, including
the classes of those objects which can be visited during navigation. The «navigation
class» and the «navigation link» stereotypes are used to model nodes and links. Rela-
tionships with conceptual classes are expressed using the UML Object Constraint
Language (OCL) [34].

Other stereotypes such as «index», «query» and «guided tour» are access structures
used for further refining the navigation model. An index for example allows direct ac-
cess to instances of a navigation class. This is modeled in UWE by a composite ob-
ject, which contains an arbitrary number of index items. Each index item is in turn an
object which has a name that identifies the instance and owns a link to an instance of
a navigation class.

 In this section, we focus on the use of roles in the navigation model of UWE. De-
pending on the context in which a navigation node is navigated, such a navigation
node can play different roles. To play a different role implies that different features
and different behaviors of the node can be perceived by the user or shown to the user.
The context may be defined by the functionality the navigation node has to provide in
the context or it is given by the role of the user who is navigating.

In UWE, roles are defined through a directed relationship role of between a base
class and a role class with the semantics that objects of the role classes inherit their
non-role specific attributes and behavior from the base class and role class has spe-
cific features defined by the role class. In order to represent the role semantic graphi-
cally, the UWE armory of elements are augmented with an extension of the UML

modeling element generalization. We choose the name role of for this extended gen-
eralization similarly as already proposed by [23, 10] although the semantics of this
modeling is slightly different, mainly in order to allow a light weighted extension of
the UML [34] metamodel similarly to the UWE extension [28], as shown in Figure 9.
This way we can model a navigation node, i.e., navigation class, a menu or an access
primitive in a navigation model from different viewpoints, depending on the role it
plays in the navigational context.

Generalization
(from Kernel)

Classifier
(from Kernel)

1 *

+specific

1 {subsetssource,
subsetsowner}

+generalization

*{subsets ownedElement}

1

+general

1 {subsets target}

DirectedRelationship
(from Kernel)

Class
(from Kernel)

RoleOf
1

+base

1 {refines general}

1 *

+role

1 {refines specific} *{subsetsgeneralization}

Figure 9. UML metamodel lightweighted extension including a role of model-
ing element

The role of is, as shown in Figure 9, a UML directed relationship which relates in-
stances of a role class to instances of a base class. Applying the role of relationship
repeatedly for a role class taking the position of a base class leads to the construction
of role hierarchies. The lifetime of the instances of a role class is directly dependent
of the lifetime of the instance of the base class that is connected to by the correspond-
ing role of link. Regarding the visibility of features the transitivity of the inheritance
relationship implies that all instances of a role class may access to all features of the
base class or all features of the role classes which are in a higher level of the role hi-
erarchy.

In Figure 10, we show the specification of a set of classes for the different roles the
navigation class Artwork plays in our example application. These role classes are In-
Exhibition and InHistoricalPeriod. They are related to the base class Artwork through
the role of generalization.

InExhibit ion

Artwork

<<role of>>

InHistoricalPeriod

<<roleof>>

InExhibition

Artwork

<<role of>>

InHistoricalPeriod

<<roleof>>

Figure 10. Roles for Navigation Class Artwork

In Figure 11, we show part of the UWE navigation model for our running exa mple.
Note that the base class Artwork and each of the role classes InExhibition and InHis-
toricalPeriod have links with different target. Figure 12 shows the improved UWE
navigation model enriched in addition with menus, indexes and queries.

Figure 11. UWE navigation model improved with roles

The benefits of using roles in UWE are twofold: first we can use roles in both the
conceptual and navigational model keeping the notation UML-compliant; second, the
use of roles in the navigation model allows improving the method, as expressed in
Section 3.

With roles in the modeling armory, UWE can express differences in the navigation
path; particularly, by combining indexes with roles, it is possible to add the idea of
navigational contexts to UWE. In Figure 12, the Artwork Index points to a specific
role of the Artwork navigational class, named In Index. This role contains a link to it-
self, indicating the possibility of sequential navigation between artworks pointed by
the index.

 Figure 12. UWE navigation model improved with menus and indexes

Notice that the same kind of navigational behavior can be added to every naviga-
tional class referenced by an index, thus introducing set-based navigation as in
OOHDM contexts. One interesting issue of this kind of extension (which closely fol-
lows the philosophy of UWE with respect to UML compliance) is that the role-
enhanced diagrams are not complex. The addition of new functionality is done with-
out cost, as the notation is similar to other possible UML light weighted extensions
(i.e. supported with the UML extension mechanisms). Therefore, the diagrams are
more complex only because they are modeling more complex software systems.

4.3 Further Issues

We have also used roles for other different purposes in which some semantic flexibil-
ity (not provided by the basic object-oriented primitives) is necessary:

• to deal with real-world objects in physical hypermedia applications [20],
those mobile applications in which physical and digital objects are combined
[18].

• to implement concern-driven navigation structures [17].

While explaining the first point requires introducing aspects of mobility, not inter-
esting for this paper, we summarize the second here.

As previously shown, the introduction of roles in the navigation modeling activity
allows to express in a compact way the information which a node must exhibit ac-
cording to the incoming link. The examples above demonstrate that, by using roles,
one can eventually show different information according to the path the user is fol-
lowing to reach the node. In [17], we have presented the idea of concern-driven navi-

gation, a way to structure the navigation model according to the theme or concern the
user is interested in. A simple example in the context of the same museum application
could be the possibility of accessing artworks emphasizing technical aspects (materi-
als used for the artwork), or having access to the artwork’s history (the places where it
was, the mu seums in which it was exhibited, its previous owners, etc). Notice that this
two simple examples might involve a set of brand new classes in the previous sche-
mata, e.g., for representing details on techniques, places where the artwork was lo-
cated previously, etc. It also involves defining how the user will select his preferred
concern (explicitly, by indicating his interests, etc). However, there is another prob-
lem which is central to our discussion: how do we model artworks? how do we indi-
cate which information should be shown when accessing the artwork according to dif-
ferent concerns? And particularly, how do we deal with this extension seamlessly
regarding the previous schemata.

An elegant solution, discussed with detail in [17], is to characterize new roles for
the Artwork node: Technical, and Historical as shown in Figure 13. These roles con-
tain the additional information (and outgoing links) which correspond to each of these
concerns. This is a simple, compact and expressive way of extending the diagram
with concern information. Moreover, and similar to other examples above, we can add
new concerns (i.e., roles) in a seamless way, as we don’t need to modify the base
Artwork class.

Artwork

- name
- year
- artist (Anchor)
- image

Technical
material

elements

Historical
owners (Index)
exhibits (Index)

Figure 13: Improving Artworks for concern driven navigation

An interesting additional issue arises when one analyzes the knowledge relation-
ship between roles and the corresponding object. While in the basic model (e.g., the
one in [47]) roles know the object, nothing is said about the inverse: do objects know
their roles?

In most applications, this is not necessary and, besides, it compromises modularity,
as the addition of a new role can not be done transparently. However, in some cases
we might need it, mainly at the conceptual level. In the example of Figure 5, when
asking information about an artwork, we would want to know if it is in restoration
(i.e., if it is currently playing this role). The best solution for this is to make artworks
aware of the roles they are actually playing. Some comments on the solution of this
problem can be read in the next sub-section.

4.4 Implementing Roles in Web Applications

Most Web Engineering approaches are implementation independent, which means
that the documents generated during the modeling and design activities can be
mapped to any Web software platform. Particularly, both OOHDM and UWE models
can be easily implemented in current platforms like J2EE, .Net, etc. either using plain
object technology or combinations between objects and relational databases. Both ap-

proaches also have associated tools which translate designs into implementations
semi -automatically.

Though this paper focuses on conceptual modeling of Web applications and dis-
cussing implementation issues is not its main focus, our aim in this sub-section is to
show how we are implementing the role abstraction in a straightforward way by using
existing languages and architectures.

There are basically two problems which must be addressed: the definition of
classes in the application model and the generation of Web pages from the nodes’
specification in the navigational schema. From now on, and to make the discussion
concrete, we assume an object-oriented implementation, using any framework which
implements the Model View Controller metaphor for Web applications [29].

The implementation of model classes supporting the role concept can be done us-
ing the Role Object pattern [4], which basically extends the Decorator pattern [15] to
support the intended semantics of roles. The mapping from conceptual roles (those
shown in Figure 5) to classes in the Role Object pattern is simple. Typing aspects
might arise according to the programming language of choice. These issues have been
extensively discussed in the object-oriented literature (See for example [15]). Addi-
tionally, the Role Object pattern implementation schema allows not only that roles
know their base objects but also vice versa, thus allowing more flexibility in manag-
ing roles, without a significant loss of modularity.

The implementation of navigational roles might be more challenging as nodes are
not generally defined as first-class objects in implementation settings (e.g., those us-
ing MVC), but are built dynamically (for example using Java Server Pages). In this
way, we can not map the navigation class structure directly into Java classes. Instead,
a smart solution is to rely on object’s builders [15]. A builder in the context of MVC
is an object which is used to create the corresponding view (page) according to a con-
troller request. In this case, we will have a hierarchy of builders for a given node
class. The abstract class contains a template method [15] with the algorithm for creat-
ing the common node’s structure and each sub-class contains the algorithm which
corresponds to each of the possible roles. In this way, when a link is triggered (an ac-
tion captured by the controller), the builder object that corresponds to the actual role
of the link target is instantiated. This object executes the template in the abstract class
(e.g., ArtworkBuilder) which begins the creation of the page; in turn, this method in-
vokes the additional methods in the receiver (e.g., ArtworkInExhibition) which com-
plete the specification. In this way, the view is completed and can be displayed.

5 Related Work and Discussion

For the sake of clarity, we structure our comparison into two sub-sections, i.e., roles
in hypermedia and roles vs. other modeling mechanism, emphasizing those research
works that are related with our proposal.

5.1 Roles in Hypermedia

Some authors have already proposed the use of the role abstraction in software engi-
neering methods as explained in Section 3. However, so far, the concept has been al-
most ignored in the hypermedia and Web engineering community.

An interesting exception is [1]. The authors propose a role-based modeling ap-
proach in which different navigational schema are built as role models and nodes are
described as different roles of conceptual classes, thus unifying the conceptual and
navigational schema. The main motivation of this approach is to overcome the lack of
support for logical modeling of navigation in class-based approaches (like OOHDM,
WebML and UWE), and to take into account navigation issues already at the domain
level. Role models can be seen as independent conceptual models and, for each con-
text, one can have a role model. The authors claim that this additional dimension in
conceptual modeling can lead to clearer and more focused models, better customized
to different domain contexts [1]. The problem of this approach is twofold. On the one
side, it does not visualize the relationship between roles and natural types. If the ap-
plication requires the definition of several roles for different concepts, there is no pos-
sibility to recognize how they are related. On the other side, there is not a clear defin i-
tion of the semantics of the modeling elements (nodes and edges) used in the visual
representation they propose. There is not a clear separation of concerns followed by a
separate modeling of the domain, the navigational and presentational aspects.

 On the contrary, we propose to enrich both conceptual and navigational models
with roles, while preserving the viewing or mapping relationship between these two
models, as defined in current methods. In our proposal, materialized as explained in
Section 5 with different notations according to the chosen method, roles express dif-
ferent sets of behavioral services for an object in the conceptual model and different
“faces” of a node when being navigated in different contexts.

WSDM [11] is a method for defining audience-driven Web applications. As it is
based in ORM, it “inherits” ORM’s role modeling style (described in Section 3.2).
WSDM has been improved by the use of concurrent task trees [12] to model tasks.
The modeling foundations of WSDM and ours are different since we focus on object-
oriented models while WSDM inherits the best practices of data modeling extending
ORM to model functionality. Object-oriented roles and ORM objects and roles are
different and can not be compared without addressing a much deeper comparis on: ob-
ject-oriented modeling vs. data modeling, which is obviously outside the scope of the
paper.

The navigation model in OO-H [16] is defined by means of a navigation access
diagram (NAD). One of the modeling elements of this diagram is the navigation class,
which is defined as a view on a conceptual class. Navigation classes are depicted with
the class symbol and different views on a same conceptual class can be used in a
navigation access diagram. Different roles are then defined as different navigation
classes related to the same class of the domain. The idea behind this modeling tech-
nique is easy to understand and corresponds to the general idea of navigation model
as a view of the conceptual model learnt from OOHDM [43]. The notation OO-H
proposed for these views are instead confusing the object-oriented designer insofar as
they use the notation for “object of a class” (name of the object: name of the class) to
indicate “view of a class”.

Though not completely related with our research, it is worth mentioning the rela-
tionships among role-based hypermedia design and adaptive hypermedia [13]. While
the former is a (static) design mechanism to improve specification and provide vari-
ability in objects´ collaboration patterns, the latter is an approach for dynamically
changing content and link topologies according to the individual user’s profile. In an
adaptive hypermedia application, nodes might show different information or outgoing
links according to the user’s profile and preferences, his navigation history and other
environmental or contextual information. Adaptive hypermedia design methods like
[13] provide tools for expressing the rules that will dictate the corresponding adapta-
tion.

Therefore, the focus in adaptive hypermedia lies in the specification of those rules
and in indicating how the rules’ actions will change the appearance of nodes’ attrib-
utes and links. Additionally, rules can be applied to outgoing links to dynamically
calculate the link target. Roles meanwhile, attack a much more general software engi-
neering problem: how to indicate the way in which the sender of a message influences
the behavior of the receiver (at the level of application models) and how the origin of
a link influences the target of the same link (at the navigation model). Roles are a way
to specify richer object classes, by using role types. Therefore, a fundamental diffe r-
ence between the intent of adaptive hypermedia and roles is that while the former
deals with more dynamic aspects (e.g., choosing which links should be exhibited), the
latter deals with a more static typing problem.

Conventional Web applications (e.g., those which do not exhibit adaptive behav-
iors) need, as repeatedly shown in the paper, the use of roles, while they might not
need adaptation rules. In other words techniques for adaptation are not necessary in
cases in which roles are. While it should be possible to use adaptation rules to provide
the same effect achieved with the use of roles, being their intent much broader, we
might pay two unnecessary costs: first, while roles are a type construct, which express
in an encapsulated entity the intended extensions or addition to a class, rules tend to
grow in flat sets and, therefore, might be more difficult to maintain. Besides, rule sys-
tems (at least those used by adaptive hypermedia) need some run time support (e.g. a
rule manager or interpreter), which is not necessary if the problem can be solved just
using type composition, as it is finally the case of a role -based implementation.

Meanwhile, a good adaptive hypermedia design can benefit from the use of roles.
A simple case in which this can happen is when certain incoming links to a node need
adaptation (i.e., it is necessary to apply the adaptation rules), while others don’t need
it (the node will be shown as specified). An elegant solution we propose to the prob-
lem is to define the corresponding node as possibly playing one role: adaptive; those
incoming links that need adaptation will “enter” into the adaptive role, as sketched in
Figure 14. The adaptive role includes the execution of the adaptation rules.

NodeClass

Adaptive
applyRules ()

Figure 14: Using roles to indicate when adaptation rules are necessary

This solution has two advantages; first, it allows that one specific node class could
have a plain (non-adaptive) behavior and second, by decoupling the adaptation behav-
iors and locating it in the Adaptive role type, it simplifies evolution, as the base node
class is not polluted with the adaptation code. This solution can eventually been used
to extend the scope of roles to considering the previous navigation path (instead of the
link´s origin). In this last case, it is difficult, if not impossible, to specify the corre-
sponding context -aware response (where the context is the previous path) by just us-
ing the notion of roles (as a type enrichment). As the nature of paths can vary dy-
namically, a rather static solution like the one provided by role-based specifications
does not scale, and more dynamic conditions should be specified. In this case, the role
in Figure 14 could contain the code which checks the context (e.g. using rules) and
decides the information and links to show.

5.2 Roles vs. Other Modeling Mechanisms

The discussion above is related with the use of design primitives and abstraction
mechanisms during the Web Engineering life cycle. We think that the design concerns
of conceptual (application) and navigation modeling are different in essence and thus
different modeling primitives and abstraction mechanisms are necessary.

In object-oriented approaches (as the ones discussed in this paper), application
modeling and design must be done using well-known object-oriented heuristics and
guidelines; a clear identification of classes, their attributes and behaviors is critical
during this process. The role abstraction helps to improve this activity by allowing to
specify those object behaviors that depend on relationships with other objects. As we
show in this paper, it is not possible to model this kind of variations using other mo d-
eling primitives, such as sub-classes as the intent of generalization/specialization hie r-
archies is different. To enforce the modeling power of the role construct, it is worth
saying that some authors propose to use roles as a specification mechanism to solve
the kind of problems which gave rise to aspect-oriented programming [50].

Meanwhile, navigational design has its roots in mature hypertext theories. Even
though navigational components are specified using software engineering methods,
the guidelines and heuristics for building a good linking topology are different from
those aimed at obtaining a good object-oriented design. It has been shown elsewhere
(See for example [44]) that a good navigational model requires opportunistic design
decisions both for defining nodes’ attributes, links, indexes, and other hypertext struc-
tures. Some of these decisions such as those related with the relationship among con-
ceptual and navigational objects are better expressed using a viewing mechanism than
with the role mechanism, as proposed in [1]. From a more architectural design point
of view, nodes can be seen as applications of the Observer design pattern [15], while
roles allow expressing different signatures (sets of services) for the same class.

As Web applications become mainstream, more complex design proble ms arise; it
is important to use the best abstraction mechanism that is suited to solve each of those
problems. Roles can be a powerful tool that must be combined with other existing
(class-based) primitives and patterns. However, a deeper discussion on abstraction
mechanisms is far beyond the intent of this paper though we hope to have settled the
starting points for this discussion.

6 Concluding Remarks and Further work

In this paper, we have discussed the use of the role modeling abstraction in the con-
text of the Web Engineering process. We have shown that incorporating roles in our
vocabulary and design armory can help us obtain more compact and expressive de-
sign models. We have argued that introducing roles in existing Web design methods
can improve their modeling power; we have also shown that existing notations for
roles can, in general, be used in well-known methods maintaining their consistency.
We have also discussed how our approach differs from other uses of roles in the lit-
erature.

We have demonstrated with a realistic example that using roles in the context of an
object-oriented method, we can solve problems, at the modeling level, which can not
be solved using existing modeling primitives and mechanisms (e.g., sub-classing).

To summarize, the use of roles in Web engineering methods allows to:
• Define key abstractions more concisely, both at the conceptual and naviga-

tional levels. We can separate the intrinsic properties of an abstraction from
those which depend on the relationship (linking or behavioral) in which the
abstraction is involved.

• Roles are more flexible than sub-classes, and so they can be attached to an
object dynamically; Sub-classes are not a good solution for this problem.

• Roles simplify evolution; instead of modifying the core abstractions we can
work with role types, for example to provide slightly different information
according to a new navigation path.

We are now working on two different research areas: we are looking for good

modeling practices (using the role abstraction) in order to integrate different naviga-
tional models. In most Web design methods, a different navigational model is built for
each user profile (or audience); however, it is important to view these different mo d-
els in a unified diagram, which might comprise repetitions. The role abstraction can
be used to express this diagram more modularly.

We are also working on the use of patterns all along the engineering process of
Web applications. By using a formal representation of navigation patterns with role
diagrams [38], we aim to obtain a systematic approach to improve the derivation of
class models from higher level (pattern-based) role models.

We strongly believe that these ideas open a wide research spectrum in the Web
Engineering community. There are still many open issues such as how to effectively
use roles from the early requirement stages, when roles are to be used instead of other
modeling abstractions, the impact of the use of roles in mobile Web applications, etc.

Acknowledgements

We would like to thank Andreas Kraus, Daniel Schwabe, and Peter King for fruitful
comments on previous versions of this paper. We also thank the rich comments of the
anonymous reviewer.

References

1. Allert . H., Dolog, P., Nejdl, W., Siberski, W., and Steimann, F.: Role-oriented Mod-
els for Hypermedia Construction – Conceptual Modeling for the Semantic Web -.
Technical Report, Univ. Hannover (2003)

2. Aroyo, L., De Bra, P., Chepegin, V.: Semantic Web-based Adaptive Hypermedia,
WWW2004 Workshop Application Design, Development and Implementation Issues
in the Semantic Web (May 2004)

3. Assman, U.: Role-Based Design. A Concept for understanding Design Patterns and
Frameworks. Available at http://www.ida.liu.se/~TDDB84/slides/7-role-based-
design.pdf, (viewed Nov. 2004)

4. Bäumer, D., Riehle, D., Siberski, W., and Wulf, M.: The Role Object Pattern. In Pro-
ceedings of Pattern Languages of Program Design (PloP) (1997) Available at:
http://jerry.cs.uiuc.edu/~plop/plop97/Proceedings/riehle.pdf

5. Bernstein, M.: Patterns of Hypertext. In Proceedings of the 9th ACM International
Conference on Hypertext and Hypermedia (Hypertext ’98), Pittsburgh, USA (1998),
20-24

6. Cachero, C., Koch, N, Gomez, J., and Pastor, O.: Conceptual Navigation Analysis: A
device and Platform Independent Navigation Specification. In Schwabe D., Pastor O.,
Rossi G., and Olsina L. (Eds.) Proc. of Second International Workshop on Web-
Oriented Software Technology (IWWOST02) (2002) 21-32

7. Ceri, P., Fraternali, P., and Bongio, A.: Web Modeling Language (WebML), A Mod-
eling Language for Designing Web Sites. Computer Networks and ISDN Systems,
33(1-6), June (2000) 137-157

8. Chen, P. P.: The Entity-Relationship Model - Toward a Unified View of Data. ACM
Trans. Database Syst. 1(1) (1976) 9-36

9. Dahchour, M., Pirotte, A., and Zimanyi, E.: A Role Model and its Metaclass Imple-
mentation, Information Sy stems 29 (2004) 235–270

10. Depke, R., Engels, G., and Küster, J. M.: On the Integration of Roles in the UML.
Technical Report No. 214, University of Paderborn, August 2000

11. De Troyer, O.: Audience-driven web design", In Information modeling in the new
millennium, Matt Rossi & Keng Siau (Eds.), Publ. IDEA GroupPublishing (2001)

12. De Troyer, O., Casteleyn, S., Plessers, P: “Using ORM to Model Web Systems”. In
Proceedings of Workshop on Object-Role Modeling 2005. Springer Verlag LNCS
3763, pp 700-709, 2005

13. Dolog, P. and Bieliko, M.: Navigational Modeling in Adaptive Hypermedia. In Proc.
of Int. Conference on Adaptive Hypermedia (AH 2002), Malaga Spain, May 29-31,.
Paul De Bra, Peter Brusilovsky, Ricardo Conejo (Eds.). LNCS 2347, Springer Verlag
(2002) 586-591

14. Fowler, M.: UML Distilled. Addison Wesley (1997)
15. Gamma, E., Helm, R., Johnson, and R., Vlissides, J.: Design Patterns: Elements of

reusable Object-Oriented Software. Addison Wesley, Reading (1995)
16. Gomez, J., Cachero, C., and Pastor, O.: Conceptual Modeling of Device Independent

Web Applications. IEEE Multimedia 8(2) (2001) 26-39
17. Gordillo, S., Rossi, G., and Schwabe, D.: Separation of Structural Concerns in Physi-

cal Hypermedia Models, In Proceedings of CAiSE 2005, LNCS, Springer (2005)
446-459

18. Gordillo, S., Rossi, G., Laurini, R., and Schwabe, D.: Decoupling Geographic from
Conceptual Information in Physical Hypermedia Models. DEXA Workshops 2005:
443-447

19. Gottlob, G., Schrefl, M., and Böckl, B.: Extending Object-Oriented Systems with
Roles, ACM TOIS, Vol.14 (3) (1996) 268-296

20. Gronbaek, K., Kristensen, J., and Eriksen, M.: Physical Hypermedia, Organizing Col-
lections of Mixed Physical and Digital Material. Proceedings of the 14th. ACM Inter-
national Conference of Hypertext and Hypermedia (Hypertext 2003), ACM Press,
10-19

21. Guell, N., Vilain, P., and Schwabe, D.:Modeling Interactions and Navigation in Web
Applications. In Proceedings of the International Workshop on Conceptual Modelling
and the Web (2000) 115-127

22. Halpin, T.: UML Data Models from an ORM Perspective: Part Five, Journal of con-
ceptual modeling, Issue 5 (Oct. 1998)

23. Hinz, M. and Kappel, G.: UML & Work (in German), dpunkt Verlag (1999)
24. Jodlowski, A., Habel, P., Jacek, P., and Subieta, K.: Extending OO Metamodels to-

wards Dynamic Object Roles. On The Move to Meaningful Internet Systems 2003:
CoopIS, DOA and ODBASE, Catania, Sicily, Italy (Nov. 2003) Proceedings. LNCS
2888, Springer (2003), 1032-1047

25. Journal of Web Engineering, Vol 12(4), Special Issue on Adaptive and Intelligent
Web-based Educational (2004)

26. King, P., Nanard, M., Nanard, J., and Rossi, G.: A Structural Computing Model for
Dynamic Service-based Systems. Symposium MetaInformatics, LNCS 2994 (2003)

27. Koch, N., Kraus, A., and Hennicker R.: The Authoring Process of UML-based Web
Engineering Approach. In Proceedings of the 1st International Workshop on Web-
Oriented Software Construction (IWWOST 02), Valencia, Spain (2001) 105-119

28. Koch, N. and Kraus, A.: Towards a Common Metamodel for the Development of
Web Applications. In 3rd International Conference on Web Engineering (ICWE 2003)
Cueva, J., Gonzalez, B., Joyanes, L., Labra, J., and Paule, M. (Eds) LNCS 2722,
©Springer Verlag (July 2003) 497-506

29. Krasner, G., and Pope, S.: A Cookbook for Using Model-View-Controller User Inter-
face Paradigm in Smalltalk-80", Journal of Object Oriented Programming, Au-
gust/September (1988) 26-49

30. Kristensen, B.B. and Osterbye, K.: Roles, Conceptual Abstraction Theory and practi-
cal Language Issues. Theory and Practice of Object Systems, 2(3) (1996) 143-160

31. Mosse, F.: Modeling Roles. A Practical Set of Analysis Patterns. Available at:
http://www.objectdiscovery.com/papers/roles/

32. Nanard, M., Nanard, J., and Kahn, P.: Pushing Reuse in Hypermedia Applications.
Golden Rules, Design Patterns and Constructive Templates. In Proceedings of the 9
th. ACM International Conference on Hypertext and Hypermedia (Hypertext ’98),
Pittsburgh, USA (1998) 11-20

33. Nanard J., Nanard M., and King P.: A Hypermedia-based Model for Integrating Open
Services and Metadata. 14th. International ACM Conference Hypertext’2003, ACM
Press (2003) 128-137

34. Object Management Group: The UML 1.5 Specification. In http://www.omg.org/uml/
35. Pastor, O., Fons, J., and Pelechano, V.: OOWS: A Method to Develop Web Applica-

tions from Web-Oriented Conceptual Models, Third International Workshop on Web-
Oriented Software Technologies, 2003

36. Pernici, P.: Objects with Roles. Proceedings of the ACM-IEEE Conference on Office
Information Systems (1990) 205-215

37. Reenskaug, T. M. H.: Working with objects. The OOram Software Engineering
Method. Manning/Prentice Hall (1996)

38. Riehle, D.: Describing and Composing Patterns using Role Diagrams. In Proc. Ubilab
Conference I (1996) 137-152

39. Riehle, D. Composite Design Patterns. In Proc. OOPSLA’97 (1997) 218-228

40. Riehle, D.: Role Model Based Framework Design and Integration. In Proceedings of
the 1998 Conference on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA’98). ACM Press (1998) 117-131.

41. Rossi, G., Schwabe, D., and Lyardet, F.: Improving Web Information Systems with
Navigational Patterns. Computer Networks 31, Elsevier (1999) 1667-1678

42. Rossi, G and Schwabe, D.: Abstraction and Reuse Mechanisms in Web Applications
Models. In Proc.s of the International Workshop on Conceptual Modelling and the
Web (2000)

43. Schwabe, D and Rossi, G.: An Object-Oriented Approach to Web-Based Application
Design. Theory and Practice of Object Systems (TAPOS), Vol 4 (1998) 207-225

44. Schwabe, D. and Rossi, G.: Web Application Models are more than Conceptual
Models. In Proceedings of the International Workshop on Conceptual Modelling and
the Web (1999)

45. Schwabe, D., Rossi, G.: Conference Review System in OOHDM. In Proceedings of
the International Workshop on Web Oriented Software Technology, Valencia, Spain
(2001) Avaliable at http://www.dsic.upv.es/~west2001/iwwost01/

46. Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addi-
son Wesley (1984)

47. Steimann, F.: On the Representation of Roles in Object-Oriented and Conceptual
modeling. Data and Knowledge Engineering 35 (2000) 83-106

48. Steimann, F.: A radical revision of UML’s Role Concept. In Proc. of the Unified
Modeling Language Conference 2000, LNCS, Springer (2000) 194-209

49. Steimann, F.: Role=Interface: A Merger of Concepts. Journal of Object-Oriented Pro-
gramming, Oct./Nov. (2001) 23-32

50. Steinman, F. : Domain Models are Aspect Free. In Proceedings of MoDELS 2005,
LNCS, Springer Verlag (2005) 171-185

51. UWA consortium: The UWA Approach to Modeling Ubiquitous Web Applications,
in Proceedings of the 2002 IST Mobile & Wireless Telecommunications Summit,
Thessaloniki (Greece) (2002)

