The Journal of Systems and Software 83 (2010) 915-936

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems and Software

i

Dealing with variability in context-aware mobile software

Andrés Fortier !, Gustavo Rossi !, Silvia E. Gordillo?, Cecilia Challiol !

LIFIA, Facultad de Informdtica, UNLP, La Plata, Argentina

ARTICLE INFO ABSTRACT

Article history:

Received 2 December 2008

Received in revised form 10 August 2009
Accepted 1 November 2009

Available online 4 November 2009

Mobile context-aware software pose a set of challenging requirements to developers as these applica-
tions exhibit novel features, such as handling varied sensing devices and dynamically adapting to the
user’s context (e.g. his or her location), and evolve quickly according to technological advances.

In this paper, we discuss how to handle variability both across different domains and during the evo-

lution of a single application. We present a set of design structures for solving different problems related

Keywords:
Context-awareness
Mobile software
Architecture
Software variability

with mobility (such as location sensing, behaviour adaptation, etc.), together with the design rationale
underlying them, and show how these sound micro-architectural constructs impact on variability. Our
presentation is illustrated with case studies in different domains.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Mobile, context-aware software pose new and hard challenges
to developers. Some of these challenges arise from the specific
requirements of this kind of software, in which we need to process
implicit input data from non-accurate devices (such as sensors),
and make critical decisions based on that data (e.g. adapting the
application’s behaviour to the user’s location). Some other con-
straints such as security and privacy are also difficult to fulfil, as
many times private data such as location and preferences must
be shared by different applications.

Mobility is a common feature of different kind of applications,
encompassing diverse application domains. Examples of “stan-
dard” (i.e. initially context-agnostic) applications that can be up-
graded into mobile applications are health-caring systems
(Bricon-Souf and Newman, 2007), guided tours (Cheverst et al.,
2002; Abowd et al., 1997) and transit information (Google Mobile
Maps). On the other hand, any mobile application is susceptible to
be enhanced with context-aware behaviour, such as providing
location-based services (Hodes and Katz, 1999; Rao and Minakakis,
2003) or dynamic resource management (Sousa and Garlan, 2002).
As a result, mobile context-aware applications not only present a
set of complexities related to their underlying application domains,
but also those related to the kind of context-aware adaptation de-

* Corresponding author.

E-mail addresses: andres@lifia.info.unlp.edu.ar (A. Fortier), gustavo@lifia.info.
unlp.edu.ar (G. Rossi), gordillo@lifia.info.unlp.edu.ar (S.E. Gordillo), ceciliac@lifia.
info.unlp.edu.ar (C. Challiol).

T Also CONICET.
2 Also CICPBA.

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.11.002

sired, namely its adaptation domain (e.g. a guided tour that recom-
mends different routes according to the user preferences and
location). As we show throughout the paper, a clear distinction be-
tween the application domain and the adaptation domain is useful in
order to maximize flexibility and reuse.

Understanding how to improve flexibility is important, because
there is a growing trend towards extending “old” applications, not
only to allow mobile access to information and services, but also to
adapt “legacy” behaviours to the user’s actual location (or in gen-
eral, his or her context), which implies, in most cases, much more
than support for mobility, requiring some kind of “wrapping” of
such existing behaviours.

Additionally, as wisely indicated some years ago by Abowd
(1999), the evolution of this software adds new difficulties as
“Ubiquitous applications evolve organically. Even though they be-
gin with a motivating application, it is often not clear up front the
best way for the application to serve its intended user community.
The best approach is often to prototype a solution rapidly. . .and so-
licit feedback from the user population. .. .This result in the need to
modify the application”.

Surprisingly, while many of these issues have been successfully
tackled and reported in the literature (Harter et al., 2002; Schmidt
et al., 1999; Strang and Popien, 2004), there has been little empha-
sis on how to systematically support variability and evolution in
mobile and ubiquitous software. One possible reason for this is
that many applications are built “just” as prototypes, and the
community has not still faced the problem of maintaining legacy
mobile software.

In this paper we present a software architecture aimed at serv-
ing as the foundation for the construction of applications and
frameworks, targeted at different product families of mobile,

http://dx.doi.org/10.1016/j.jss.2009.11.002
mailto:andres@lifia.info.unlp.edu.ar
mailto:gustavo@lifia.info. unlp.edu.ar
mailto:gustavo@lifia.info. unlp.edu.ar
mailto:gordillo@lifia.info.unlp.edu.ar
mailto:ceciliac@lifia. info.unlp.edu.ar
mailto:ceciliac@lifia. info.unlp.edu.ar
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

916 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

context-aware software (see for example Myllymadki et al., 2002);
the architecture provides a set of fine-grained abstractions which
ensure a high level of flexibility in two different axes: application
evolution and support for different adaptation and application
domains. The main contributions of the paper are the following:

e We identify and make explicit the most relevant variant features
and their associated variations points in the design of mobile
context-aware software for different domains.

e We present a set of micro-architectures which ensure modular-
ity by decoupling different application concerns. By doing so we
can later instantiate different products by designing and imple-
menting its unique features.

e We show how these constructs are integrated in a sound archi-
tecture and provide some proof of concepts both on application
development and variability support.

The structure of the paper is the following: in Section 2 we will
survey some relevant work in the field of context-aware applica-
tions, frameworks and architectures and briefly review the work
made in the area of product-lines. In Section 3 we will characterize
variability and evolution on mobile context-aware software,
describing the main variant features and their associated require-
ments. In Section 4 we will describe in detail the variant features
together with their associated requirements. In Section 5 we will
give an overview of the whole architectural approach and in Sec-
tion 6 we will present the most important micro-architectural
abstractions. In Section 7 we will illustrate our ideas with two con-
crete examples, including a memory-aid application and a frame-
work for location-based services (LBSs). In Section 8 we will
conclude the paper and present some further work. Though our
ideas are shaped in the broad field of context-aware software sys-
tems, we focus our discussion on those issues which are related to
mobile software (i.e. when context refers to the user’s location).

2. Related work

Weiser’s (1999) pioneer work at Xerox Parc was followed by
Schilit’s (1995) system architecture and the Stick-e Notes (Pascoe,
1997) framework. These first approaches to build context-aware
systems helped to understand many of the challenges we are fac-
ing today and some interesting ways of tackling them. In that re-
gard, an important design decision in Schilit’s approach was to
decouple those independently-changing blocks of the system to
support scalability, which is a way of anticipating future changes.
Also, Schilit emphasized that sensing devices should be abstracted,
so that the application logic does not have to get involved with the
burden of connecting to hardware devices and sensing informa-
tion, which is also a way of thinking of variability at the design
and implementation level. However, these applications and proto-
types were aimed at particular, restricted domains and not con-
ceived to aid in the development of product families.

The next milestone in the history of context-aware architec-
tures was Dey’s Context Toolkit (2000), which is a pioneer frame-
work aimed at building distributed context-aware applications,
based on a peer-to-peer architecture. The framework is built
around the notion of context widgets, which are used to access
context data (gathered by physical or logical sensors) using the
widget metaphor. The main task of a context widget is to encapsu-
late the communication protocol and internal state of a sensor to
simplify the interaction with other software components. Context
interpreters are used at a later stage to abstract the widget’s infor-
mation, which may also be composed with context aggregators.
The toolkit is finally completed with services (which implement
the required behaviour) and discoverers, which know the state of

the application in terms of available components (i.e. widgets,
interpreters, aggregators and services). Even though Dey’s toolkit
was a breakthrough in terms of creating a generic architecture
for context-aware systems, we consider that there are two main is-
sues that should be addressed:

e There is no explicit notion of a context model. The designer is in
charge of modelling context based on the widgets and aggrega-
tors available. This has the advantage of being extremely flexi-
ble, but that flexibility comes with a price. First, we cannot
think in general terms about context, since there is no structure
to reason about. In order to define features and variation points
we need explicit models, even basic ones. Second, even though
Dey stresses the separation between sensor data and context
information, deriving a context model from the widgets’ infor-
mation can be equally harmful. This problem is not new and a
parallelism can be made with the combination of RAD tools,
inexperienced programmers and a lack of designing guidelines,
where applications are written by placing widgets in a window
and then writing their action handlers (e.g. onClick actions). This
style of programming has yielded an uncountable set of pro-
grams where there is no explicit domain model, but a collection
of procedures scattered through the application and intertwined
with GUI logic®. As we will show later, we propose taking the
inverse approach: first designing the context model (based on
simple guidelines and an existing architecture) and later decide
how it will be connected to the sensors.

e There is no architectural support for separating application logic
from adaptation logic. A service in Dey’s toolkit is in charge of
performing actions based on context changes that can encom-
pass both adaptation and application logic. As we will describe
later, we stress the difference of the base application domain
(e.g. a university information system) and the adaptation
domain (e.g. providing the students location-based services in
the campus) to improve scalability.

In a recent work on mobile services by Pederson et al. (2008) we
have found many interesting similarities with our approach, espe-
cially in the context model. One of their first statements is that dif-
ferent applications cater for different aspects of the user’s context,
which means that a unique context model for different applica-
tions is not a viable solution. They also stress the sense that the
context may be on a server, on a client or distributed between both
of them. We clearly share this view and this is one of the main rea-
sons why our design splits context in a set of small-grained fea-
tures. However, we consider that these approaches have a
serious drawback since all their context aspects are grouped in a
general context model without any semantic cohesion (e.g. we
can find a user’s location and the amount of students in a univer-
sity room as part of the same model).

Another recent approach, but at the language construct level,
is Context-oriented Programming (COP) (Hirschfeld et al., 2008),
which uses the notion of layers as their main language construc-
tion. These layers define classes and behaviour and can be acti-
vated and deactivated while a program is running, effectively
changing a system’s behaviour in run-time. However, since it
is not part of its aim, COP does not provide higher level con-
structs to model context-aware applications. Thus, while the
layer concept and implementation are useful as a language fea-
ture, we consider that a higher level support is needed for sys-
tematically building context-aware applications. We believe that

3 Of course we are not against GUI builders or RAD tools. However we do claim that
many times the people get the false feeling that there is no need for a well thought
domain model and that mistake is paid later when the system needs to evolve or
incorporate new requirements.

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936 917

the context model and the idea of separating application and
adaptation domains are central to the process of building this
kind of applications. However we acknowledge that, once identified
the main features of a product line for a set of context-aware
applications, using COP may greatly help to solve run-time variation
points.

An interesting idea of constructing a UbiComp application by
using a set of well defined building blocks (which is conceptually
related to our approach) is presented in (Modahl et al., 2004).
In the article, the authors make an analogy between building a Ubi-
Comp application and a telephone patch board, where the software
layer should define a set of main abstractions which are later con-
nected to build new systems. In their paper the authors classify
separate subsystems in five different groups, like Registration
and Discovery, Service and Subscription, Data Storage and Stream-
ing, etc. The bottom line of the article is that UbiComp applications
typically use one or more components to fill these groups, and that
having a widely accepted taxonomy and standard interfaces would
improve the engineering of UbiComp systems. Even tough we
agree in the general idea of defining building blocks, we do not
think that it is possible at such high level of granularity (i.e. subsys-
tems) and this is why our approach uses small-grained building
blocks to solve concrete variation points.

In the variability area, we based our research on works like
(Coplien et al., 1998), where the author specifies common and var-
iable issues according to an object-oriented approach, showing a
set of mechanisms to solve them. Most of the terminology and con-
cepts we use are presented in Van Gurp et al. (2001). In Bachmann
and Bass (2001) a classification of variability is described together
with the types of variation which are similar to the three recurring
pattern presented in Van Gurp et al. (2001). An interesting taxon-
omy of variability realization techniques is described in Svahnberg
et al. (2005), where the authors show how to implement different
types of variation points.

The area of product-family and context-aware architectures is
not a prolific one and we feel that there is yet a lot to be done. In
the work presented by Salifu et al. (2006) they propose to extend
the variability mechanisms of product lines to accommodate con-
text-aware specifics, but at a very coarse-grained level. Apel and
Bohm (2005) present a product-line approach for ubiquitous mid-
dleware. Even though the paper uses ubiquitous computing as a
motivation, the article only describes a configurable communica-
tion layer to connect clients and servers, so that messages can be
sent to remote objects, showing no architecture or model that
can be related to our work (i.e. context models, dynamic behaviour
adaptation, etc.). Finally, Fernandes et al. (2008) propose a notation
called UbIiFEX, for representing context information. In some as-
pects we find their approach to be related to ours, since they think
in terms of entities and the context properties of each entity (in
contrast to having a generic context model) and argue for specify-
ing context feature separately from the application features. This
last separation can be roughly correlated with our decision of sep-
arating the application model from the context model. Finally, the
interaction between the context and the application is achieved by
rules. Even tough we found some conceptual commonalities with
our approach, their work stops at the notation level and provides
no clues on how this notation can be mapped to a specific architec-
ture. Also, we consider that managing context adaptation by using
rules works fine for simple prototypes but gets unmanageable for
complex applications.

The aim of this article is to solve a set of issues that, to our
knowledge, have not been worked out yet. In particular we will:

e Present a product-line characterization of context-aware sys-
tems that describes the main variability issues found in these
applications.

e Define the variability features and variation points associated to
most context-aware applications

e Present an architecture, in the form of a set of small-grained
building blocks that can be used to build mobile context-aware
applications avoiding most of the problems we have mentioned
in this section.

e Show how the variation points can be addressed solved with the
proposed architecture in real examples.

3. Variability and evolution in mobile, context-aware
applications

In order to define what we consider the critical aspects of any
mobile context-aware application we will briefly review some
concepts related to variability in software product lines. The
definition given in Svahnberg et al. (2005) states that “Software
variability is the ability of a software system or artefact to be efficiently
extended, changed, customized or configured for use in a particular
context”. Van Gurp et al. (2001) defines variability as “...the
ability to change or customize a system. Improving variability in a
system implies making it easier to do certain kinds of changes. It
is possible to anticipate some types of variability and construct a
system in such a way that it facilitates this type of variability”. In
short, variability is an outstanding issue which should be consid-
ered during the software building process to guarantee that
change and evolution can be successfully managed. As we will
see later, this is particularly important in mobile context-aware
applications, since we must be ready to deal with a myriad of
options (e.g. incorporating new services) and constant changes
(e.g. new sensing technology).

To successfully manage variability we must achieve a balance
between software flexibility and realistic, concrete needs; whereas
a system that can accommodate any new requirement by just
replacing a few components would be ideal, experience has shown
that this is hardly feasible. On the other hand, constraining a sys-
tem to the initial requirements without thinking about evolution
means that greater costs will be paid later. Thus, we must find a
way of explicitly stating which parts of a software product line
are open for change and which are assumed to remain stable, at
least for some period of time. By doing so designers can concen-
trate on creating flexible architectures for a family of products,
constraining themselves to concrete requirements but without
compromising evolution.

In the approach presented in Van Gurp et al. (2001) and later
extended in Svahnberg et al. (2005) variability is made explicit
by identifying variant features. These features can be of different
types (mandatory, optional, variant or external) and follows a life-
cycle based on the feature’s state (defined, implicit, introduced,
added and bounded). In this work we will concentrate on variant
features. Variant features are represented in a software system
by means of variation points, which can in turn appear in a specific
state (implicit, designed or bound) and which can be open or
closed for adding new variants. Open variation points are associ-
ated with set of options where new variants can be added while
closed variation points have an immutable set of options. Finally,
variation points are generally characterized according to the vari-
ant pattern used: in the single variant case only one variant is cho-
sen from a set of options. The optional variant pattern states that
there is only one variant, but using it is optional. Finally, in the
multiple parallel variants case the set of variants to choose which
variant to use is re-evaluated each time the variation point is
accessed.

At the implementation level we would like to have an architec-
tural infrastructure that provides the most common abstractions
(such as sensors) and behaviours (such as different types of

918 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

adaptation) of this kind of software, leaving the application de-
signer with the task of developing “only” the application’s specific
functionality. In other words, our aim is two-folded:

e Design an architecture, which identifies the main variant fea-
tures and its associated variation points.

e When possible, provide the realization of the most common
variants, so that standard behaviours can be achieved by select-
ing existing components. When necessary we leave the variation
points open so that new variants can be added.

To understand the variability problems in context-aware appli-
cations, we consider very important to establish a distinction be-
tween application domains and adaptation domains. Even though
the border between these domains is blurred most of the times
(especially when the application is devised from scratch), it is
clearer when enhancing an existing application. As an example,
consider a desktop health-caring application for a hospital that
keeps track of patients’ records, analysis, current status, etc. Sup-
pose now that we want to extend this application so that it can
be used from a mobile device (e.g. a tablet PC) that adds behaviour
depending on the doctor’s location (i.e. provides Location Based
Services (LBSs)) in case of an emergency (e.g. automatically show-
ing the patients information on the tablet PC). A different scenario
(in terms of adaptation) would arise if we want to enhance the hos-
pital by providing ambient intelligence (EC-ISTAG, 2001), such as
adapting the patients’ environment according to their actual status
and, at the same time, warning the nurses or doctors in case the
status changes abruptly.

What we get in both scenarios (Ambient Intelligence and LBSs)
is a mixture of domains: on one hand we have the health-caring
domain (i.e. the application domain) while on the other we have
the LBSs or ambient intelligence domains (i.e. the adaptation do-
mains). It is evident that both types of domains (application and
adaptation) comprise different kinds of abstractions and, as we will
show later, one of our main claims is that these two domains
should be engineered separately.

We next characterize the main variability issues we have found
in mobile context-aware applications:

o Dynamic context model. Since context-aware systems are
developed in very dissimilar domains, it is almost certain that
each application will require a different context model. To make
things more complex, certain applications may need to change
the context model in run-time (e.g. adding new types of context
data according to the available sensors). Thus, we consider the
context model to be an important variant feature to take into
account when developing context-aware applications. Also, this
variant feature is interesting since the associated variation
points appear at two different stages: at design time, when the
possible components that will compose the context model must
be defined (e.g. if our context model will encompass location
and activity, we must design how these pieces of context will
be modelled). At this stage each context aspect follows the single
variant pattern. However, this variant feature also changes at
run-time, when we should decide which context aspects are
active (e.g. we may not have information about the user’s loca-
tion and thus the location part of the context may be temporally
suppressed).

e Sensor support. A critical aspect of a context-aware system is
the ability to adapt its behaviour to the current context. To do
so, context data must be automatically acquired from external
sources, such as hardware sensors or software sensors (e.g.
web-services). Also sensors may be added (or removed) after
the application has been installed in the target device. As in
the previous case, this variant feature maps in many variation

points at the architectural level. Those variation points are open,
since new sensing devices can be added as technology evolves.
The binding is done at run-time and may change while the
application is running, thus a multiple parallel variants pattern
is followed.

« Domain-specific adaptation. In a very simplified way, a con-
text-aware application takes into account contextual informa-
tion in order to adapt its behaviour. Even though this
behaviour is generally seen as intertwined with the application’s
underlying themes, it has its own particular domain. As we
mentioned before, a health-caring system has its own domain
model, which includes tracking patients medical histories, blood
tests, nurses schedules, etc. If we now want to provide context-
dependent behaviour to doctors carrying a mobile device (e.g.
displaying the patients record when the doctor approaches the
patient’s bed) we need to address the LBSs domain, which has
a completely different problematic (such as sensor manage-
ment, location models, etc). A different set of problems arise
in the Ambient Intelligence domain (e.g. dealing with actuators,
issuing alarms, etc) and even some of them might be shared by
both domains (i.e. LBSs and Aml). Thus a main variability issue
in context-aware applications is the type of adaptation that
the application will provide. At design time the associated
variation point is open, since is the time where the context-
aware application-specific functionality is built. At run-time
however the user may decide to temporally suspend it (e.g. can-
celling work-related notifications when the user is at launch),
yielding an optional variant that can be enabled or disabled a
run-time.

In the following section we will present the main requirements
associated with each variant feature and their variation points. We
will then outline the main packages of our architecture and de-
scribe them in detail, based on their requirements. At the end of
the paper we will review these main variability issues and see
how the proposed approach deals with them.

4. Identifying variability in context-aware applications

In this section we will explain the main places where variability
is required, based on the variant features presented in the previous
section. To complement the information of each item we will also
explicit its associated requirements. As we briefly did in the previ-
ous section, to characterize each variation point we will base our
description on the articles presented by Van Gurp et al. (2001)
and Svahnberg et al. (2005).

4.1. Dynamic context models

The context model is a central part of any context-aware appli-
cation and efforts has been put forward in different areas to create
context models that are both expressive and flexible to accommo-
date a myriad of requirements. In our experience with context-
aware applications we have found the following mandatory
requirements that a context model should comply:

e If required, the context model should be shared among applica-
tions, independently of the adaptation (or application) domain.
As an example, suppose that we have modelled a complex loca-
tion application for providing LBSs, both for indoor and outdoor
settings. Sharing this infrastructure and the context information
with another application (e.g. memory-aid application) should
be straightforward.

e On top of the previous requirement, each application may have
its own set of context requirements. Thus, even tough the con-
text schema is normally shared between applications of the

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936 919

same adaptation domain (e.g. LBSs applications need to know
the user’s location), each application may require its own partic-
ular contextual information (e.g. the user activity, the traffic
state or the current weather). This means that the context model
may be extended in a particular way to suite each application
needs.

e Context is not a single entity. Even though we generally speak
about “the context”, we are omitting whose context we are talk-
ing about. Treating the context as a whole single entity, yields
models that are difficult to understand and modify, since differ-
ent aspects of the context belonging to different entities may
have different lifetimes and engineering requirements. As an
example, consider the user’s location and the available band-
width of a network connection. While it is clear that the location
is part of the user’s context, it is arguable to classify the band-
width as part of the user’s context. A much more clear (and flex-
ible) model would emerge from representing the bandwidth as
part of the application context.

o Context is entity-based. By extending the previous requirement,
we may face the scenario where different entities (objects) of
the same kind (class) need different context models. As an
example consider the different rooms in a smart home: in a
room we may have a sound sensor and thus we can consider
the noise level as part of the context of the room. However, other
rooms may not have this facility and so we cannot consider the
noise level as part of their context. Thus we consider that the
context model should be engineered and applied in an instance
basis, not as a whole entity or even as a class-based concept.

e The Context schema can be modified at run-time. Context-aware
applications are expected to accompany the user for long peri-
ods of time, even an entire day. In this scenario, certain context
features may be available or not (e.g. the user’s location may be
available as he or she moves outdoors since the device has a GPS,
but may not be available indoors). Thus, the context model
should support changing its shape in run-time.

From these requirements we can easily see that the context
model should be flexible and manageable in small-grained pieces,
representing the context of individual application entities (such as
the user or a room in a smart home). We must also remark that the
context model should be defined in an instance (and not class) ba-
sis, since different objects of the same class might need to consider
different context aspects. At this stage we are ready to express the
main guidelines of our context model, which we will use to further
specify the associated variation points:

e Context is defined in an instance basis.

o The context of an object is split in a set of context features*, each
one focusing on a specific domain (e.g. location, activity, weather,
etc.).

e The context shape of an object is defined by the context features
associated to it. This shape can change in run-time.

With these guidelines in mind we can now describe the context
model in terms of variant features: when an application is de-
signed we must decide which objects will be enhanced with con-
text information. For those objects we must model the associated
context features and decide if (and how) they will be activated/
deactivated in run-time. Thus, we consider each context feature

4 Unfortunately the word “feature” clashes with the variability concept of feature.
To avoid misunderstandings we will always refer to “context feature” when talking
abut the context model and to “variant feature” (or just “feature”) when talking about
variability features.

as a variation point, which is closed in the implementation phase,
but that behaves as an optional variant in run-time since it can be
disabled and re-enabled at any time.

4.2. Legacy bridge

The context model guidelines presented earlier do not sup-
pose any existing application or previous domain model. While
this assumption might be correct when a mobile context-aware
application is developed from scratch, we may also be in the sit-
uation of extending an application with an already existing
application model. In this scenario, the existing application is
called the base application and its associated model the base
model.

As we previously stated, we consider that the application and
adaptation domain should be engineered as separately as possible;
the context model, being fundamental for the adaptation compo-
nents, is not an exception. Thus, on top of the requirements enu-
merated in the previous section we add the following ones:

e The context model should be transparent to the base applica-
tion. In other words, the fact that we are adding context infor-
mation to existing application objects should not imply
changing the application model, re-coding part of it or changing
existing test cases.

o It should be possible to reify, in the context model, information
available in the base model. In the same way that languages
reify certain implicit concepts (e.g. continuations in Scheme or
classes as objects in Smalltalk) we would like to be able to use
the information present in the application model and treat it
as part of the context model.

A way of characterizing these requirements is to think of a
closed variation following a single variant pattern. In the variant
set two “types” of context models are available, one that assumes
that there is no previous model and other that takes an existing
model into account. The decision of which type of context model
will be used is made at design time.

We can now see how this variant feature relates to the one de-
fined in the previous section: the first step when building a con-
text-aware application is to decide, at design time, if we are
extending an existing application or creating one from scratch.
After that step the set of required context features are designed,
implemented and tested, defining the possible context shapes for
each domain object. Finally at run-time different combinations of
context features may arise depending on whether each context
feature is present or not.

4.3. Sensor support

A key aspect of most context-aware applications is how context
information is gathered from the environment and fed into the
context model. The most common way of achieving this is by using
sensors, either physical (e.g. a GPS) or logical (e.g. a weather web
service). Thus, sensor management is a delicate issue in context-
aware systems and becomes more delicate when using mobile de-
vices. In our experiences we found the following requirements to
be critical when handling sensing devices:

e Support for embracing new technology. Technology evolves fast,
constantly introducing new hardware, and sensing devices are
not an exception. Indoor location systems are a clear example
of applying many different approaches and technologies to solve
a specific problem (Davies et al., 2001; Priyantha et al., 2000;
Feldmann, 2003; Patel et al., 2006; Hightower and Borriello,

920 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

2001). Thus, an architecture for mobile context-aware applica-
tions should be able to incorporate new technologies in a fast
and easy way.

e Support for every sensing stage. The sensing process involves
many stages, like configuring sensing policy (push vs. pull), fil-
tering unwanted signals (e.g. because their quality is below a
certain threshold), transforming low-level data to semantically
rich objects and feeding the acquired information into its corre-
sponding model (e.g. the location of an object). Thus, the steps
involved in the sensing process must be decoupled so that a
change in one of them does not impact on another. In this sce-
nario, modularization of each stage is extremely important.

e Run-time support. Even though some sensors can be carried in
the mobile device (e.g. GPS), other sensors are placed in the
environment and accessed wirelessly (e.g. a Bluetooth-enabled
weather station). Thus, support for run-time discovery and
reconfiguration is a very important feature.

Similarly to the case of the dynamic context model we can see
that this variant feature has two stages: at design time we must
define what types of sensing devices will be supported and how
the information gathered by these devices will be mapped to the
context model. At run-time, depending on the active context fea-
tures, the configured sensing devices will be activated. As a matter
of fact we can go one step further and even use alternate sensing
devices for the same context information. At design time we can
specify many sensors for gathering a specific context feature and
sort them using some predefined order (e.g. by the quality of ser-
vice). At run-time the system searches for the first available sensor
according to the given order. If that sensor later becomes unavail-
able or a new sensor can be used, the search is performed again. As
we will show in Section 6 the sensing stage comprises many low-
level variation points associated with this variant feature.

4.4. Domain-specific adaptation

Domain-specific adaptation focuses on the behaviour used to
adapt an application to the current context (e.g. the user’s context).
Even though it is sometimes difficult to separate the adaptation
domain from the application domain, doing so greatly increases
the architecture (and the application) flexibility. Also, by doing so
we can encapsulate the adaptation-related behaviour and think
of it as a new variant feature. As with previous sections, we will
now define the main requirements for the domain specific
adaptation:

o Different domain-specific adaptation should coexist. As a gen-
eral rule, adaptations should be modelled and developed with-
out taking care of other adaptations present in the system at
the same time. Of course, if resource sharing is required (e.g.
accessing a database) some kind of synchronization will be
required, but this should be the exception and not the rule.

e Domain-specific adaptation should be completely decoupled
from the actual application domain. Whether we are building
an application from scratch, or improving an existing one to sup-
port context-aware features, the application model should be
independent of the proposed adaptation, since the forces that
drive the changes in each case are orthogonal.

From the point of view of the context-aware functionality, the
domain-specific adaptation is the core behaviour and must be
specified in design time. Thus, this variant feature must be closed
at that stage and remain unaltered through the life of the applica-
tion. However, as we will show in Section 6, some sub-components
may be suppressed at run-time which is why a variation point is
created for each of them.

5. Our architectural approach: a coarse-grained view

As we stated in the previous section, mobile context-aware
applications exhibit many variation points where an application
can be customized to satisfy a set of particular requirements.
In a first approach, one could think that a carefully designed ob-
ject-oriented framework would be enough to manage these var-
iation points. However, our experience shows that this
endeavour should not be dealt with naively. Frameworks capture
the knowledge and good design decisions that emerge as a result
of building many similar applications in a particular domain
(Fayad et al., 1999); however, context-aware applications can
be built on a myriad of domains, at both application and adapta-
tion level (e.g. LBSs can be applied to tourist or health-caring
applications, whereas on top of a tourist application we can build
LBSs and memory-aid functionality). As a result of this, it is not
clear which would be the underlying domain abstracted by the
framework. As an alternative, we could think of composing two
frameworks (one for each domain); however, this approach pre-
sents many disadvantages (as reported by Mattsson and Bosch
(1997)). Thus, instead of heading towards a one-for-all frame-
work, our aim is to build a more abstract context-aware architec-
ture which “only” supports the concepts which crosscut all
domains, but that can be configured to be the infrastructure of
a domain-specific framework. The application-dependent parts,
which are treated as variant features at the design level were de-
scribed in Section 4 and will be further specified as variation
points in Section 6.

In our research we have undergone a two-phase process: the
first one consisted in defining a set of micro-architectural
abstractions that are present in most context-aware applications
(across domains). These abstractions are domain independent
(both in terms of the application and adaptation) and as a result,
reusable in many different situations. In other words, they repre-
sent the building blocks that help in the construction of any con-
text-aware system, independently of its application or adaptation
domain.

With these basic abstractions defined we can move to the sec-
ond phase, which is developing concrete applications in a specific
adaptation domain. From the architectural point of view, this sec-
ond phase involves the binding of the variation points with a spe-
cific variant. It is interesting to note that this phase can be
engineered as any “standard” application, where usual techniques
and methodologies are employed (Fayad et al., 1999). In particular,
after building many applications in the same adaptation domain
(e.g. LBSs) we can derive a concrete framework. As a result we
get a flexible platform that eases the development of applications
and frameworks. In Fig. 1 we show a coarse-grained schema of
the platform’s architecture.

The building blocks of our architecture have well defined roles
and can be used and extended in different ways. We next outline
the four main packages shown in Fig. 1:

e Core abstractions. This package encompasses the basic struc-
tures to handle context and to coordinate the communication
across different packages. Even though these abstractions can
be extended by specialization, they are used most of the time
as black-boxes, i.e. by means of composition.

e Legacy bridge. This package provides an extension to the
core package to connect it to existing applications; it pro-
vides facilities for enhancing ‘“standard” applications with
context-aware behaviour. It is worth noticing that, while all
our architectural abstractions can be implemented in most
object-oriented languages, this particular package depends
strongly on the reflexive capabilities of the chosen program-
ming language.

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

921

-

N Ve A e “~.\

| Tourist Guide | Lg;zgod" ‘ | City Routing |

Application)| Messenger) | Application)

v A
“ !/
Smer M Locatloq Based
Services
Framework
Framework

e

— . NS y—

Core Abstractions |eg——

Context Model

-

|

|

|

A\

| JL+
l |
|

|

./4‘

University <—|—
Scheduling Legacy Bridge
System .q_| e :
I

Aware Model

K
Currency / Y
Web Service
Tourist
Information

Ty
:> | Health Care

<

(* Domain-Specific)| " | System y
Adaptation |))
""" Adaptation | | |
\ | Environments !
. A
| -
r ™
p ~, IR

Sensing Support AJ‘/

/M GPS
Web Custom - J
Y Services Y APIs

[Traffic || Weather |

Hardware

| Filters !
! Sensors

Policies | i ZigBee >

: Transformations

™

v
Software Sensors

— Knowledge
— — —» Dependency

Fig. 1. A schema of the platform’s architecture.

e Sensing support. This package is in charge of connecting sens-
ing devices with the core abstractions in such a way that the
sensing process becomes transparent to the context model. This
package handles sensing policies, signal filtering and transfor-
mation between low-level data and high level context
information.

« Domain-specific adaptation. The abstractions in this package
provide the skeleton for defining domain-specific behaviours;
developers concentrate on this package when devising a new
application or framework. In this case, they extend existing clas-
ses, by using the abstraction in a white-box style (i.e. by special-
izing components).

6. Micro-architectural abstractions

In this section we will revise the variant features presented in
Section 4 and we will show how the micro-architectural abstrac-
tions depicted in Fig. 1 can help designers and developers to effec-
tively realize their associated variation points. In addition we will
characterize each variation point based on the taxonomy of vari-
ability realization technique detailed in Svahnberg et al. (2005)
and mechanisms detailed in Coplien et al. (1998).

6.1. Building dynamic context models

Defining a context model is a major issue in most context-
aware applications, especially in those where we expect to incor-
porate new context features at a relatively constant rate. In Sec-
tion 4 we stated the requirements for the context model and we
defined three main guidelines:

e Context is defined in an instance basis.

o The context of an object is split in a set of context features, each
one focusing on a specific domain (e.g. location, activity,
weather, etc).

o The context shape of an object is defined by the context features
associated to it. This shape can change in run-time.

As an example, consider a friend finder application (Schilit et al.,
2002). In this application we would need to know the user’s loca-
tion in order to provide the friend finder service, which we assume
is gathered form the user’s GPS device. However, some users may
also have a compass embedded in their handheld, which could
be used to enhance the application by giving navigation hints.
Thus, two different instances of a user class may have different
context models. Also, the context model must be configurable en-
ough to share schemas across different adaptation domains, but
allowing each application to add new context features to a specific
entity. Finally, the context model should support run-time
changes.

Based in the requirements presented in Section 4 we devised a
fine-grained context model that works at the (object) instance le-
vel. This model is based on two basic concepts: aware objects and
context features.

An aware object represents an object whose context is impor-
tant for the application. As an example, suppose that we want to
provide a temperature management service for a smart home, so
that the temperature remains low while the user is at work and
rises automatically when he or she arrives at his or her home.
For this purpose we must track the user’s location and the temper-
ature of the house, which in our approach means that the house
and the user must be represented with aware objects.

922 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

At the design level an aware object is modelled with a class
(AwareObject) and used in a black-box fashion (i.e. we do not ex-
pect a developer to subclass it but to instantiate and configure
it). In order to actually define the context shape of a given aware
object, we use the notion of a context feature. A context feature is
a reification of an aspect of the object’s context that we want to
track. In its simplest form, a context feature is similar to a Value
Holder (Woolf, 1994) that holds the current value of a context
property and informs any interested part whenever that situation
changes. Thus, to create a context model we must instantiate an
aware object and a context feature for each context aspect that
we must track. The connection between an aware object and its
context features is provided by a set of messages defined in the
AwareODbject class (in particular addFeature and removeFeature).

Finally, when a context feature is added to an aware object, a
connection is established between them so that the aware object
knows when the context feature has changed. To do so an aware
object is registered as an Observer (Gamma et al., 1995) of its con-
text features, receiving a notification when any of them has chan-
ged. In Fig. 2 we show a simple example of a user object, configured
with a location context feature, which is modelled as a (latitude,
longitude) pair.

With this small-grained description of the context model we
can see that what was presented as a variant feature in Section 4
(i.e. context models) is actually realized with a set of variation
points associated to context features. At design time the objects
that will be aware of their context are defined and their context
shape is defined by designing and implementing each context fea-
ture. However, while the application is running a context feature
may not be active (e.g. because there is no sensing device to gather
information about it) and thus the context shape may need to be
redefined. For this reason we consider each context feature as a
variation point of an aware object; each context feature is closed
at design time and is treated as an optional variant that is re-eval-
uated in run-time. At the implementation level the mechanisms
associated with this variation point are inheritance and polymor-
phism (as mention by Coplien et al. (1998)).

6.2. Towards a context feature library

Even though characterizing each context feature as a variation
point that is open for adding custom variants is a flexible approach
we found out that some types of context features appeared in a
recurrent fashion and could be implemented for later reuse. In par-
ticular we found three types of distinctive context features:

e Model-based features: In many cases the current value of a con-
text feature is meaningless without a supporting model. Let us
suppose that we are tracking the user’s location in a symbolic
map (Leonhardt, 1998), and for that purpose we have a context
feature that holds the symbol that identifies the room where the
user is standing. Without the map itself, the symbol is not of
much use, since we can not connect it to other locations. A
model-based feature extends a context feature by adding a ref-
erence to a model.

user: AwareObject

locationFeature

s i i LatLon I
|!ocatnonFeature: ComexlFeatunﬂ CuiTeMSiiztion e Coor

latitude : 50.9584
J longitude : -1.2192

bame : ‘Location’

Fig. 2. A simple context model.

e Tracked feature: Some applications require a history of the val-
ues which a given context feature has been assigned to. Using
again the location example, a program could predict the user
path to provide LBSs (e.g. comMotion (Marmasse, 1999)). For
this purpose a tracked feature extends the basic context feature
with the capacity to keep a log of the different values which
have been assigned to it.

e Derived feature: Context features represent small-grained
pieces of context information. In some cases we can combine
that information (e.g. applying a transformation) to produce
derived context information. As a simple example, suppose that
we want our smart home to warn us if the weather is suitable
for going cycling. If we have context features like temperature,
pressure and wind (e.g. because we have installed a small
weather station at the house’s roof), we could use a decision
tree (Quinlan, 1986) whose inputs are the current weather con-
ditions and the output is the suggestion made by the program.
An important characteristic of a derived feature is that it auto-
matically updates its current situation (and triggers a change
event) when any of its input features change. To make this
object as generic as possible, the transformation used to derive
the situation from the input features is expressed by a block
closure.’

Finally, we should notice that tracking the changes of a context
feature or requiring an underlying model are not mutually exclu-
sive. For these reason the extensions enumerated earlier are imple-
mented as Wrappers (Gamma et al.,, 1995) and, if needed, the
developer can add its own wrappers. In Fig. 3 we show a class dia-
gram depicting the ContextFeature hierarchy.

Note that what we are doing in this case is providing a set of
common used context features to designers and developers. This
does not mean that the variation point associated with a context
feature will not be open until the implementation phase, since
new requirements may arise and new subclasses may need to be
added. Thus, our aim is to allow designers and implementers to
incrementally add new variants to the collection of variants asso-
ciated with the variation point.

We next show a more complete example depicting how differ-
ent context features can be used to create more sophisticated con-
text models. Fig. 4 shows the context for a simple memory-aid
application (like the one presented by Lamming and Flynn
(1994)) that records the user’s actions (e.g. through software sen-
sors) and his or her location. Since we need to log the user actions,
the action context feature is wrapped to become a tracked feature,
keeping a history of the functions performed by the user. A second
context feature (location) is used to place the user inside a build-
ing; notice that, since we are using a symbolic model (Leonhardt,
1998), symbols alone (like ‘Room 102’) are not sufficient. In order
to perform meaningful computations we need a reference, which
is the feature’s model (i.e. the symbolic map).

Finally, notice that in some situations the user may not be able
to sense his or her location (e.g. because the location was sensed
inside the building and the user has left it). One possible approach
for handling this case is to stop taking into account that aspect of
his or her context (i.e. if we can not measure it, then we can not
provide services based on it). In our model this is achieved by
removing the context feature from the aware objects by means
of the removeFeature message.

As a result, by assigning context in an object-basis and splitting
each object’s context in a set of context features we are able to

5 A block closure is basically an expression whose evaluation can be deferred to a
later time, pretty much like an anonymous function can be created and further
evaluated.

A. Fortier et al./The Journal of Systems

and Software 83 (2010) 915-936 923

AbstractContextFeature

-target

+ name

+ currentSituation
+ currentSituation: aSituation

- setCurrentSituation: aCurrentSituation

-features

ZF

| |

ContextFeatureWrapper

ContextFeature DerivedFeature

- name

+ currentSituation

- currentSituation

- name

+ name
- setCurrentSituation: aCurrentSituation
- forward: anAnnouncement from: aTarget

+ name

+ currentSituation

- setCurrentSituation: aCurrentSituation

+ currentSituation
+ name
- setCurrentSituation: aCurrentSituation

TrackedFeature ModelBasedFeature

- history - model

+ model
- model: aModel

+ currentSituation: aCurrentSituation
+ history

- addToHistory: anObject

- record: anObject

BlockClosure

+ value

+ value: anObject -block

Fig. 3. The ContextFeature hierarchy.

user: AwareObject

actionFeature ;

| actionsFeature: TrackedFeature}__,-—-"‘

L)

target

(target: ContextFeature

bame : ‘Action’

history

)
p

@ccessed: www.groups.google.com

currentSituation

locationFeature

ﬁocalionFeature: McdelBasedFeaturew

J

target: ContextFeature

name : ‘Location’
currentSituation : ‘Room 102

:
L

model

model: SymbolicMap

)
y

)

(opened: /home/andres/web_comet.im

Gent—maﬂ—to: john@gmai\.com)

@alled: 1559563097

)

Fig. 4. A reduced context model for a memory-aid application.

engineer each feature in a separate way, therefore reducing the
context model overall complexity. This is extremely important
since some features may require non-trivial underlying models
(e.g. location models as described by Leonhardt (1998)). Also, since
aware objects provide the required messages to manage their con-
text (i.e. addFeature and removeFeature messages), context fea-
tures can be added or removed at any time, in particular at run-
time. This is why we treat each context feature as a variation point
with an optional variant pattern that can be re-evaluated in run-
time.

With these basic mechanisms we are able to manage the second
and third requirements presented in Section 4.1. In Section 6.5 we
show how we combine the context model with domain-dependent
adaptation behaviours in order to reuse context schemes.

6.3. Legacy bridge

As we explained in Section 4.2 sometimes we need to extend an
existing application to add context-aware behaviour rather than
building a new application from scratch. Besides the requirements
presented in Section 4.2 we would expect to reuse any context fea-
ture previously defined, as we shown in the previous section. To

achieve this, the AwareObject class is extended (subclassed) in
our architecture into an AwareModel. AwareModels are aware ob-
jects that reify existing concepts in the application model, and cre-
ate a representation for them in the context model. To do so, an
aware model holds a reference to the application object and acts
as a dynamic Proxy (Gamma et al., 1995), forwarding every mes-
sage it receives to the base object. Also, since an AwareModel is
a subclass of an AwareObject it provides support for managing
context.

Up to this point, an aware model enables us to represent an
existing application object as part of the context model. However
this class also adds behaviour to perform more complex
behaviours:

. In its general form, as long as a getter and setter® are provided,
any aspect of the base object can be treated as a context feature.
This means that we can reify objects as aware objects and also
their attributes as context features.

5 In order to keep consistency with the context feature behaviour, we also need the
base object to implement the observer pattern for the desired aspect, so that a
notification is triggered when the aspect is modified.

924 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

2. An aware model can be asked to override a base object’s mes-
sage with a context feature. As a result, instead of forwarding
the message to the original object, the aware model will return
the context feature’s current situation.

Thus, at design time we must decide if the context model of a
given entity will be built from scratch or will be based on an exist-
ing application model. Since we have only two choices (i.e. aware
objects or aware models) this variation point is closed and the
decision of which of them will be used must be stated at design
time.

As an example, consider implementing a mobile application for
a travel agency. Suppose that the agency already has a system
(used for booking trips, billing, etc.) and wants to provide a mobile
application to aid its customers when visiting a foreign city. Since
the agency has considerable information about its customers, it
would be nice to reuse it for the mobile version; however, we want
part of that information to be used as context, regarding the user’s
activities. Take for example a fragment of the requirements ex-
pressed in the CyberGuide (Abowd et al., 1997) project: “For exam-
ple, information should be presented in a way that is suitable given the
age and technical background of the visitor and their preferred reading
language. Context should also be used to adapt the presentation of
information depending upon the information that the visitor has al-
ready seen. For example, if a visitor makes a return visit to a landmark
then the information presented should reflect this fact, e.g. by welcom-
ing the visitor back.”

Let us suppose that the user of the mobile application is mod-
elled in the tourist agency system with a Customer class as shown
in Fig. 5.

By using this class we can now create a context model that:

e Uses the default behaviour with the age message (i.e. just for-
wards it to the base model). Notice that, even though the client’s
age may change during his or her trip, it is generally unlikely
that we would like to have it as part of the context model (as
a matter of fact it may even be disturbing if the user is shown
different attractions because his or her age has changed in the
middle of the trip). Thus, messages from the base model that
are not used to perform dynamic adaptation are just forwarded
to the base model.

e Creates a context feature with pending tasks for the trip. For
example, the user may be engaged in a trip that includes many
cities and may have a hotel reservation waiting to be confirmed.

Reservation

Even though this is recorded internally in the system, we would
like to expose it as contextual information, so that the applica-
tion can provide personalized behaviour to the user while being
on the road (e.g. if the hotel is still unconfirmed two days before
the arrival, run an LBS that looks for similar hotels nearby). Thus,
existing information that will be used to provide context-depen-
dent services is now modelled as context features and thus
made accessible to the services.

e Is able to change the desired language to display tourist infor-
mation. In principle, the language used to display information
may be inferred from the user’s nationality. This information
is useful to the travel agency, since it enables them to com-
municate with their clients in a personalized way. However,
during his or her trip the user may want to see the informa-
tion in other languages (e.g. because the translations are
poorly made or incomplete). This information might vary
dynamically (maybe many times a day in a guided tour), and
clearly this fact should not be modelled in the tourist agent
system. Thus, we can create a context feature that overrides the
base object’s behaviour but uses, as default value, the systems’
response.

In Fig. 6 we show an instance diagram of the derived context
model.Notice that a new class appears (FeatureAdaptor) in order
to bridge the application model with the context model. Let’s
now see how these ideas are used to deal with both requirements
enumerated before:

e The context model should be transparent to the base applica-
tion. The aware model and the context features are placed as a
layer on top of the base application, pretty much in the same
way a view is placed on top of a model in the MVC (Krasner
and Pope, 1998) paradigm. Thus, the context model can be engi-
neered and changed without affecting the base application.

o Application information may be treated as context. By using
context features derived from attributes and context features
that override behaviour we can represent application concepts
as context information.

Even though these requirements are satisfied, there are still
some issues regarding the implementation of the aware model’s
behaviour. In particular the dynamic proxy behaviour and the
way messages are overridden, heavily depends on the language
being used. In our case the architecture has been implemented in

state

ReservationState

+ description

+ isFulfilled

+ deadline 4 €
+ isFulfilled + isPending
reservations
Customer
birthDate Date

+age
+ pendingReservations : c:qagmh
+ bookedTrips o
* nefonally + addDays: anAmount

Fig. 5. A subset of the class model for a tourist system.

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936 925

(: Reservation |

E!ale : pending I

reservation

(John: Customer Wmode\

(user: AwareModel w

overrides (overrides: Dictionary w

L ,J -

target

=

features

(._-...-.

(pendingTasks: FeatureAdaptor

name : ‘pendingTasks'
aspect : ‘pendingReservations’

features|

J Ulanguage | T U

(nationality: ContextFeature |

name : ‘language’
currentSituation : ‘Spanish’

Fig. 6. Instance diagram of a context model extending an application object.

VisualWorks Smalltalk, which is a naturally reflective environment
that simplifies the specification of this kind of behaviour.

6.4. Sensor support

Once the context model is created we must define how the
external information will be gathered and feed to each context fea-
ture, taking into account the requirements presented in Section 4.3.
To do so our architectural solution treats the different stages in-
volved in the sensing phase as first-class citizen by reifying them
into objects and isolates them by defining clear communication
interfaces. As a result, each stage is represented by an interface
(and realized by one or more classes), which can be easily changed
to adapt to new requirements. As we will show later, this results in
many variation points used to configure the sensing package
according to each sensor-specific requirements. In Fig. 7 we pres-
ent an instance diagram, depicting the main objects involved in
the sensing phase.

A Sensor object represents an instance used to communicate
with the sensing mechanism, which can be a hardware-sensor
API or a software sensor, like a web service. This sensor is managed
by a Policy, which is used to abstract whether the sensor works in a
push way or needs constant polling. As a result of this step we get a
common publish-subscribe mechanism to interact with any
sensor.

The SensingConcern is in charge of receiving the new sensed
values and triggering the pending steps; its first task is to handle
the value to a Dispatcher, which is in charge of deciding if the value
is acceptable. The meaning of “acceptable” depends on different
factors and most of the times it is an application-dependent issue
(e.g. a 10-meter error in a GPS reading may be acceptable for driv-
ing directions, but not when providing LBSs to a walking user).
Once the sensed value gets through the dispatching phase, it must
be converted to an object (or a set of objects) that match the model
being sensed. For example, a GPS location can be converted by

Sensor

Dispatcher

means of reverse geo-coding to a specific address. Once the Trans-
formation phase is done, the sensing concern can update the con-
text model by assigning the new value to a ContextFeature (e.g. the
mobile user’s location).

In our design the SensorPolicy, Transformation and Dis-
patcher classes are single variant points, since the developer
needs to choose one option when creating the final application.
In addition, these variation points are open during the imple-
mentation phase because the developer can create new sub-
classes of them if required. However, as we did with the
context features, we have implemented many typical cases of
policies and transformations, so that the variant collection can
be enriched over time. These are shown in Fig. 8, where a class
diagram depicts the main abstractions and some particular spe-
cializations that proved to be frequently used, such as lookup
transformations (e.g. to map a sensor ID to a room) or error fil-
ters, that only accept a value if its error level is under a given
threshold.

Finally, to complete the description, we show an interaction
diagram depicting the process of dispatching the GPS signal of a
mobile user (see Fig. 9). Notice that in the diagram a new dis-
patcher is presented (DOPDispatcher); this dispatcher only allows
GPS signals whose dilution of precision (Langley, 1999) provides a
minimum quality.

As a result of separating sensors from the context model and
encapsulating each sensing stage by means of well defined inter-
faces we reduced the impact of changes in two levels:

e In a macro scale, we insulated the context model from techno-
logical trends. By using the proposed approach the developer
can concentrate in the context model and its design and later
manage the sensing related issues. This not only simplifies both
tasks (since dealing with them separately splits the complexity)
but also enables us to incorporate new sensing devices without
affecting the applications.

ContextFeature

.)

sensor

Ebb-ingRalcy sensingPolicy

)

target l

dispatcher

: transformation 7
SensingConcern :) Transformation

.

)

Fig. 7. Simplified instance diagram of the sensing layer.

926 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

dispatcher Dispatch
components
+ dispatch: aValue
[[I 1
CompositeDispatcher ForwardDispatcher UniqueDispatcher ErrorFilterDispatcher
previous : Object threshold : Magnitude
+ dispatch: aValue + dispatch: aValue + dispatch: aValue + dispatch: aValue
T transformation
—> SensingConcern Transformation
—
+ valueFrom: aNewValueEvent + applyTo: aValue
+ policy Ko
+ receiver i 4
+ transformation ! [- | - |
- dispatchValue: aSensorValue ! NullTransformation LookupTransformation BytesToNumber
! - table : Dictionary
i + applyTo: aValue + readFrom: anXMLFile + applyTo: aValue
+ applyTo: aValue
ContextFeature i policy
" I
receiver —--} SensingPolicy
Sensor
+ sensor sensor
- advertise: aNewValue
- sensor: aSensor |
I
o :
[I H
PuliSensingPolicy PushSensingPolicy

deltaT : Integer
selector : Symbol
timer : Process

+ newValue: aValue
- sensor: aSensor

+ start - removeDependenciesFrom: aSensor
+ stop - setUpDependenciesFor: aSensor
+ finalize Z
- dispatchValue: aSensorValue I I
[ZIl l DependencyPushPolicy AnnouncementsPushPolicy
r - - changeSymbol : Symbol announcement : Announcement
UniformPullPolicy NewValuePullPolicy - - accessor : Symbol
oldValue : Object - removeDependenciesFrom: aSensor -
- setUpDependenciesFor: aSensor - removeDependenciesFrom: aSensor
- dispatchValue: aSensorValue - dispatchValue: aSensorValue - setUpDependenciesFor: aSensor

EventPushPolicy
eventName : Symbol

- removeDependenciesFrom: aSensor
- setUpDependenciesFor: aSensor

Fig. 8. Class diagram of the sensing architecture.

e In a micro scale, we are able to quickly implement new varia-
tions and reuse existing components. Since each stage of the
sensing process is clearly outlined and its boundaries are well-
defined, changing a part of it (e.g. replacing a transformation
or changing a dispatcher) is precise task. Also, since the stages
are fine-grained and have very clear responsibilities they can
be easily reused. For example, a class which has turned out to
be very useful is a transformation that maps id’s received from
sensors to objects in the context model domain. This class
implements behaviour from reading files (like XML) and build-
ing the corresponding tables. Once implemented and tested, this
class can be used to solve different problems, like mapping the
id of a beacon to a symbolic location or associating a bar code
to an object.

6.5. Domain-specific adaptation

As we previously explained, one of our goals is to separate the
adaptation domain from the application domain to get a clear sep-
aration of concerns, resulting in better and more flexible designs.
To clarify this separation consider the task of providing LBSs to a

mobile user: in this scenario we can identify the minimum re-
quired context (the user’s location) and the expected behaviour
(according to the user’s location, let him access a set of services).
However, the service’s domain (e.g. health-caring, traffic monitor-
ing or finances) is, in principle, not relevant. We have aimed at sep-
arating the application domain from the adaptation domain, so
that developers can build specific infrastructures (e.g. for LBSs) that
can be reused across different application domains (e.g. health-car-
ing, finances, etc.). To do so we decided to treat adaptation do-
mains as first-class objects, which are called adaptation
environments. Each adaptation environment references a set of
aware objects in order to “listen” to their context changes. When
a context change is triggered, a notification is delivered to the envi-
ronment so that it can perform a specific action, like showing a
new service in the case of LBSs or turning off a light in the case
of a smart home. An aware object can be registered to more than
one environment at the same time, therefore allowing context
sharing between applications.

By combining environments with a notification mechanism
each time the aware object’s context changes the environment is
notified and can perform the corresponding action. For example,
if the user moves and approaches to a painting, the environment

A. Fortier et al./The Journal of Systems

and Software 83 (2010) 915-936 927

ContextFeature GPSFilterTransformation

SensingConcern

sensorValue: aValue

DOPDispatcher NewValuePullPolicy GPS
—1—| getValue i
aValue

dispatchValue: aValue

T
|
|
|
|
|
|
|
|
i
: setOldValue: aValue
|

|

|

|

announce: aValue

dispatch: aValue

dispatchValue: aValue

check: aValue

P applyTo: aValue

location

currentSituation: location

_____i:t___________________________________

| =

S

Fig. 9. The process of dispatching a GPS signal.

can react by showing information about that painting in the user’s
PDA. However, the user may be at the same time registered to an-
other adaptation environment (e.g. context-dependent reminders),
which means that different types of functionalities can be provided
at the same time (in this case, LBSs and context-dependent
reminders).

In order to show a basic example of an adaptation environment,
consider the case of a mobile memory-aid application (the context
model we use for this example is the one shown in Fig. 4, but with
less detail for the sake of clarity). To implement this application a
new environment must be created and the aware object registered
to it (see Fig. 10). As a result, each time the user performs a new
action (e.g. sends an e-mail) the environment gets a notification
and can perform an action, like recording the action in a persistent
repository with the current timestamp.

Even tough this separation between context and adaptation
works well for small environments, as they evolve and become
more complex, managing changes turn into a complex task. In par-
ticular two important issues must be considered:

actionsRepository

£ ‘
(memoryAid 5 AdaptationEnvironment\

L P

K---4

¢ We may be interested in performing many actions for a change
in a given context feature (e.g. updating the user’s location in a
map and checking if a new LBS can be provided).

e Most of the times changes in each context feature must be trea-
ted in a specific way.

For these reasons, we decided to refactor the internals of an
adaptation environment by separating the way in which each con-
text change is handled. This led to the introduction of context event
handlers, which are in charge of performing the reaction to a con-
text change. In the resulting architecture an environment acts as
a Facade (Gamma et al., 1995), providing a simple access protocol
for registering aware objects and handlers for specific changes, and
internally coordinating the flow of events. It also coordinates the
access to resources shared between handlers (e.g. the connection
to a database). To sum up we have decomposed a variant feature
(the domain specific adaptation) into a set of variation points,
one for each handler. These variation points are closed at the
implementation stage and can be optionally enabled (disabled) at

awareObject

(user: AwareObject w _

T
actionFeature i
i

N

(actionsFeature: TrackedFeaturew

L)

T
i locationFeature
; !

ﬁocationFeature: ContextFeatunq

name : ‘Location’
currentSituation : ‘Room 102"

Fig. 10. An adaptation environment for a memory-aid application.

928 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

run-time. As mentioned by Coplien et al. (1998) we use inheritance
and polymorphism as mechanisms to implement this variation
point.

To exemplify let’s return to the memory-aid application: when
the action feature changes, we must store it in a persistent reposi-
tory. We may be also interested in performing a secondary action,
like keeping statistics for further estimation of events (e.g. the
entering a room action and its timestamp is used to later answer
queries about the probability that the user will be in a room at a
given time). Finally, we may also be interested in the entering a
room event in order to check for other present people to implement
a context-dependent personal notes (e.g. if John is in the room then
a personal note related to him may appear in the screen). As it can
be easily seen, not only the possible actions attached to a context
event are endless, but it is also impossible to foresee them all while
developing the application (e.g. the last example can be a require-
ment added after the first release of the application). To make
things more complicated we may even want to enable/disable cer-
tain behaviour at run-time (e.g. the user may want his or her ac-
tions only to be logged while he or she is at work and not in his
or her spare time).

Decoupling the environment itself from the actions to perform
on context changes by means of the context event handlers enables
us to clearly specify them as variation points and thus manage the
software evolution. In Fig. 11, we show an example of an environ-
ment with two handlers attached.

Finally, a special issue to take into account is the relationship
between an aware object and the environments to which it is reg-
istered, since we want changes on either side to have a small (or
null) impact on the other. In particular, by using a notification
mechanism (i.e. implementing the Observer pattern (Gamma
et al., 1995)) to communicate an aware object with its environ-
ments and by allowing environments to register to specific context
changes we get the following benefits:

e Since an aware object is oblivious to adaptation environments,
changes in the environments do not impact on it. This guaran-
tees that already existing software can not be broken by chang-
ing or adding a new environment (notice the analogy here with
the MVC, where the aware object takes the model role and the
environment the view one).

e Adaptation environments can register to listen for specific con-
text changes. Thus, a change in the context schema of an aware
object will only impact on the environment if the object is
explicitly registered in it. As an example, if we remove the loca-

tion feature only those environments that are registered in it will
need to be modified. In particular, since the relationship is cre-
ated between context features and handlers, only those handlers
that expect changes for the location feature (and not the whole
environment) will require changes.

It is important to notice that this part of our architecture is ex-
pected to be used in a white-box style, since the handlers and the
environments must be tailored to suite a specific adaptation domain
(sometimes even in a specific application domain). Our experience
has shown that by repeatedly building applications in the same
adaptation domain, domain frameworks can be constructed (e.g. a
framework to manage LBSs). In Fig. 12 we show a class diagram with
the base classes provided by the architecture (greyed) and the ones
used to implement the memory-aid depicted in Fig. 11.

7. Experience and discussion

The architecture presented in this paper, together with its cur-
rent implementation, is the result of an iterative learning process.
As we developed new prototypes in different domains, new prob-
lems appeared and the architecture was upgraded to suit the new
requirements. We consider that we have reached a point of stabil-
ity where variant features and their associated variation points can
be defined for most context-aware applications. Additionally we
have identified the places where variation points can be realized
by using white-box style (e.g. subclassing) and those where
black-box style can be applied (e.g. composing existing classes or
components).

In this section we briefly outline two case-studies that show
how to build context-aware systems using our proposed approach
and architecture. In particular we will show a framework for loca-
tion-bases services and a memory-aid application (this application
is based in the one described by Lamming and Flynn (1994)). We
contrast these two examples since they expose some interesting
differences:

e The memory-aid is a concrete application whereas the LBS
framework shows that our infrastructure is also suited to build-
ing frameworks for specific adaptation domains.

e Even though other contextual aspects can enrich the user’s
experience, LBSs are mainly focused on the user location and
thus the basic context model is quite simple. On the other hand,
memory-aid applications can have very rich context models,
including the user’s phone calls, mail sent, documents, etc.

J(:AciionToStnreHandleﬂ (:ActionStatistics \

)X)

: actionsRepository

(memoryAid : AdaptationEnvironment\]

L J

, handlers '

awareObject

user: AwareObject)

C

|

actionFeature

N

(actionsFeature: TrackedFeaturew

L J

locationFeature

(___.__

ﬁ:cationFeature: ComextFeatura

name : ‘Location’
currentSituation : ‘Room 102

Fig. 11. The refactored environment using handlers.

AdaptationEnvironment

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936 929
-handlers ContextEventHandler
>

+ addEventHandler: anEventHandler

+ addEventHandler: anEventHandler after: otherHandler
+ addEventHandler: anEventHandler before: otherHandler

+ register: anAwareQObject
+ unregister: anAwareObject

1 *

—T

+ canHandle: aContextEvent

+ handle: aContextEvent
from:ContextFeature
on: anAwareObject
environment: anEnvironment

ﬁA

]

MemoryAidEnvironment

PersistenceHandler

StatisticsHandler

+ record: anAction
+ execute: aQuery

1

+ handle: aContextEvent
from:ContextFeature
on: anAwareObject
environment: anEnvironment

+ handle: aContextEvent
from:ContextFeature
on: anAwareObject
environment: anEnvironment

1 -actionsRepository

PersistenceManager

+ add: anAction
+ execute: aQuery
+ login: aUser

Fig. 12. White-box extensions to the basic toolkit.

e Also related to the previous issue, the main type of sensor used
in LBSs is related to location (e.g. GPS), while a memory-aid
application can receive information from many devices (desktop
computer, other mobile devices, telephone centrals, etc.).

e LBSs are based on an implicit user input (i.e. changing his or her
location) in order to trigger a new behaviour. On the other hand,
the primary functionality of a memory-aid application is to let
the user perform explicit queries (e.g. ‘searching for a document
used in a meeting with John and Alice last week’).

In the next sections we will show the variant features of both
systems and we will discuss their design and implementation. In
this context two issues are left out of the discussion:

e Graphical user interface. Since we are mainly focused on archi-
tectural aspects we will not discuss issues related with the GUI.

e Low-level sensors. We omit discussing issues related to low-
level sensor access (i.e. the specifics of the APIs of different ven-
dors). In the case of the GPS for location we used a simulator that
delivers an object that maps to the GPS_POSITION structure used
in the Windows Mobile Intermediate Driver (2006). For the
memory-aid application the simulator delivers directly the user
actions, modelled as objects (see Section 6.4).

Finally, the implementation of our architecture and the proto-
types were built in VisualWorks 7.4.1, a dialect of Smalltalk devel-
oped by Cincom. The product provides a cross-platform virtual
machine that includes Windows, Linux and Windows Mobile OSs.

7.1. A framework for location-based services

The aim of the framework is to support the development of
applications that provide LBSs. Notice that, as we already ex-
plained, these systems can be built on a myriad of application do-
mains. To exemplify its usage we implemented four (relatively
simple) applications:

1. Friend finder. The idea is to help the user to locate friends or
contacts. We use a symbolic location model with three levels
of awareness: a friend is in the same place (e.g. the same room),
nearby (e.g. in a room adjacent to the user’s room) or far away.

2. Location-based information system. In this case the aim of the
system is to present hypermedia information associated to a
given area. This system works both with symbolic locations
(using a hash table to map symbols with web pages) and with
geometric locations (using an r-tree (Guttman, 1984) to map
areas with web pages).

3. Location-based messenger. This kind of messenger works as a
normal one, except for the fact that a message is delivered to
the recipient only if he or she is in a certain physical area or
range (generally the same room of the sender). When a user
sends a message to a contact outside the sender’s area, the mes-
sage is placed in a queue of pending messages, and only deliv-
ered when both the sender and the receiver are in the same
location.

4. Location dependent file repository. This kind of repository
works like an FTP server that is enabled only in certain loca-
tions. As a result we can relate a given location with contents
shared (and edited) between users.

The process of building the framework followed well known
practices (Fayad et al, 1999): we started by building one
application from scratch, and as we developed new applica-
tions the commonalities were extracted and factored in specific
classes. Having reached a stable design, we can now see which
variation points were solved and which new variant features
where introduced. At first sight adding new variant features
may seem contradictory, since we are building a concrete
product from a product line. However, the product we are
building is a framework and this means that it is not a fin-
ished artefact, but a customizable one. Therefore, two rules
should be followed:

1. A variant introduced at the framework level must be used to
help solving an existing variant in the underlying architec-
ture. In other words, we cannot introduce a variant at the
framework level if it was not conceived at the product-line
level.

2. The new variant cannot be more general than the one it is help-
ing to solve. For example, if the product-line variant states that
it is closed at design time a framework variant cannot change it
to be bound at run-time.

930

The idea behind these two rules is that if we derive a framework
from a product line, the framework cannot be more general that
the product line itself. We will now show the resulting framework
design and afterwards we show which variation points were solved
and which new variant features were introduced.

As a result of using our architecture, the framework was built
with 8 classes, 5 of them conceived to be extended by subclassing
(i.e. as a white-box framework) and 2 of them to be used by com-
position. The remaining class was an extension to an already exist-
ing class, part of the Smalltalk hierarchy. In Fig. 13 we show a class
diagram of the framework, where the original classes (i.e. those
implemented as part of the basic architecture’s toolkit) are greyed
out.

We next outline the main responsibilities of each class:

e ServiceSpec. Users that are interested in a particular service
must register to its specification. The specification gives infor-
mation about the service (name, description, etc.), and also indi-
cates when the service can be available for a given user. As an
example, consider any kind of LBS: if the user does not have a
location context feature, then we can not determine his or her
position, and thus we can not decide if we must provide the ser-
vice or not. By default, the service checks for a (initially empty)
collection of required context features which can be extended by
the ServiceSpec’s subclasses.

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

e Service. The Service abstract class does not provide much

behaviour on its own, but defines a set of accessing methods
for commonly needed information and a set of methods that will
be used as callbacks by the environment. Examples of these
methods are start and stop, which are called when a service is
activated and deactivated.

o ServicesEnvironment. A services environment is an adaptation

environment specialized to handle services and users (i.e. ser-
vices consumers). It adds user management, services specifica-
tion management and coordinates, by collaborating with a
service handler, when a service should be active for a given user.

o ServiceHandler. This is a specialized handler that is installed by

the service environment for each user and for each of the ser-
vices he or she has registered to. Since a service specifies which
context features it requires to work, the service handler “listens”
to changes of those specific context features. When a notifica-
tion of a context change reaches the handler, it checks whether
the service should be active for that user or not.

e ServiceConsumer. A service consumer is a wrapper of the

standard aware object that adds service accounting informa-
tion. It keeps track of the registered services, and of those that
are currently available. Since we are interested in user-centred
services, we will refer to these consumers as users, but it
should be noticed that any aware object can act as a service
consumer.

EventHandler
AdaptationEnvironment
-handlers | + featureAdded: anEvent
A b1 + featureRemoved: anEvent
* register; anAwareObject 4 4.+ | *handle: aContextEvent from: aContextFeature on: anAwareObject in: anEnvironment
+ unregister: anAwareObject 2 + install
+ featureAdded: aFeatureAddedEvent + uninstall
+ featureRemoved: aFeatureRemovedEvent S enouldblandlssanEvent
* process: aContextEvent + isForAwareObject: anAwareObject
+ addEventHandler: anEventHandler L ieEbiEeatiure SContextEaatire
ﬂl + isForFeatureNamed: aName
ServicesEnvironment
»— ServicesHandler
+ featureAdded: aFeatureAddedEvent 1 featureName ¢
+ featureRemoved: aFeatureRemovedEvent -
+ process: aContextEvent + featureAdded: arTEvent 1
+ specsFor: aServiceConsumer N featureBemoved. anEvent
+ addConsurmer: aUserConsumer + handle: aContextEvent from: aContextFeature on: anAwareObject in: anEnvironment
+ register: aConsumer for: aServiceSpec
+ unregister: aConsumer for: aServiceSpec ~consumers - 1
’ ServiceConsumer 1
1 -consumer + activeServices -CONSuUMmer
Service PN > + registeredSpecs
4 3 + serviceFor: aSpec
- . + activate: aServiceSpec
+ environment 1| + deactivate: aServiceSpec
+name K| + registerTo: aServiceSpec
: Sfer? cacbvaServicas + unregisterFrom: aServiceSpec
st + isActive: aServiceSpec
+ stop
1
-availableSpecs ServiceSpec
-registeredSpecs
i + for: aServiceConsumer 1
+ name
+ requiredFeatures
+ users

+ isAvailableFor: aServiceConsumer

-spec

Fig. 13. A basic framework for context-dependent services.

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936 931

We can now see which variation points presented in Section 4
were solved and which new ones were introduced as part of the
framework:

e Dynamic context model. The framework constrains this variant
by assuming a user object and requiring a location context fea-
ture. Notice however that new context features can be added
(i.e. the variant still remains open) in case a particular service
requires this (e.g. a service may need the user’s current activity
as a context feature to work).

o Legacy bridge. The four applications that we implemented did
not require a previously existing application model, thus this
variation point was solved at design time by using aware
objects.

e Sensor support. As we explained in the introduction of this sec-
tion we have constrained the use of low-level sensors and we
tested our framework with a simulator. Thus, the variation
points related to this variant feature were solved in design time.

« Domain-specific adaptation. This is maybe the most interesting
variant feature, since it is partially solved by specifying new
classes which have their own variation points. The ServiceEnvi-
ronment class specializes AdaptationEnrironment while Service-
Handle specializes the EventHandler one. Thus, the variation
points related to this variant features are solved. However, these
classes interact with other (abstract) classes that are used as
variation points, namely Service and ServiceSpec. The variation
points added are clearly more specific than the ones present at
the product-line level and are constrained to adding a concrete
subclass for the two abstract classes.

Once the framework was finished, building each concrete appli-
cation required between 2 and 5 classes related to the context-
aware functionality (for example, the classes related to the imple-
mentation of the r-tree are not considered here). On average, 3
additional classes were needed for each application, with an aver-
age of 9 methods per class. As we said before, subclasses of Service
and ServiceSpec are needed in every new application.

7.2. A memory-aid application

An important requirement for a memory-aid application is that
the sources of information can be configurable and dynamically
available (i.e. we may have a connection with a desktop PC that
is later lost). To achieve this, each source of information is treated
as a software sensor and processed as explained in Section 6.4.

At the context model level, we evaluated different design op-
tions, like having a context feature for every source of information,
having a single feature of actions and a specific class representing
each action, separating context features regarding the types of ac-
tions, etc. From our point of view, the clearest model consisted of
separating each type of action in a specific context feature; as a re-
sult, we have a context feature for email actions, other for phone
calls, etc. We also model an action hierarchy, where each specific
subclass represents an action performed by the user (e.g. send an
email, receive a message, make a phone call, etc.). These design
decisions lead us to a very easy implementation of a query ap-
proach quite similar to query-by-example (Zloof, 1977), where a
“template” action is instantiated and only those specified attri-
butes are taken into account to perform the search. For example,
issuing a query whose parameter is an instance of UserAction
(the root abstract class for any action recorded), would retrieve
all instances of any of its subclasses. On the other hand, by creating
a MailAction whose device is set to the user’s mobile phone and
subject is ‘Call for papers’ will retrieve all the mails sent from (or
received) in the user’s mobile device, whose subject matches the
string pattern. In Fig. 14 we show the hierarchy of actions mod-

elled for the prototype (for the sake of clarity we only show a sub-
set of all the classes).

The next step to build the application is to create a new adapta-
tion environment and a handler, so that when any action feature
changes, the new action is recorded and persisted” (see Fig. 15).

As we did with the LBSs framework, we can now see how the
variation points were solved in this concrete application:

o Dynamic context model. In this application there is no manda-
tory context feature, as in the case of the location context fea-
ture in the LBSs example. In case no context features are
added to a user’s context, the application will not be able to
record anything and thus would be useless. The power of the
application is increased as new context features are added, since
there is more information available. However, this variant is
constrained in the sense that if we want to add new context fea-
tures whose information will be used for later retrieval, the val-
ues of those features should be instances of UserAction
subclasses.

e Legacy bridge. As in the previous example there is no previous
application to extend and thus no need for using the aware mod-
els described in Section 6.3.

e Sensor support. Since the data from external applications (e.g. a
mail client) are treated as sensor information a new sensing step
must be added for each new external application to support.
Thus, this variation point remains unchanged until the concrete
applications to be supported are defined.

« Domain-specific adaptation. This variant is closed at design
time and is realized by the memory-aid environment, together
with the PersistenceHandler and the actions classes.

Up to this point we had to code 20 classes (16 of which where
used to represent the possible user actions), and 3 class extensions
to the Smalltalk hierarchy in order to implement part of the query-
by-example style for searches. However, even though this applica-
tion is clearly ubiquitous and transparent (it is working all the time
by gathering information), we considered that we could improve it
further in two possible ways:

o If location information is available, add that information to the
action. Following our approach, a location context feature was
added and a new handler was written to listen to context
changes and adding the location information to the actions
using a Wrapper (Gamma et al., 1995). It is interesting to note
that we could reuse the code from the LBSs framework to
dynamically suspend the handler action when there was no
location information.

e Let the user decide when specific information should not be
recorded. To do this, we had to introduce a small modification
to the handlers dispatching mechanism: so far, we were able
to decide the order in which the different handlers of an envi-
ronment where processed, but we have not been able to stop a
handle for processing an event. Therefore, we decided to take
into account the value returned by the handler when processing
a context event; if it is false, we stop the process event. Thus, by
putting a FilteringHandler as the first handler, we can avoid “pri-
vate” actions to be recorded. To express the filters we used the
already built support for query-by-example.

It is worth noticing that incorporating these two new require-
ments was straightforward and was managed as part of the variant
features. The first one required adding a new handler, which is the

7 For the prototype application this was done by serializing the objects to disk
using BOSS, a built-in mechanism in VisualWorks. A deployed application would
require another kind of persistence mechanism.

932

UserAction

- timestamp

- initialize
+ timestamp
+ matches: aUserAction

Jay

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

I

CallAction DocumentAction
- telephone - filename
- - program
+ matches: aUserAction -
+ matches: aUserAction

DigitalMessageAction
- from
-to
- client
- device

+ matches: aUserAction

~

MailAction

MessengerAction

- subject

- message

+ matches: aUserAction

+ matches: aUserAction

~

~

SendMail

ReceiveMail

SendMessage ReceiveMessage

Fig. 14. A subset of the user actions hierarchy.

AdaptationEnvironment

-handlers ContextEventHandler

>

+ addEventHandler: anEventHandler

+ addEventHandler: anEventHandler after: otherHandler
+ addEventHandler: anEventHandler before: otherHandler
+ register: anAwareObject

+ unregister: anAwareObject

+ canHandle: aContextEvent

+ handle: aContextEvent
from:ContextFeature
on: anAwareObject
environment: anEnvironment

1 *

MemoryAidEnvironment

+ actionsMatching: aPatternObject

+ allActions

- defaultPath

- readActionsFrom: aBOSSFilename

1 -actionsRepository

<<PersistenceManager>>
BinaryObjectStorage

+ contents
+ next
+ atEnd

[

PersistenceHandler

+ handle: aContextEvent
from:ContextFeature
on: anAwareQObject
environment: anEnvironment

Fig. 15. First step to create a memory-aid application.

standard way of managing the fourth variant feature (i.e. the do-
main-specific adaptation). The second modification was a bit more
difficult, since it required changing the way in which handlers are
processed in the main architecture. In the modified version the re-
turn value of the handlers are checked for a Boolean result, which
decides if the rest of the handlers will be processed. However, once
the change was implemented, the new handler could be added as
part of the standard variation point resolution. It is also interesting
to note that this architecture refactoring did not impact in the LBSs
framework implementation. Fig. 16 shows a class diagram of the
final model to include the proposed extensions.

7.3. Discussion

In this section we have presented two concrete scenarios where
our architecture and the characterization of variant features were
tested. Even though the applications presented in the paper have
been conceived in controlled environments, our variability charac-
terization and architecture proved to be flexible enough to suit the
applications’ requirements. For a more elaborated case-study the
interested reader can consult (Challiol et al., 2008), where new
requirements are incrementally added to a context-aware guided
tour.

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

AdaptationEnvironment

+ addEventHandler: anEventHandler >

+ addEventHandler: anEventHandler after: otherHandler 1

+ addEventHandler: anEventHandler before: otherHandler

+ register: anAwareObject ’ -hahdlers
+ unregister: anAwareObject

MemoryAidEnvironment

- actionsRepository

+ actionsMatching: aPatternObject

+ allActions

- defaultPath

- readActionsFrom: aBOSSFilename

ContextEventHandler

+ canHandle: aContextEvent

+ featureAdded: aFeatureEvent

+ featureRemoved: aFeatureEvent

+ handle: aContextEvent
from:ContextFeature
on: anAwareObject
environment: anEnvironment

AN

PersistenceHandler

LocationHandler

+ handle: aContextEvent
from:ContextFeature
on: anAwareObject
environment: anEnvironment

+ featureAdded: aFeatureEvent

+ featureRemoved: aFeatureEvent

+ handle: aContextEvent
from:ContextFeature
on: anAwareObject
environment: anEnvironment

FilteringHandler

+ handle: aContextEvent

from:ContextFeature
on: anAwareObject
environment: anEnvironment

933

]

LocationWrapper

- location

+ matches: aUserAction

Filter
ActionWrapper -target UserAction &
> > - timestamp -templateObject
: 1 1 + shouldAccept: aUserAction
+ timestamp - initialize
+ matches: aUserAction + timestamp
Z%, + matches: aUserAction

Fig. 16. The extended memory-aid class model.

To test our proposal, based on the identified variant features
and a concrete architecture, we chose two different scenarios with
distinctive characteristics. As a first example we showed how to
build a framework for LBSs with our approach. Frameworks are a
concrete representation of the knowledge in a certain domain, gen-
erally given by the developer(s) experience; their design captures
and documents that experience and allows other developers to cre-
ate applications in a given domain faster and more secure than if
they were building them from scratch. To do so frameworks also
have their counterpart of the product-line variation points, which
are the hotspots and hooks. The task of building a framework
was a challenge to see if the variant features and variation points
proposed were flexible enough to accommodate the requirements
of a framework for later deriving LBSs. In the process of doing so
we realized that, since the framework stood in the middle of the
process of the generic architecture and the concrete application,
there should be a decrease in the granularity of the variation points
identified in the architecture and the hotspots and hooks defined in
the framework. In other words, if the framework could not solve a
particular variation point, the hooks and hotspots could not be
more general or allow for more flexibility than the original varia-
tion point. These ideas were later confirmed when we analyzed
each variant feature and its associated variation points. In particu-
lar, the domain-specific adaptation was a clear example of a vari-
ant feature being partially solved by the framework, but where
some issues were left open to complete according to the concrete
application.

The memory-aid example was different from the previous one
in the sense that was a concrete application with a defined func-

tionality. In the finished application the only variant feature left
open was the sensing support, since we use a simulated set of sen-
sors that just fed the required types of actions. If we were willing to
use external applications as software sensors this variant feature
should be analyzed again and the proper sensors added to handle
new information feeds.

We will now review the four variant features presented in Sec-
tion 3 and show how they were solved:

« Dynamic context model. In our approach having a defined con-
text model and simple design guidelines is a must. We have
shown that both examples fit our aware object/context feature
metaphor in a natural way. As we outlined in the requirements,
the context model variants were closed in the design phase, but
the context shape could be changed at run-time. Thanks to this
approach we can build flexible context models in an object basis,
updating them in run-time if required (e.g. adding and removing
the location feature in the memory-aid application).

e Legacy bridge. The examples shown in this section were not
extensions of existing applications and did not require an under-
lying application model. Although our aware model concept and
its related functionality have been tested and simple prototypes
were built, we still have to extend an existing legacy application
to show its real power.

e Sensor support. This single variant feature was converted in
three main variation points by identifying and encapsulating
the different steps involved in the acquisition and transforma-
tion of external data into context information. By doing so we
can provide a flexible architecture and highly reusable compo-

934 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

nents. In our examples, using simulated sensors instead of “real”
ones was straightforward; however, we are aware that using
physical sensors (e.g. a Smartphone’s built in GPS) will raise
new issues.

 Domain-specific adaptation. As we emphasize through the
paper, we consider that the context model and the actions taken
based on the context information should be engineered sepa-
rately. The domain-specific model is conceived as a layer on
top of the context model and is treated as a first-class object,
where its specific behaviour is defined. As a result, domain-spe-
cific adaptations can be engineered independently from the
application domain, easing the design and maintenance of the
entire system. This issue has been extremely helpful to under-
stand and design new scenarios and to isolate them from other
requirements. A clear example of this is the Friend Finder appli-
cation, built with the LBSs framework; by isolating it from any
application model it can be easily reused to (for example) build
an application to locate doctors in case of an emergency in a
hospital.

As stated in Section 1, this article addresses three major issues,
which we review in the context of the two examples presented
earlier:

o Identifying the most relevant variant features and associated
variations points for different mobile context-aware
domains. In the examples we have shown four different applica-
tions in the LBSs domain and one concrete memory-aid applica-
tion. Our proposal of variant features and variation points was
successfully used to solve all the examples.

o Define a set of micro-architectures that allows us to instanti-
ate different products by implementing its unique features.
The examples presented earlier were solved by tackling one
problem at a time in a given domain. By using our small-grained
building blocks (aware objects, context features, adaptation
environments, etc.) we could concentrate on the context model,
sensing support and adaptation logic in separate stages, which
are the distinctive parts of each application.

e Show how these constructs are integrated in a sound archi-
tecture. Both the LBSs framework and the memory-aid applica-
tion were conceived by implementing the concerns related to
their particular domain (e.g. the UserAction hierarchy in the
memory-aid application) and connecting those classes to the
proposed architecture. This connection was done by solving
the proposed variation points with our building blocks; in some
cases the connection was performed by subclassing (e.g. when
creating new adaptation environments) while in other cases
by composing existing components (e.g. the lookup
transformation).

As we stated in Section 3, we consider that variability is man-
aged by achieving a balance between flexible software and con-
crete needs and we think that our architecture achieves this
balance. Of course this does not mean that adding a new require-
ment (e.g. a new sensing device) does not pose any challenges;
accommodating new requirements or changing existing ones will
have an impact on the system. The important issue in this situation
is that the effort made to accomplish the change should be concen-
trated in the new requirement (e.g. learning the new sensor’s API)
and not in “gluing” the new requirement with the existing system
(e.g. changing the context model to adapt to the new sensor). The
efforts in our variability characterization and architecture were
oriented in that direction: isolating the main variant features so
that changes will not be spread across the entire system. This helps
designers and developers by allowing them to focus on one thing at
a time.

We consider that it is not casual that those variant features rep-
resent the main concerns that are usually mixed in any mobile con-
text-aware application (context model, sensing and adaptation
behaviour). To avoid this mixing our architecture relies on two ba-
sic principles: separating the concerns in different packages (so
that they can be engineered individually), and using a notification
mechanism to connect these packages (so that the models of each
package are loosely-coupled). The LBSs framework is a good exam-
ple of this case, where the required components are designed with
very little coupling:

e The context model was designed independently of the services
and the sensing devices. The only requirement for the context
model is to define a location context feature.

e The location context feature is not aware of how it is sensed; this
allows us to change the simulated location events with real GPS
records without changing either the context model or the ser-
vice environment. The sensing stage will of course need to be
adapted for using the real GPS signal (for example, by adding a
new dispatcher to handle DOP), but the change is confined to
the sensing package and not spread throughout the system.

e The only requirement for an object to be registered in a LBSs
environment is to have a location feature. Notice that this object
can be an aware object specially conceived for a Friend Finder, or
an aware model that adds context information to an object of a
legacy application. From the point of view of a service, there is
no difference between these two objects.

e Moreover, the LBS environment is not affected if the context
model of an object registered in it has other context features,
or if it is constantly changing its context shape. Environments
are only dependent of those context features they explicitly
ask for.

Thus, adding a new application that provides LBSs will almost
have the complexity of the service itself (which can be a simple
location-based messenger or a complex resource-tracking system)
since the other parts of the system (like the context model) have
already been worked out.

On the downside, our approach was conceived for building con-
text-aware applications that change their behaviour according to
the context. This means that, while it can be used for applications
focused on context-dependent data retrieval, it may result in an
over-kill. For this kind of applications, approaches based on con-
text-dependent data modelling or extended relation models
(Grossniklaus, 2007; Roussos et al., 2005) may be better suited.
Also there is no current facility for structured reasoning in our con-
text model. As we will mention in the next section, a pending issue
in our architecture is to support context ontologies.

8. Concluding remarks and further work

In this paper we have presented the main variant features of
mobile context-aware applications together with an architecture
and a concrete implementation of those components that are com-
mon to most context-aware applications. In our characterization
we have made a clear distinction between application and adapta-
tions domains. We have shown that, since different adaptation do-
mains can be applied to the same application domain (and vice
versa), a general framework that encompasses any application do-
main, and any adaptation domain is very difficult to build. Instead
of following this approach, we decided to isolate the main concerns
in every context-aware application (context modelling, sensing
and adaptation) and discovered the set of small-grained, micro-
architectures that can be used as standard building blocks. The
practical result of this research is an architecture, that allows

A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936 935

developers to concentrate on specific concerns (e.g. context model-
ling) whose evolution have a low (or null) impact on others since
they are loosely-coupled. Even though we used the variability con-
cepts to characterize our architecture, we must remark that we
have not yet achieved the maturity level of a configurable product
family (Deelstra et al., 2005); we actually consider our architecture
to have reached the platform level. In order to reach the next level
(i.e. a software product line), we would need a larger set of frame-
works for specific adaptation domains, effectively sharing adapta-
tion functionality across applications.

Even tough we consider that the abstractions presented in this
paper are powerful, we are aware of the fact that environmental
and toolkit support is a must. For this reason, a key research issue
we are pursuing is to develop a platform to support the construc-
tion of context-aware software. This platform should help the
developer to rapidly prototype applications, by manipulating pre-
defined context features, sensing concerns and adaptation environ-
ments, organized as reusable catalogues. We are also working on
advanced and flexible simulator tools to test our applications.

At the sensing level, we are looking forward to incorporating
ontologies to simplify automatic sensor discovery. In this scenario,
a context feature would export the kind of information it needs,
while each sensing concern would provide a high level specifica-
tion of the information it provides. Then, a discovery service would
be in charge of matching providers and consumers, connecting
them automatically when a change in the sensing hardware is de-
tected (e.g. when entering into a new network).

We are currently working on improving the context modelling
features; particularly, we are developing an extended version of
the context model package that supports shared features between
aware objects and “transitive relationships” (e.g. if the user is in
the car, and the car has a GPS receiver to sense its location, then
the user’s location feature is the same as the car’s location). We
are also tackling the problem of a context feature being private
to a specific adaptation environment; in this way we could specify
when a context feature can be shared between domains, and when
it is only accessible inside a specific adaptation domain.

Finally, we are studying how to deploy a core application as a
standalone executable that communicates with the user by means
of a web browser. In this case, our infrastructure would run its own
dedicated web server, plus a (transparent) persistence engine, let-
ting the developer focus only on the context-dependent behaviour.
As a result, we would get both the power of directly accessing local
resources (e.g. the GPS module of a Smartphone), and presenting
the application in natural and usable way by using a web browser.

References

Abowd, G.D., Atkeson, C.G., Hong,]., Long, S., Kooper, R., Pinkerton, M., 1997.
Cyberguide: a mobile context-aware tour guide. Wireless Networks 3 (5), 421-
433. October.

Abowd, G.D., 1999. Software engineering issues for ubiquitous computing. In:
Proceedings of the 21st International Conference on Software Engineering, pp.
75-84.

Apel, S., B6hm, K., 2005. Towards the development of ubiquitous middleware
product lines. In: Proceedings of the ASE Workshop on Software Engineering
and Middleware (SEM). LNCS, vol. 3437, Springer.

Bachmann, F., Bass, L., 2001. Managing variability in software architectures. In
Proceedings of the 2001 Symposium on Software Reusability: Putting Software
Reuse in Context (Toronto, Ontario, Canada). SSR '01. ACM, New York, NY, pp.
126-132.

Bricon-Souf, N., Newman, C.R., 2007. Context awareness in health care: a review.
International Journal of Medical Informatics 76 (1), 2-12.

Challiol, C., Fortier, A., Gordillo S.E, Rossi, G., 2008. Architectural and
implementation issues for a context-aware hypermedia platform. Journal of
Mobile Multimedia, Rinton Press, pp. 118-138, ISSN 1550-4646.

Cheverst, K., Mitchell, K., Davies, N., 2002. The role of adaptive hypermedia in a
context-aware tourist GUIDE. Communications of the ACM 45 (5), 47-51.
Coplien, J., Hoffman, D., Weiss, D., 1998. Commonality and variability in software

engineering. In IEEE Software 15(6), 37-45.

Davies, N., Cheverst, K., Mitchell, K., Efrat, A., 2001. Using and determining location
in a context-sensitive tour guide. Computer 34 (8), 35-41.

Deelstra, S., Sinnema, M., Bosch, J., 2005. Product derivation in software product
families: a case study. Journal of Systems and Software 74 (2), 173-194.

Dey, AK. 2000. Providing architectural support for building context-aware
applications. Ph.D. Thesis, Georgia Institute of Technology.

EC-ISTAG, 2001, Scenarios for Ambient Intelligence in 2010, Final Report.

Fayad, M.E., Schmidt, D.C., Johnson, R.E., 1999. Building Application Frameworks:
Object-Oriented Foundations of Framework Design. Wiley, NY.

Feldmann, S., 2003. An indoor Bluetooth-based positioning system: concept,
implementation and experimental evaluation. In: Proceedings of the
International Conference on Wireless Networks, pp. 223-228.

Fernandes, P., Werner, C., Gresta, L., Murta, P., 2008. Feature modeling for context-
aware software product lines. In: Proceeding of SEKE 2008, pp. 758-763.

Gamma, E., Helm, R, Johnson, R., Vlissides, J., 1995. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley.

Google Mobile Maps. <http://www.google.com/mobile/default/maps.html>.

Grossniklaus, M., 2007. An object-oriented version model for context-aware data
management. Ph.D. Thesis, Swiss Federal Institute of Technology.

Guttman, A., 1984. R-trees: a dynamic index structure for spatial searching. In:
Proceedings of the ACM, 1984, ACM SIGMOD International Conference on
Management of Data, pp. 47-57.

Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P., 2002. The anatomy of a
context-aware application. Wireless Networks 8 (2-3), 187-197.

Hightower,]., Borriello, G., 2001. Location systems for ubiquitous computing.
Computer 34, 8, 57-66.

Hirschfeld, R., Costanza, P., Nierstrasz, O., 2008. Context-oriented programming.
Journal of Object Technology (JOT) 7 (3), 125-151.

Hodes, T.D., Katz, RH., 1999. Compassable ad hoc location-based services for
heterogeneous mobile clients. Wireless Networks 5 (5), 411-427.

Krasner, G.E., Pope, S.T., 1998. A cookbook for using the model-view-controller user
interface paradigm in smalltalk-80. Journal of Object-Oriented Programming 1
(3), 26-49. August/September.

Lamming, M., Flynn, M., 1994. Forget-me-not: intimate computing in support of
human memory. In: Proceedings of Symposium on Next Generation Human
Interfaces.

Langley, R.B., 1999. Dilution of precision. GPS World 10 (5), 52-59.

Leonhardt, U., 1998. Supporting location-awareness in open distributed systems.
Ph.D. Thesis, Dept. of Computing, Imperial College.

Marmasse, N., 1999. comMotion: a context-aware communication system. In: CHI
‘99 Extended Abstracts on Human Factors in Computing Systems CHI‘99. ACM,
New York, NY, pp 320-321.

Mattsson, M., Bosch, J., 1997. Framework composition: problems, causes and
solutions. In: Proceedings of the Tools-23: Technology of Object-Oriented
Languages and Systems.

Modahl, M., Agarwalla, B., Abowd, G., Ramachandran, U., Saponas T.S., 2004. Toward
a standard ubiquitous computing framework. In: Proceedings of the Second
Workshop on Middleware for Pervasive and Ad-Hoc Computing, pp. 135-139.

Myllymadki, T., Koskimies, K., Mikkonen, T., 2002. On the structure of a software
product-line for mobile software. In: Software Infrastructures for Component-
Based Applications on Consumer Devices, pp. 85-91.

Pascoe,]., 1997. The stick-e note architecture: extending the interface beyond the
user. In: Proceedings of the Second International Conference on Intelligent User
Interfaces, pp. 261-264.

Patel, S.N., Truong, K.N., Abowd, G.D., 2006. PowerLine positioning: a practical sub-
room-level indoor location system for domestic use. In: Proceedings of Ubicomp
2006, pp. 441-458.

Pederson, T., Ardito, C., Bottoni, P., Costabile, M.F., 2008. A general-purpose context
modeling architecture for adaptive mobile services. In Song, L.-Y. et al. (Eds.), ER
Workshops 2008. LNCS, vol. 5232, Springer, pp. 208-217.

Priyantha, N.B., Chakraborty, A., Balakrishnan, H., 2000. The cricket location-support
system. In: Proceedings of the Sixth Annual international Conference on Mobile
Computing and Networking, pp. 32-43.

Quinlan, JR., 1986. Induction of decision trees. Machine Learning 1 (1), 81-106.

Rao, B., Minakakis, L, 2003. Evolution of mobile location-based services.
Communications of the ACM 46 (12), 61-65.

Roussos, Y., Stavrakas, Y., Pavlaki, V., 2005. Towards a context-aware relational
model. In: International Workshop on Context Representation and Reasoning,
Paris.

Salifu, M., Nuseibeh, B., Rapanotti, L., 2006. Towards context-aware product-family
architectures. In: Proceedings of the International Workshop on Software
Product Management, pp 38-43.

Schmidt, A., Beigl, M., Hans, W.H., 1999. There is more to context than location.
Computers and Graphics 23 (6), 893-901.

Schilit, B.N., 1995. A context-aware system architecture for mobile distributed
computing. Ph.D. Thesis, Columbia University.

Schilit, B.N., Hilbert, D.M., Trevor, J., 2002. Context-aware communication. IEEE
Wireless Communications 9 (5), 46-54.

Sousa, J.P., Garlan, D., 2002. Aura: an architectural framework for user mobility in
ubiquitous computing environments. In: Proceedings of the IFIP 17th World
Computer Congress — Tc2 Stream/Third IEEE/IFIP Conference on Software
Architecture: System Design, Development and Maintenance, pp. 29-43.

Strang, T., Popien, C.L., 2004. A context modeling survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management, UbiComp 2004 - The Sixth
International Conference on Ubiquitous Computing.

http://www.google.com/mobile/default/maps.html

936 A. Fortier et al./The Journal of Systems and Software 83 (2010) 915-936

Svahnberg, M., van Gurp, J., Bosch, J., 2005. A taxonomy of variability realization
techniques: research articles. Software Practice Experience 35 (8), 705-754.

van Gurp, J., Bosch, J., Svahnberg, M., 2001. On the notion of variability in software
product lines. In: Proceedings of the Working IEEE/IFIP Conference on Software
Architecture.

Weiser, M., 1999. The computer for the 21st century. SSIGMOBILE Mobile Computer
Communication Review 3 (3), 3-11.

Woolf, B.,, 1994. Understanding and using value models. <http://c2.com/ppr/
vmodels.html>.

Windows Mobile Intermediate Driver, 2006. <http://msdn.microsoft.com/en-us/
library/ms850332.aspx>.

Zloof, M., 1977. Query by example. IBM Systems Journal 16 (4), 324-343.

Andrés Fortier is a PhD student at Facultad de Informatica, Universidad Nacional de
La Plata (UNLP), Argentina where he also got his degree. He holds a CONICET grant
for his PhD and is also teaching assistant at the UNLP. His research interests include
Context-Aware Application Development and Object Oriented Languages.

Gustavo Rossi is Full Professor at Facultad de Informatica, Universidad Nacional de
La Plata and researcher of CONICET, Argentina. He holds a PhD from PUC-Rio, Brazil.
His current research interests include Agile approaches in Web Engineering and
Context-Aware Software Development.

Silvia Gordillo is Full Professor at Facultad de Informatica, Universidad Nacional de
La Plata and researcher of CICBA, Argentina. She holds a PhD from Université Claude
Bernard-Lyon I, France. Her current research interests include Geographic Infor-
mation Systems and Mobile Computing.

Cecilia Challiol is a PhD student at Facultad de Informatica, Universidad Nacional
de La Plata (UNLP), Argentina. She got her degree at the same University. She is a
teaching assistant at the UNLP. Her research interests are Physical Hypermedia and
Mobile Application Design.

http://c2.com/ppr/vmodels.html
http://c2.com/ppr/vmodels.html
http://msdn.microsoft.com/en-us/library/ms850332.aspx
http://msdn.microsoft.com/en-us/library/ms850332.aspx

	Dealing with variability in context-aware mobile software
	Introduction
	Related work
	Variability and evolution in mobile, context-aware applications
	Identifying variability in context-aware applications
	Dynamic context models
	Legacy bridge
	Sensor support
	Domain-specific adaptation

	Our architectural approach: a coarse-grained view
	Micro-architectural abstractions
	Building dynamic context models
	Towards a context feature library
	Legacy bridge
	Sensor support
	Domain-specific adaptation

	Experience and discussion
	A framework for location-based services
	A memory-aid application
	Discussion

	Concluding remarks and further work
	References

