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Abstract—Climate simulation and weather forecasting codes
are among the most complex examples of scientific software.
Moreover, many of them are written in Fortran, making them
some of the largest and most complex Fortran codes ever
developed. For companies and researchers creating Fortran de-
velopment tools—IDEs, static analyzers, refactoring tools, etc.—
it is helpful to study these codes to understand the unique
challenges they pose. In this paper, we analyze 16 well-known
global climate models and collect several syntactic metrics,
including lines of code, McCabe cyclomatic complexity, presence
of preprocessor directives, and numbers of obsolescent Fortran
language constructs. Based on these results, we provide some
guidelines for people wishing to develop software development
tools for Fortran. Notably, such tools must scale to million-line
code bases, they must handle constructs that the ISO Fortran
standard has deemed obsolescent, and they must work fluently
in the presence of C preprocessor directives.

I. INTRODUCTION

Fortran is one of the most widely used programming
languages for developing scientific software [1]–[5]. Fortran
programs consume a significant fraction of the hours on the
world’s largest supercomputers, and many of the largest, most
complex scientific models—including earth system models key
to understanding climate change—are written in Fortran.

While Fortran has evolved into a niche language for
scientific computing, it was once used more generally; in fact,
it is one of the oldest high-level languages. The FORTRAN
project began at IBM in 1954, with the first language reference
book published in 1957 [6]. It became an American National
Standard in 1966 [7]; this language was known as FOR-
TRAN 66. The standard was subsequently revised, creating
FORTRAN 77 [8]. This was followed by Fortran 90 [9] and
Fortran 95 [10]. Object-oriented features were introduced in
Fortran 2003 [11]. Fortran 2008, was finalized in 2010 [12].

Over time, Fortran evolved and adapted to support sev-
eral programming paradigms: structured programming, object-
oriented programming, and parallel programming. While the
standards committee deleted some features from the language
standard, compatibility still remained: “Unlike Fortran 90,
Fortran 95 was not a superset; it deleted a small number of
so-called obsolescent features. However, the incompatibility is
more theoretical than real as all existing Fortran 95 compilers
include the deleted features as extensions” [13].

For practicing programmers, “Fortran” is not the language
the ISO standard prescribes but rather the language their
compiler accepts. This means that the Fortran language, in
practice, consists of more than just the the features in the latest
revision of the ISO standard: it is the union of that standard
and all previous revisions, and any vendor-specific language
extensions supported by their particular compiler.

Furthermore, many Fortran programs make extensive use
of the C preprocessor (CPP), which provides the ability to
customize Fortran code according to the needs of a particular
user or a particular system. For example, CPPs #ifdef

directive can be used to include a GPU-specific computational
kernel on target systems that support it while omitting it on
systems that do not. Thus, CPP can allow a level of portability
and configurability that is essential for large codes.

Among Fortran programmers, climate simulation and
weather forecasting codes are notorious for their size and com-
plexity. One of the largest climate simulation codes, CESM,
is well over 1 million lines of code, and even “small” climate
simulations consists of tens of thousands of lines of code.

Maintaining large, complex codes requires software engi-
neering tools, but advanced software development tools for
Fortran programmers are sparse. Most Fortran programmers
work with little more than a text editor, compiler, debugger,
and perhaps some performance analysis tools. Meanwhile,
software engineers working in languages like Java and C# have
access to IDEs, static analysis tools, refactoring tools, testing
tools, code understanding tools, and the like. Such tools can
be made available to Fortran programmers, but to be useful on
climate models (and similarly complex codes), tool developers
must be aware of the challenges posed by such codes.

In this paper, we analyze 16 well-known global climate
models and report several syntactic metrics, including lines
of code, McCabe cyclomatic complexity, presence of prepro-
cessor directives, and numbers of obsolete Fortran language
constructs. Based on these results, we provide some guidelines
for people wishing to develop software development tools that
analyze Fortran source code. In particular, these tools must
handle million-line codes, they must handle constructs the ISO
standard deems obsolescent, and they must be able to operate
correctly on codes making extensive use of the C preprocessor.
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Table I. CLIMATE MODELS ANALYZED

Modeling Group Model(s) Institution

BCC BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration

CSIRO-QCCCE CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Org. and Queensland Climate Change Centre of Excellence

INM INM-CM4 Institute for Numerical Mathematics

IPSL IPSL Institut Pierre-Simon Laplace

MOHC HadGEM2, HadGEM3 Met Office Hadley Centre

MPI-M MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M)

NASA GISS ModelE, GISS NASA Goddard Institute for Space Studies

NASA GMAO GEOS-5 NASA Global Modeling and Assimilation Office

NCAR CCSM3, CCSM4 National Center for Atmospheric Research

NOAA GFDL GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory

NSF-DOE-NCAR CESM1 National Science Foundation, Department of Energy, National Center for Atmospheric Research

CMCC-CESM CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici

COLA and NCEP CFSv2-2011 Center for Ocean-Land-Atmosphere Studies and National Centers for Environmental Prediction

II. MODELS, METRICS, AND METHODOLOGY

A. Models

In 2008, driven by the challenges of climate change, the
World Climate Research Programme’s Working Group on
Coupled Modelling promoted a new set of coordinated climate
model experiments. These experiments involved 20 climate
modeling groups from around the world and comprise the
fifth phase of the Coupled Model Intercomparison Project
(CMIP5). According to Taylor et al. [14], “CMIP5 will . . .

provide a multimodel context for 1) assessing the mechanisms
responsible for model differences in poorly understood feed-
backs associated with the carbon cycle and with clouds; 2)
examining climate ‘predictability’ and exploring the predictive
capabilities of forecast systems on decadal time scales; and,
more generally, 3) determining why similarly forced models
produce a range of responses.” All of the involved models
are compute-intensive, since a climate simulation for a period
of one hundred years can be very time-consuming even on
supercomputers with thousands of processors [15].

We originally aimed to analyze all of the climate models
involved in the CMIP5 experiments. In some cases, model
source code was publicly available; in cases where it was not,
we requested the source code from the corresponding modeling
group. Ultimately, we were able to obtain source code for the
16 models listed in Table I.

B. Metrics

For each model, we collected the following measurements.
(The justification for these measurements is included with
more detailed explanations in Section III.)

• Code size and complexity measurements:

◦ Source lines of code (LOC): total lines, logical
executable LOC (LELOC), and non-blank non-
comment LOC (NbNcLOC).

◦ Number of subprograms.

◦ Lines of code per subprogram.

◦ Cyclomatic complexity [16] of each subpro-
gram, as detailed in [17].

• Use of old vs. new language features:

◦ Number of occurrences of obsolescent and
deleted language features.

◦ Frequency of old- vs. new-style DO loops.

◦ Percentage of subprogram arguments with ex-
plicit intent specifications.

• Measurements related to the use of preprocessors:

◦ Total number of preprocessor directives.

◦ Number of C preprocessor #include directives.

◦ Number of C preprocessor conditional compi-
lation directives.

◦ Number of Fortran INCLUDE lines.

C. Methodology

To collect the aforementioned measurements, we used the
parser from Photran, an Eclipse plug-in for Fortran develop-
ment [18]. For each file, the parser produced an abstract syntax
tree, a data structure representing the syntactic structure of the
source code. We traversed this tree to identify constructs of
interest (subprograms, assigned GO TO statements, etc.), and
output data to a CSV (comma-separated values) file. We then
imported the CSV file into a SQL database for data analysis.

III. RESULTS

A. Overall Size

As a first step, we quantified the size of each model by
counting lines of source code. Table II shows the results, where
the columns are as follows:

• KLOC corresponds to total source lines of code, in
thousands.

• KLELOC denotes logical executable lines of code, in
thousands.

• KNbNcLOC indicates non-blank, non-comment lines,
in thousands.

Table II. LINES OF SOURCE CODE

Model KLOC KLELOC KNbNcLOC

GISS 40 15 20

CSIRO-Mk3.6.0 86 35 53

INM-CM4 91 47 74

GFDL-CM2.1 288 94 146

CCSM3 361 103 186

GEOS-5 367 145 212

IPSL 375 116 181

ModelE 380 166 279

CMCC-CESM 380 150 218

BCC-CSM1.1 451 152 236

MPI-ESM-LR 478 185 283

CFSv2-2011 478 209 297

HadGEM2 634 188 344

HadGEM3 737 241 439

CCSM4 822 262 416

CESM1 1371 482 803

total 7340 2589 4186
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In total, we analyzed about 7.3 million lines of code, of
which 4.2 million lines (57%) were non-blank/non-comment
lines; of those, 2.6 million were logical executable lines.

We also counted the number of subprograms (functions and
subroutines) in each model. Table III shows the results, ordered
by the number of subprograms. The “In Mod.” columns show
how many functions/subroutines are defined in modules.

Table III. NUMBER OF SUBPROGRAMS

Model Subpr. Func. In Mod. Subr. In Mod.

GISS 143 18 0 125 0

CSIRO-Mk3.6.0 299 3 0 296 0

INM-CM4 739 42 0 697 45

GFDL-CM2.1 2012 331 329 1681 1670

HadGEM2 2032 89 14 1943 319

HadGEM3 2566 222 184 2344 1219

CCSM3 2740 327 320 2414 1950

CMCC-CESM 2822 524 451 2298 1360

GEOS-5 3171 721 487 2450 1645

IPSL 3361 441 413 2920 2222

MPI-ESM-LR 3410 453 393 2957 2198

CFSv2-2011 3774 1113 818 2661 1248

BCC-CSM1.1 3784 802 781 2982 2090

ModelE 3944 619 474 3325 1697

CCSM4 6424 1150 1117 5274 4649

CESM1 9832 1852 1809 7980 7516

total 51053 8707 7590 42534 29828

By all of the above measures, GISS is the smallest code,
and CESM1 is the largest. HadGEM2 and HadGEM3 are in
both large, in terms of lines of code (Table II), but they contain
relatively few subprograms (Table III); therefore, it is possible
to conclude that they have larger subprograms than the other
models, on average.

Some models have extensively taken advantage of modules,
such as GFDL-CM2.1, CCSM4, and CESM1, while others
have only a small fraction of subprograms in modules or do
not use modules at all, such as GISS, CSIRO-Mk3.6.0, INM-
CM4, and HadGEM2.

B. Subprogram Size and Complexity

Software development tools perform many static analyses
intraprocedurally; that is, they analyze each subprogram sep-
arately. The complexity of such analyses is a function of the
size of the subprogram. Thus, subprogram size is a concern,
particularly for analyses with superlinear complexity.

Table IV shows the models ordered according to the size of
the largest subroutine, along with their average subroutine size.
The average subroutine size is in the range of 75–275 lines,
depending on the model, although subroutines with over 1,000
lines of code exist in every model. The largest subroutine (in
CESM1) is almost 12,000 lines of code, although it is actually
quite simple (most of the lines are hard-coded constant array
literals, used to populate arrays of coefficients).

Also of interest is the complexity of the control flow within
each subprogram. Cyclomatic complexity (CC) measures the
number of independent paths through a subprogram [16].
Although this analysis has its detractors [19], [20], some
researchers claim that higher CC values indicate a higher
probability of finding bugs in a procedure [21]. Some common
thresholds for CC values are [22, p. 147]:

• 1–10: Simple subprogram without much risk

Table IV. LINES OF CODE PER SUBPROGRAM

Model (Subroutine Name) Maximum LOC Avg LOC

GISS (SURFCE) 1333 156

CSIRO-Mk3.6.0 (TRACER) 1667 243

INM-CM4 (SEAICE MODULE SPLIT) 2018 128

CCSM3 (radcswmx) 2406 99

BCC-CSM1.1 (radcswmx) 2448 88

GEOS-5 (diaglist) 2602 81

ModelE (init ijts diag1) 2975 83

CFSv2-2011 (INITPOST GFS) 3267 108

CMCC-CESM (DGESVD) 3409 123

MPI-ESM-LR ( datasub) 3504 123

IPSL (physiq) 3848 75

HadGEM2 (GLUE CONV) 4161 275

CCSM4 (hist initFlds) 4623 99

GFDL-CM2.1 (morrison gettelman microp) 5124 108

HadGEM3 (conv diag) 5602 261

CESM1 (lw kgb03) 11975 115

• 11–20: More complex, moderate risk

• 21–50: Complex, high risk

• 51+: Untestable program (very high risk)

Table V shows the number of subprograms in each model
with cyclomatic complexities in each of these ranges. By
the above characterization, every model has large numbers of
subprograms that would be classified as high risk and many
that would be classified as untestable. Of course, it is debatable
whether the above characterization is fair—do CC values above
50 really indicate “untestable” code?—but nevertheless, it is
helpful to know that complex control flow is common and is
present in every model.

Table V. NUMBER OF SUBPROGRAMS IN EACH CYCLOMATIC

COMPLEXITY RANGE

Model 0–10 11–20 21–50 >51

GISS 62 26 34 21

CSIRO-Mk3.6.0 116 63 65 55

INM-CM4 459 135 93 52

GFDL-CM2.1 1442 249 212 109

HadGEM2 1003 361 383 285

HadGEM3 1318 421 453 274

CCSM3 2053 335 289 63

CMCC-CESM 1806 438 381 197

GEOS-5 2301 427 308 135

IPSL 2573 375 284 129

MPI-ESM-LR 2191 531 454 234

CFSv2-2011 2397 511 603 263

BCC-CSM1.1 2705 527 422 130

ModelE 3026 459 312 147

CCSM4 4682 803 701 238

CESM1 7312 1223 947 350

C. Decremental Language Features

Revisions of the Fortran language standard have, for the
most part, retained backward compatibility with all previous
revisions [23]. Since the Fortran 90 standard, some features of
the language have been marked as obsolescent, and some have
been deleted, but most compilers still accept them anyway.

An appendix of the Fortran standard [12] lists all of the
features that are either obsolescent or deleted; it collectively
calls these “decremental features.” Assigned GO TO state-
ments, the PAUSE statement, and Hollerith constants have
been deleted (among other features). Obsolescent features—
features that have not yet been deleted but will be at some point
in the future—include arithmetic IF statements, computed GO
TO statements, CHARACTER* declarations, and fixed source
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form (where characters in columns 1–6 have special meaning,
and statements are written in columns 7–72).

Table VI shows the number of occurrences of deleted
and obsolescent features in each model’s source code. Every
climate model makes use of at least one of these features.
Two deleted features—PAUSE statements and assigned GO
TO statements—are found in the source code of 6 models.

Table VI. OCCURRENCES OF DECREMENTAL LANGUAGE FEATURES

Arith Asgn. Comp.

Model IF GO TO GO TO ENTRY PAUSE Total

HadGEM3 0 0 0 0 1 1

CCSM3 0 0 1 0 0 1

GFDL-CM2.1 1 0 1 0 0 2

HadGEM2 0 0 0 0 2 2

IPSL 0 0 0 0 2 2

BCC-CSM1.1 0 0 3 0 0 3

CCSM4 1 0 10 8 1 20

CMCC-CESM 4 0 11 5 1 21

MPI-ESM-LR 3 4 9 4 1 21

CSIRO-Mk3.6.0 13 0 0 16 0 29

CESM1 16 6 9 8 1 40

INM-CM4 35 1 4 0 0 40

GEOS-5 37 0 22 13 0 72

GISS 33 0 6 36 0 75

CFSv2-2011 31 0 24 94 0 149

ModelE 23 0 4 139 0 166

D. Adoption of Newer Language Features

The Fortran 2008 standard [12] is large—over 600 pages—
and the size of the language poses a challenge to tool devel-
opers. The size of the language is partly due to the retention
of outdated language features. The set of language features
deleted or deemed obsolescent is actually very conservative;
many other features remain in the language, even though “bet-
ter” alternatives are also present in the language. Therefore,
for tool developers, it is helpful to know: Have climate models
mostly moved to “new-style” Fortran, abandoning older lan-
guage constructs in favor of their recently-added replacements?
If so, it would be possible for tools to process only the newer
subset of the language; this could make such tools cheaper to
build and easier to test.

It is clear from Table VI that some outdated features
appear in every model, but it is not clear if these exist in
isolated modules or if they are representative of an older
coding style throughout the system. It is difficult to give a
single metric that quantifies whether a system uses an “old”
or “new” Fortran coding style. However, looking at some
representative language constructs can provide some insight.
Tables VII and VIII attempt to do this.

Table VII lists the models sorted by the proportion of new-
vs. old-style DO loops. New-style DO loops have a typical
DO/END DO form, whereas in old-style DO loops,

DO 999 I = 1, 10

DO 999 J = 1, 10

WRITE (*,*) I*10+J

999 CONTINUE

each DO statement contains the label of its terminating state-
ment (999 in the example above). As in this example, two DO
loops can share the same terminating statement (although this
has been an obsolescent feature since Fortran 90 [9]).

Table VII. NUMBER OF DO STATEMENTS

Model Count % New % Old Shared

HadGEM3 30240 100 0 0

CCSM3 7613 99 1 2

HadGEM2 23251 98 2 60

GFDL-CM2.1 6367 98 2 6

CESM1 23316 97 3 14

CCSM4 16981 97 3 16

BCC-CSM1.1 11289 95 5 125

GEOS-5 7287 86 14 127

ModelE 13371 82 18 956

IPSL 11505 80 19 206

MPI-ESM-LR 11502 78 21 75

INM-CM4 5269 72 23 278

CFSv2-2011 14556 75 24 312

CMCC-CESM 9614 72 27 69

CSIRO-Mk3.6.0 4583 40 60 1375

GISS 1325 2 98 388

Table VIII. OCCURRENCES OF ARGUMENT INTENT SPECIFICATIONS

Model Arguments In Out InOut Total (%)

GISS 380 0 0 0 0 (0%)

INM-CM4 1748 0 0 0 0 (0%)

CSIRO-Mk3.6.0 2209 19 7 0 26 (1%)

IPSL 8988 1679 677 287 2643 (29%)

HadGEM2 38353 8368 1614 1953 11935 (31%)

CFSv2-2011 22661 8111 1676 860 10647 (47%)

CMCC-CESM 10068 3984 611 654 5249 (52%)

MPI-ESM-LR 18167 7131 1600 1186 9917 (55%)

HadGEM3 9829 4353 718 1045 6116 (62%)

ModelE 14508 6640 1263 1186 9089 (63%)

BCC-CSM1.1 19650 10747 2405 1361 14513 (74%)

GEOS-5 12712 6306 2617 1156 10079 (79%)

CCSM3 11708 6971 1825 845 9641 (82%)

CCSM4 28230 16499 4269 3038 23806 (84%)

CESM1 41744 24663 6653 5200 36516 (87%)

GFDL-CM2.1 11390 7756 1923 1339 11018 (97%)

Argument intents were added in Fortran 90; they specify
whether subprogram arguments are input-only, output-only, or
both (INTENT IN, OUT, and INOUT, respectively). Explicitly-
labeled intents are useful as documentation, but they also allow
additional compile-time checks to be performed. Table VIII
shows the usage of intent specifications in each model.

As a proxy for determining the “age” of each model’s
coding style, Tables VII and VIII are not conclusive. GISS
clearly has an old coding style, lacking argument intent spec-
ifications and using old-style DO loops almost exclusively.
GFDL-CM2.1 is nearly the opposite: 97% of its arguments
have explicit intent specifications, and only 2% of its DO loops
use the old style. The other codes fall somewhere in between.

In sum, most of the models contain a non-negligible
percentage of old-style DO loops, and none of the models have
100% explicit argument intents. For tool builders, this indicates
that while new features are used, legacy Fortran features are
still very much a part of how the language is used in practice.

E. Preprocessing Directives

The C preprocessor, also known as cpp, is the macro
preprocessor for the C language [24], although it is widely
used in Fortran codes as well. Preprocessing is carried out
before the compilation stage by replacing some specially-
identified regions of text in the program’s source code. The
C preprocessor poses a particular challenge for source code
analysis tools because it is a lexical preprocessor, so programs
containing preprocessor directives do not conform to the
grammar of the underlying language (C or Fortran) until after
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Table IX. PREPROCESSING DIRECTIVES PER MODEL

Model Total Conditional Fortran Inc. #include

GISS 0 0 0 0

INM-CM4 18 2 16 0

CSIRO-Mk3.6.0 37 6 31 0

GEOS-5 1795 1446 184 165

CFSv2-2011 1827 1243 65 519

GFDL-CM2.1 2056 1834 138 84

ModelE 3316 3202 75 39

CMCC-CESM 3616 3350 139 127

IPSL 5121 3346 1315 460

MPI-ESM-LR 5550 5223 145 132

CCSM3 5671 4166 207 1298

HadGEM3 6390 4575 927 888

BCC-CSM1.1 8375 6093 474 1808

CCSM4 10283 9466 465 352

HadGEM2 12893 5852 3501 3540

CESM1 13300 12563 430 307

preprocessing is performed. This makes programs containing
cpp directives difficult to parse. Moreover, cpp provides condi-
tional compilation directives, which allow portions of source
code to be included or excluded at compile time based on
the user’s preferences. This makes analysis tasks (e.g., type
checking) difficult. Parsing and analyzing code containing C
preprocessor directives has been an active area of research in
recent years (e.g., [25]–[29].

Table IX shows the number of preprocessing directives
in each climate model, including the number of Fortran IN-
CLUDE lines. (Fortran INCLUDE lines are not C preprocessor
directives but are handled similarly to cpp’s #include directive.)

Obviously, the models with fewer lines of code also con-
tain fewer preprocessing directives (e.g., GISS, INM-CM4,
and CSIRO-Mk3.6.0). For four of the models—INM-CM4,
CSIRO-Mk3.6.0, IPSL, and HadGEM2—at least a quarter
of the total preprocessing directives were Fortran INCLUDE
lines. Conditional directives (#ifdef, #ifndef, #if, #else, #elif,
#endif) constitute the largest fraction of the total number of
preprocessing directives in almost all models. Other prepro-
cessor directives such as #error and #line are not found in
any model. Moreover, we did find unorthodox uses of the C
preprocessor, such as the following.

subroutine1 ( parameter1,parameter2

#include additionalParameters

)

Perhaps the most important conclusion for tool developers
is that C preprocessor directives are present in every model,
and most models use them extensively. Therefore, research on
cpp-aware program analyses will have applications beyond C
and C++: it will be applicable to Fortran programs as well.

IV. DISCUSSION

Based on the data we have presented, we can make several
recommendations for developers building software engineering
tools for Fortran.

The code complexity of climate models makes them suitable
targets for software maintenance tools, such as code under-
standing tools, static analyzers, and refactoring tools. Most of
the climate models were 300–500 KLOC, while the largest
was 1.3 MLOC. Thirteen of the 16 models contained over

2,000 subprograms, and all of the models contained multiple
subprograms with a cyclomatic complexity over 50. At this
scale, no single developer can reasonably be expected to fully
understand every detail of the model’s source code. Sweeping,
system-wide source code modifications are often daunting
and may be prohibitively expensive. Although the adoption
of software maintenance tools depends on the culture and
the individuals involved, the scale and complexity of climate
codes has certainly reached a point where such tools could be
valuable.

Unfortunately, making such tools work effectively on these
climate models can be an extremely challenging task.

Fortran development tools must scale to 10
5
− 10

6 lines
of code. The developers of Photran [18] (including the third
author of the present paper) originally designed its indexer
to handle codes up to about 50,000 lines. Based on their
prior experience working on astrophysics codes, this seemed
like a reasonable upper bound on the size of the codes most
Fortran developers would be working with. Unfortunately,
for developers working on climate models, this is a severe
underestimate. Of the models we studied, the smallest was
close to that size, and most were several times larger.

Fortran development tools must handle both new and old
language constructs. Deprecation and deletion from the ISO
standard have not made outdated language features disappear
in practice. Most of the climate models we studied con-
tained both new- and old-style Fortran code, in nonnegligible
amounts. Several codes contained constructs (like arithmetic
IF statements and computed GO TOs) that predate structured
programming.

Tools that analyze Fortran source code must be able to
handle embedded C preprocessor directives. C preprocessor
directives were present in every model but one. Every model
that made use of the C preprocessor contained conditional
compilation directives; most contained 1,000–6,000 such di-
rectives. File inclusion was also used ubiquitously.

Together, the last two points reiterate the fact that the
Fortran language, in practice, is not the language specified
in the latest ISO standard. Rather, it is a mixture of that and
all previous revisions of the Fortran language, together with
macros, conditional compilation directives, and file inclusions
afforded by the C preprocessor.

Although the data collected in this paper is intended
primarily to benefit tool developers, it also seems to validate
broader results obtained by previous researchers on the devel-
opment of scientific software. Some language features were
deprecated in the Fortran standard more than 20 years ago [9],
but they are still being used. This may reinforce the idea
that programming skills and knowledge are passed on from
scientist to scientist [1], [30]. Also, several researchers have
noted the existence of a gap between the scientific software
community and the software engineering community [1], [31].
It is worth noting that, in the models we studied, the number
of lines of code per subroutine would be quite large by most
software engineers’ standards (see Table IV). This is due partly
due to the verbosity of the Fortran language, but subprograms
were quite complex by other metrics as well (Table V). This
suggests that computing scientists might benefit from some
modularization techniques [1], [3], [32].
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V. RELATED WORK

In 1971, Donald Knuth analyzed a set of Fortran programs
“in an attempt to discover quantitatively what programmers
really do” [33]. He studied a variety of programs written by
different people: a set of 400 programs distributed among
250,000 punched cards. Knuth provided a thorough study of
the FORTRAN 66 constructs used on those 400 programs.
Remarkably, he performed this analysis by hand.

Later research attempted to analyze a set of 255 Fortran
programs by using a tool called FORTRANAL, which collects
data for 31 metrics [34]. The aim of this work was to find
some correlation among different groups of metrics.

The study carried out by Shen et al. [35] focused on
finding Fortran programs’ characteristics that were relevant in
the parallelization process, from a compiler writer’s view point,
in order to contribute to research on data dependence analysis
and program transformation.

A series of articles studying the relationship between
Fortran programs and complexity metrics were published by
Victor R. Basili. His 1981 article [36] used complexity metrics
to evaluate software quality, to estimate software cost, and
to evaluate the stability and quality of a software product
during the development process. A follow-up article [17]
analyzed several metrics’ (lack of) correlation with effort and
development errors, as well as with each other. Software was
analysed using an automated tool called SAP.

Software metrics have also been used to evaluate system
maintainability. One such study is due to Coleman et al. [37];
that work indicates that automated analysis can be used to
“evaluate and compare software.”

Scientific software has been the subject of several studies
[1]–[3], [30]–[32], [38]–[41]. These articles all shed light on
the fact that there is a mismatch between well-known, broadly
accepted software engineering practices and the methods and
practices used in the construction of scientific software.

Two of these articles focus specifically on the engineering
of climate models. Easterbrook and Johns [39] studied cli-
mate scientists at the Met Office Hadley Centre, comparing
and contrasting their practices with those of agile software
development teams and open source software teams. Pipitone
and Easterbrook [41] studied three climate models, finding that
their defect densities were low when compared to open source
software projects of comparable size.

In studies of scientific software development, a major
recurring theme is that scientific software exists to help
scientists achieve scientific goals. The software is not the
product; science is. For those wishing to develop software
engineering tools for scientific programmers, it is important to
view such tools from this perspective. Many software engineers
are willing to adopt new tools, libraries, and languages simply
because they are new or interesting. Scientists are far less
likely to do so, unless they have a specific need that it meets.
Their goal is to produce science, not software. As Easterbrook
and Johns [39] observed, “scientists . . . are skeptical of most
claims for software engineering tools. However, where such
tools meet their needs . . . they are readily adopted.”

VI. CONCLUSIONS

In this article, we studied 16 global climate models in order
to analyze the way the Fortran language is used in large-scale
scientific applications. Our results have implications for those
wishing to develop software development tools for Fortran.
Notably, a market for Fortran software maintenance tools may
exist, due to the size and complexity of these models. However,
making such tools work effectively across a model’s entire
codebase is likely to prove challenging: Such tools must be
able to process 10

5
− 10

6 lines of code, including outdated
features that have been removed from the ISO standard, and
they must be able to handle source files with embedded C
preprocessor directives.
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