
A Simplified Multiplatform Communication

Frameworl< for Mobile Applications

Federico Cristinal, Sebastian Dapotol, Pablo Thomasl, Patricia Pesadol,2

1 Instituto de Investigacion en Informatica LIDI
Universidad Nacional de La Plata

2 Comision de Investigaciones Cientificas de la Provincia de Buenos Aires
La Plata, Argentina

{fcristina, sdapoto, pthomas, ppesado }@Iidi.info.unlp.edu.ar

Abstract- The need for sharing information among mobile

devices exists in many applications, and almost every data

exchange between these devices involve the same requirements: a

means for discovering other mobile devices in a wireless network,

establishing logical connections, communicating application data,

and gathering information related to the physical connection.

This paper presents a multiplatform open-source developer­

oriented framework that acts as a support layer for host

discovery, data communication among devices, and quality of

service monitoring. Its purpose is to simplify the issues related to

networking for mobile application developers. Currently, the

framework is implemented for different platforms, such as

Android, J2SE, and J2ME.

Keywords- mobile device; host discovery; communication;
QoS; networking

I. INTRODUCTION

A currently increasing trend in mobile environments is the
development of applications in which several devices on a
network share real time infonnation. These applications rely on
some sort of connectivity support in order to achieve the proper
interaction among devices. This support can be grouped into
three main categories or services: (1) Host discovery, a means
for searching other reachable devices ready to communicate in
a network, (2) Data communication, a service for handling the
specific exchange of information between devices, and (3)
Quality of service, a monitoring service that provides QoS
related information. Since these services are application­
independent, a framework has been implemented in order to
support specific aids, simplifying the network-related aspects
for developers. The main goal of the proposed framework is to
meet these requirements. The features provided allow several
types of implementations with different network
configurations, such as a typical client/server architecture or a
centralized/decentralized peer-to-peer solution.

Even though there are several development frameworks [I ,
2] none of them propose an open source, multi-platform
solution with the proposed features in this paper. Some of
these frameworks refer to networking features as simply
retrieve wireless connection information, but no additional
functionality is supported (e.g. PhoneGap [3], Titanium [4]).
Other frameworks cover these features, but as a part of a
complete solution for a specific domain like games

978-1-4799-6594-6/14/$31.00 ©2014 IEEE 3

development (e.g. Unity3D [5]). Lastly, some frameworks are
proprietary paid solutions for mobile-apps development (e.g.
Corona [6]).

The reason for choosing Android as the primary
development target for the proposed framework is based on its
widespread use and popularity [7]. However, two additional
benefits should be mentioned. First, it is an open source
software released under the Apache License. This allowed
several non-official versions such as Android for x86, ARM,
and MIPS architectures. Some examples given in the present
paper were tested on these versions running in a Virtual
Machine, without the need for real devices. Second, Android
Java is functionally compatible with J2SE in matters of
network communication. This means that the framework
Application Program Interface (API) can be referenced from
both types of Java projects. Given that one of the purposes of
the framework is to achieve multi-platfonn compatibility, a
J2ME version was developed, allowing interoperability
between the other platfonns. The current implementation of
the project can be found at [8] hence the description in this
paper will be far from explaining the code (or code details).

The remainder of this paper is organized as follows. The
next section describes the proposed framework API.
Afterwards, a general overview of the framework and how
applications interact with it is provided. The following section
presents several applications which make use of the framework
features. Finally, the results and benefits of using the
framework and an outlook on future work are described.

II. API DEFINITION DETAILS

This section will present the main classes and interfaces of
the framework from an application developer point of view.
The highest level of the API is directly focused on application
support features (e.g. initial framework configuration) and the
lowest level is divided into three main parts, as shown in Fig.
I:

• HostDiscovery, for handling the information related to
hosts that are ready to communicate to/from each
device. As its name suggests, HostDiscovery
services/operations include searching for hosts and/or
hosts status.

• NetworkCommunication, for handling the specific
exchange of information between applications.
Basically, NetworkCommunication should include the
necessary send and receive services/operations for
app I ications.

• QoSMonitor, for providing the user and/or programmer
the necessary information on signal quality as well as
performance indexes such as available network
bandwidth.

The initial aim for each part is to achieve a very simple
interface for the developer, simplifying the API usage as well
device programmability. As a general concept, the framework
is designed to support different implementations for each of the
services (Discovery, Communication, and QoS). Through an
Abstract factory pattern [9], the developer can specify which
implementation should be used in each case. The details
explained in this section go beyond any implementation,
covering the issues at a higher level of abstraction.

A. Application Data, Producer, Consumer

Generally, the framework will require a data producer, a
data consumer, and the data itself to be transferred among
hosts. The three will be instances of user-developed classes
which extend/implement a specific class/interface. Based on
Inversion of Control [10, 11], these instances will be passed to
the framework as arguments. Specific methods of the instances
will be called from the framework in order to generate new
data, process incoming data, handle a new host in the network,
etc.

The base class for the application-level data is the abstract
class NetworkApplicationData. This class will be the
superclass for any information to be sentlreceived through the
NetworkCommunication services. Subclasses must augment the
initial data structure as needed.

The producer class is in charge of generating the updated
local information to be sent to the other hosts. This class must
implement the NetworkApplicationDataProducer interface.
This interface only requires one method to be implemented,
which returns an instance of a subclass of
NetworkApplicationData with the actual data. This method will
be called periodically if the periodic Broadcast feature from the
NetworkCommunication service is active. If this feature is not
desired, then there is no real need for a Producer class to be
implemented. However, it is advisable to centralize the creation
of data in a specific class.

The consumer handles every type of incoming information,
mainly related to application data from other hosts as well as
notifications of arrivals and departures of hosts to/from the
network. Every time a new message arrives, the framework
will invoke a specific method so that the application can act
accordingly. A subclass of NetworkApplicationData object is
received as a parameter, containing the actual data. When the
HostDiscovery service identifies some network change related
to hosts, the corresponding method will be called. This allows
applications to behave in a specific way under these events
(e.g. a host joining or leaving the network).

4

Application

Application Support

+ configureStartup(AppSpecific_NetworkPrcxlucer. AppSpecific_NetworkConsumer, ...);

+ doStartup(startHosIDicovery. startCommunicationService. startNetworkBroadcast):

HostDiscovery

+- thisHost
+ otherHosts

+ startDiscovery()
+ stopDisCQveryO
+ removeHosl()

NetworkCommunication

- producer
- consumer

+ startServiceO
+ startBroadcastO
+ sendMessageO
+- sendMessageToAIiHostsO

Fig. 1. API. Main components.

B. Host Discovery

QoSMonitor

+- scanResults
. logCounters

+ calculateldeaIMPS()
+- eslimateReaIMPS()
+ retrieveLoggedMPS()

As mentioned above, this service is responsible for
searching new hosts in the network as well as exchange host
status periodically. The status of a host is simply an
online/offline flag in order to know if the host is ready to
receive information at a certain moment. The discovery service
will make the framework to look/listen for/to new hosts, calling
a specific method each time a host joins or leaves the network.
The service can be stopped at any time, and this implies neither
sending local status nor receiving other hosts status anymore.

The periodicity a host sends its status can be set depending
on the application requirements. Support for deactivating
discovery as well as the periodicity value are necessary features
for the programmer in order to have control on energy and
communication overhead/usage. The current list of hosts which
are part of the network can be accessed so that at any time, the
application would be able to search for specific hosts available
and the total number of hosts with which could exchange
information.

C. Network Communication

Network communication services allow hosts to exchange
application-level data in different ways, depending on the
specific needs of the application being developed.
Client/server, broadcast, and Producer/Consumer
communication models are available for the applications. Once
started, the service waits for incoming connections from other
hosts. An established connection will be used for sending and
receiving the application-level data. When a message is
received, a Consumer will be able to process the incoming
information.

Sending a message simply implies specifying the target
host and the data to be sent (using NetworkApplicationData, as
mentioned above). Additionally, a host might need to send
information to every online host in the network. The service
can be stopped if it is not needed anymore, and this will close
all currently established connections.

Sending data to all hosts periodically is also supported. In
this case, the framework will require the updated local
information in each sending. A Producer will have to generate
this information. This feature is useful in cases when a constant
exchange of data among hosts is needed at regular intervals, for
instance in a network game. The application-level periodic data

broadcast can be stopped at any time. The periodicity a host
sends data can be set depending on the application
requirements.

D. QoS Monitor

A useful set of QoS features were developed so that each
application will be able to decide if it is possible to run under
the current network bandwidth, signal strength, etc. At the
lowest level of abstraction, an application should be able to ask
for the current available bandwidth, so that it will be possible
to model the time required to send a message of n data items.
Also, some of these performance indexes would depend on wifi
signal strength, so it would be useful to provide the application
with the current signal strength as well as some previous values
so that the tendency would be able to be estimated [12, 13, 14].

From a higher level of abstraction, a method such as
calculateMPS is desirable for an estimation of the number of
application-data messages per second would be able to be
exchanged. The key aspect of this feature is to obtain an almost
real value based on the network current status at an application­
level, as opposed to the estimations provided by the Android
API which ignores upper software layers which implies an
overhead in communications.

In order to validate this feature, a testing application was
developed which calculates the maximum amount of messages
per second that a host can exchange in the current network. Fig.
2 shows the results of a series of tests using both alternatives
with a fixed size application-data message, considering
changes in the signal strength based on the distance of the
device to the wireless access point. As expected, the amount of
messages per second decreases as the signal strength also
decreases. In average, the Android API returns too optimistic
estimated values compared to the real ones obtained with the
implemented solution.

III. FRAMEWORK INTERACTION

This section will discuss in detail the interaction aspects of
the proposed architecture. In order to understand how
applications interact with the framework, a simplified example
involving the main components of each part will be shown.

MPS Comparison
1200

1000
."
<

] 800

8.
�

600 _API Android

� 400
�

-.- Framework

200

0
1 (93%)

Distance in Mts (Signal Stre ngth %)

Fig. 2. QoS calculateMPS vs Android API bandwith funcion, depending on
Signal Strength. Values are normalized to Messages Per Second for a correct
visual interpretation.

5

A. Framework configuration

Before starting any service, the framework requires a
Producer (a subclass of NetworkApplicationDataProducer), a
Consumer (a subclass of NetworkApplicationDataConsumer)
and throughout the execution, the information to be exchanged
(a subclass of NetworkApplicationData).

Fig. 3 shows an example where an application implements
the following three main components:

• AppSpecijic _ DataProducer, implementing the
produceNetworkApplicationDataO method.

• AppSpecijic _ DataConsumer, implementing methods
such as newDataO, newHostO, byeHostO.

• AppSpecijic _ NetworkData, where the default
information to be exchanged is augmented with member
a Value.

B. Framework interaction sequence

Fig 4. presents a sequence diagram for a typical scenario.
The first stage represents a new host joining the network.
Discovery service will detect it and inform
AppSpecijic_DataConsumer about this event so that it can
work accordingly. In this case, the application decides to
establish a connection to this new host, and simply involves
calling a Connection service method. Afterwards,
Communication service will periodically ask Producer for new
information to be sent to other host. The only task for
Producer is simply return an updated instance of
AppSpecijic _ NetworkData. This information will be handled
by the framework, and once it reaches the destination host,
Communication will notify its consumer that new data has
arrived (through the newDataO method). At some point, a host
may leave the network and Discovery will inform this situation
to the Consumer.

Application Support I
�----..." .------------. .------------.1 1

NetworkApp/icat/onDataProducer NetworkApplicatlonDataConsumer NotworkAppllcstlonDsls

.. sourcaHosl -+ produceNetworkApplicationDala()

T Application

AppSpecific_NelworkData AppSpecific_DalaProducer

-aValue + produceNetwor\(ApplicationDataO (

AppSpecific_NetworkData data;

data" new AppSpecilic_NetworkData();

data.aValue" 1000;

return data;

-+ newData(NatworkApplicationOata data)

-+ newHost(Host aHosl)

-+ byeHosl(Hosl aHoot)

AppSpeclfic_OataConsumer

+ newData{NetworkApplicationData data) (

handle{{AppSpecific_NetwMData)data).

aValue):

}
+ newHost(Host aHost) (

handleNewHost(host);

Fig. 3. Framework (top row) and application (bottom row) main interaction
components.

Discovery

newHost(Hosl aHosl)

byeHost(Host aHost)

COm.Jrrer I t COllTTUlication I
i

Pmdl.Cer

"

,

i

connectToHost(Hosl aHOSI) . :
I

, i
c:: ProduceNetwOt1<APPlicatJOnDafaO

'
l

, i

:
'

newData(Netltor1<AfPData dara) �

i

Fig. 4. Sequence and interaction diagram. Discovery and Communication are
components of the framework. Consumer and Producer are application-level
subclasses of NetworkApplicationDataConsumer and
NetworkApplicationDataProducer.

IV. EXAMPLES

This section will present real examples in which the
network requirements for each application differs considerably,
among other factors. The flrst one is a competitive multiplayer
Asteroids-like game (referred to as Asteroids, from now on).
The second one is a two players Tic-Tac-Toe game, both
currently running in Android. The third example is a simple
chat application implemented both in Android and J2ME in
order to show multi-platform communication. The fourth
example is a Client/Server Wi-Fi remote control running on
Android for an image display server running on J2SE (from
now on, WiFiRemote), in order to show heterogeneous
application interaction from a platform point of view.

These projects are completely built on top of the framework
project [8], i.e. there is no access to other services beyond those
provided by the framework. The complete code of the first two
examples can be found at [IS] and [16] respectively. For the
third example, the J2ME version of the chat application is built
on top of the J2ME version of the framework project [17].

A. Asteroids

Multiplayer Asteroids is a very simple game, in which a
ship (controlled by a user) must destroy enemy ships firing
laser shots. Every ship corresponds to a user in a host (e.g.
mobile device, tablet) in the network, as shown in Sa. The local
ship will be rendered in green and remote ships will be
rendered in blue. An example video of the game can be found
at [18], where it is also shown that the entire example is run on
virtual machines with Android.

Although very basic, the application is representative in
terms of CPU and network usage of a class of game
applications: the game must continuously update its local
model, share local information among all hosts, receive and
update remote hosts information, and render the corresponding
graphics. Considering an update rate equivalent to 30 frames
per second, the network consumption is considerably high and
grows proportionally to the number of players. Furthermore,
the game uses the Periodic Broadcast feature from the
Communication service.

6

The data deflned to be sent/received through the network
includes ship position and heading, as well as shots position
and heading that the ship shoots when the user triggers the flre
action.

B. Tic-Tac-Toe

Tic-Tac-Toe has been selected as a representative example
of a completely different type of application, compared to the
Asteroids game, since Tic-Tac-Toe is a two-players game,
turn-based and there is no need for a continuous sending of
information, specific events (players taking turns) trigger
communications.

Fig. Sb. shows a running example of the game on two
Samsung Galaxy devices with Android 4.0.3, and an example
video of the game running on a virtual machine and a Samsung
Galaxy can be found at [19]. While the Tic-Tac-Toe game
imposes a very different usage of the network during the game
(turns, non-periodic messages, etc.) as compared to the
Asteroids game, other service requirement such as those related
to host Discovery remain the same.

The data structure for this application is very simple: an
action value representing the possible states of the game: a)
resolve who will start the game, b) set a cell with an X or an 0
- in this case a position value is also needed, or c) restart the
game. Since there is no need for a periodic update of local host
information, no Producer has to be implemented.

C. Multi-platform chat application

A simple chat application has been selected in order to
show multi-platform networking capability, requiring only the
communication features. By simply specifYing an IP address
and a message, the chat-app sends the corresponding text to the
target host, the which shows its content on the display. Fig. Sc.
shows the achieved interaction among two virtual devices, one
running the application on Android, and the other running on
J2ME.

The biggest problem in this case is the serialization­
deserialization issue. Each platform implements (if it does) a
speciflc serialization method, which can or cannot be
compatible with the other platforms. In order to solve this
problem, the framework defmes a NetworkSerializable
interface, containing the definition for the networkSerialize and
networkDeserialize methods. Applications must contain a class
which implements this interface in a consistent way on each
platform. At run time, the framework then delegates the
serialization-deserialization work to these classes.

D. WiFiRemote

WiFiRemote is a Client/Server implementation using
different application platforms. It consist of a server
application that displays images running on J2SE, and an
Android application that controls the slideshow (like a remote
control) on the cliente side, as shown in Fig. Sd.

Thus, a user can then control the images being displayed,
for instance selecting the previous or next image. For each
image displayed, the server also sends to the client the image
metadata, which will be displayed in the Android device.

�
- -

De 163.10.22.163: 50y)2

163.10.22.163

Soy AfIdroid!

II

. '" ::
,

I De 163 1022 227 Soy Android I I
Ta�et IP
11631022.227 I
Messa2e ISolJ2MEI I
�

..

••• I I 123 I ...
� 1 1 � 1 0

iii II .. 1:1 w_

Fig. 5. a) Asteroids running on three Android x86 v2.2 virtual machines (top
left), b) Tic-Tac-Toe running on two Samsung Galaxy SII mobile devices
with Android 4.0.3 (top right), c) Chat application running on Android x86
and .I2ME Emulator (bottom left), d) WiFiRemote, server running on desktop
.I2SE and client running on Android 4.1.2 (bottom right).

In this case, the required data structure is quite simple: an
action code that goes from the client to the server and the
details of the image that returns to the client.

This is an example of how the framework is also useful in
applications in which implementation logic differs in each host.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the advances achieved in the
implementation of a framework designed for easily handling
network-related issues in the development of mobile
applications, called NetworkDCQ [20].

The framework covers a wide range of features such as host
discovery, data communication and broadcasting, and QoS
monitoring. It is designed to support different implementations
for each of these services, gaining flexibility, and versatility.
Its main goal is to fill a gap in the mobile development
frameworks area, where currently there is no open source,
multi-platform solution with the features explained in this
paper.

The proposed API and reference implementation is actually
useful for several types of applications, network requirements,
and configurations. The examples shown cover applications
with a wide variety of network-related requirements like

7

continuous data broadcasting, event driven communication,
and heterogeneous platforms. These examples evidence the
considerably small amount of effort needed in the development
of applications with networking capability, thanks to the
features included in the framework.

Although the framework is fully functional for Android and
J2SE, currently there is no available version for iOS.
Completing this task is a short-term objective. Implementing
the complete set of features for Windows Mobile, and
BlackBerry 10 are mid to long-term objectives.

REFERENCES

[I] Markus Falk, Mobile Frameworks Comparison Chart,
http://www.markus-falk.com/mobile-frameworks-comparison-chartl.

[2] Digital Possibilities, Mobile Development Frameworks Overview,
http://digital-possibilities.com/mobile-development-frameworks­
overview!'

[3] PhoneGap, http://phonegap.com!.

[4] Titanium, http://www.appcelerator.com/platform/titanium-platform!.

[5] Unity3D, http://unity3d.com/.

[6] Corona, http://www.coronalabs.com/products/corona-sdk!.

[7] StatCounter, Top Mobile & Table Operating Systems from April 2013 to
April 2014, http://gs.statcounteLcoml#mobile+tablet-os-ww-monthly-
201304-201404.

[8] NetworkDCQ for Android
https:llcode.google.com/p/networkdcq!.

Project,

[9] Gamma E., Helm R. , Johnson R. , Viis sides 1., Design Patterns:
Elements of Reusable Object-Oriented Software, 1994.

[10] Martin, R. C., The Dependency Inversion Principle, 1996,
http://www.objectmentor.com/resources/articles/dip.pdf

[11] Fowler, M., Inversion of Control Containers and the Dependency
Injection Pattern, http://martinfowler.com/articleslinjection.html.

[12] Joel Gonyalves, Luis Lino Ferreira, A Framework for QoS-Aware
Service-based Mobile Systems, 2010, in press.

[13] Rabia Ali, Dr. Fareeha Zafar, Bandwidth Estimation in Mobile Ad-hoc
Network (MANET), 2011, in press.

[14] R.Sivaraman, Y.R.Sarma Dhulipala, L.Sowbhagya, B.Vishnu Prabha,
Comparative Analysis of QoS Metrics in Mobile Ad Hoc Network
Environment, 2009, in press.

[15] Asteroids for Android Project, http://code.google.com/p/asteroidsal.

[16] Tic-Tac-Toe for Android Project, http://code.google.com/p/ticatacatoe!.

[17] NetworkDCQ for .I2ME Project, https:llcode.google.com/p/networkdcq-
j2me!.

[18] Asteroids for Android Example Video,
http://www.youtube.com/watch?v=HiRTk8daqi4.

[19] Tic-Tac-Toe for Android example video,
http://www.youtube.com/watch?v=mrfO I putSec.

[20] Cristina F:, Dapoto S., Tinetti F., Encinas D., Thomas P, Pes ado P.,
NetworkDCQ: A Multi-platform Networking Framework For Mobile
Applications, 2013, in press.

