
Using Meta-Level Techniques to Personalize O-O Applications

Andrés Fortier, Gustavo Rossi, Juan Cappi
LIFIA-Facultad de Informática-UNLP, Argentina

[andres, gustavo, jcappi]@lifia.info.unlp.edu.ar

Abstract
 In this paper we discuss how to use reflective techniques for personalizing
object-oriented applications. This approach is based on a clear separation of concerns,
namely: base application functionality, user profile management, and personalization
rules; our approach simplifies the evolution of Web Applications when adding
personalization features (such as recommendations, special offers, individual interfaces,
etc). We first explain why personalization functionality should be dealt by separating
concerns. Next we introduce a simple example and focus on different personalization
patterns, emphasizing on behavior personalization. We also show which design
structures are the most appropriated for obtaining seamless extensions to existing
software. We finally discuss some further aspects such as using meta-level constructs
for designing personalized applications.

1-Introduction
 Personalization has become a very important issue in software applications
ranging from word-processors to e-commerce and other Web Software. Building
customized software is not a new problem; however, the increasing popularity of the
World Wide Web, and the evolution of hardware appliances make personalization a
hotter topic. Designing personalized software may imply dealing with different concerns
(modeling the user, implementing personalized interfaces, modeling customization
rules, implementing complex algorithms, etc) that must be seamlessly integrated.

However, while user modeling, profile derivation and personalization algorithms
(such as collaborative filtering) have been extensively discussed in the literature [Oreizy
99], less attention has been paid to the modeling and design process of this kind of
software. In this position paper we claim that personalization is an interesting and critic
aspect of an application’s evolution. This is true not only because of the difficulties
inherent to the problem (such as integration of concerns) but also because of the
evolvable nature of personalized applications. More precisely, as personalization
requirements and policies change over time, software maintenance becomes a
nightmare. We have been studying the problem of web applications’ evolution; we
have analyzed design problems related with personalization and identify usual
personalization patterns [Rossi 01a, Rossi 01b]. In this position paper we present a
solution to the personalization puzzle that improves separation of concerns.

The structure of the paper is as follows: We first discuss the problem of
designing personalized applications in the context of applications’ evolution and why
separation of concerns is a key solution for coping with this problem. Next we show a
first approach, by describing the right separation of concerns and how a generic model
can be obtained. Finally we will go one step further and show how thinking of
personalization from the meta level point of view will give a better approach to address
a generic framework for personalizing applications.

Though we exemplify with applications in the e-commerce domain, the
approach is general enough to be applied in other domains. For the sake of conciseness
we do not address in this position paper our approach for user modeling; instead we
focus on the implementation of personalized behaviors.

2-Designing Personalized Software
 We can think of personalization as adding new concerns to the problem of
application’s design, namely the user (or role) profile and the personalization rules. Not
only we need to model the basic application domain (e.g. an electronic store) but also
we have to model the user and the ways in which this model will interact with the
underlying application model (roughly speaking the personalization rules). As
previously stated we think that this problem is related with the application’s evolution
because requirements related with personalization tend to change over time.

Let us suppose that we are building an e-commerce application and we want to
keep track of how many times each user has bought some sort of product, so that we can
perform some site statistics later.

Even though this update is fairly simple, an interesting discussion might rise to
decide which object of the model should be responsible for triggering the update in the
user profile (and of course to decide what the user profile should be responsible of), or
to figure out were the logic of that update should be coded. But most answers that may
come up will not be completely satisfactory as we will need to add new behaviors to
domain objects; behaviors that, by the way, do not belong to the original objects’
responsibilities. Suppose that the marketing department decides that we should record
every product the user has bought and later, because of policy changes, only those
products that fulfill some condition. We are faced to repeatedly change code that has
already been worked out. Unfortunately the pace of changes related with personalization
(or other customization features) may be fast or even hysteric.

This example gets even worse when other personalization features that involve
complex rules and user profile data are introduced (think for example on price
discounts, recommendation algorithms and personalized check-out processes). It is
important to note that in the current state of affairs in the business world, upgrades
related with personalization are usually unpredictable and we have to deal with them (as
with most changes in business rules) in a quick and efficient way.

3-Decoupling concerns using wrappers
 As we stated before, we should try to avoid mixing the basic application’s logic
with personalization code. In [Rossi 01c] we presented a set of micro-architectures to
address this problem, showing how to achieve a well-defined separation of concerns.
The idea (originally devised for e-commerce applications) is based on the interception
of messages to objects whose behavior has to be personalized by using a wrapper
between the personalized object and the message sender. The wrapper should
collaborate with other personalization-specific objects to decide how to answer to that
message. As an example, suppose we want to personalize the price of a product
depending on an algorithm (that may be even different according to the user’s profile).
In Figure 1 we present a first approach for solving the personalization problem. Notice
that there is a clear separation of concerns; Class Product is designed (and evolves)
without personalization features in mind, while all personalization issues are handled by
objects that do not belong to the core application’s model.

CustomerProfile

PricePersonalizer

+personalize : aProduct for: aCustomer

Product

+priceFor: aCustomer
ProductWrapper

+priceFor: aCustomer
priceFor: aCustomer

 ^ aCustomer profile pricePersonalizer personalize: product for: aCustomer.

PricePersonalizerA

+personalize: aProduct for: aCustomer

PricePersonalizerB

+personalize: aProduct for: aCustomer

NullPricePersonalizer

+personalize: aProduct for: aCustomer

personalize: aProduct for: aCustomer

 ^aProduct priceFor: aCustomer.

Customer
1

profile

1

pricePersonalizer

1

product

Figure 1 : Using wrappers and personalizers in an e-commerce application

This approach may have a great impact on the application’s evolution; these are

some of its consequences:
o The designer can focus on one concern at a time. Since the problems are

solved in different modules of the system, which are almost independent, the
designer can first solve core application issues and then move to the
personalization stuff.

o The behavior of domain objects will not be affected by policies changes. As
opposite to the previous counting example, changes in the algorithms or policies
will not affect the behavior or semantics of products.

Though the architecture in Figure 1 solves some of the previously mentioned

problems, it presents some drawbacks:
o When should the object be wrapped? It is very important to determine when

to wrap the domain object so that there are no references to the wrapped object
that can cause inconsistency. Generally this is done in the constructor of the
domain object, which means that at least some code in the domain classes will
be consciously referencing a personalization-related object.

o Self sent messages. The wrapper is like an external shell for the object, but it is
unable to catch messages that the object sends to itself. This may cause
incoherence in the behavior of the application. Following the price example
suppose that the product implements the message addTo: aRecommendationList
for: aCustomer, which adds itself to the list of recommended products, if its
price is lower than a value. When the product asks itself for the price (self
priceFor: aCustomer) the base method will be called and no personalization will
be applied (i.e. no discount will be applied).

o It may not scale to complex personalization features. Even though this design
is well suited for simple personalization examples, it lacks of flexibility when
for example we want to combine different ways of applying algorithms. Suppose
that we want to apply more than one algorithm to the result of a method
according to a set of conditions. Should we code a huge case statement in each
personalizer? How do we apply a cascade of algorithms on the result of a
method? What if we need a little variation of the personalizer for a subclass of
Product? Should we re-code almost all the personalizer to accommodate this
difference?

Based on this questions we found out that there is a need of smaller-grained

objects that map the concept of rules, conditions and actions in a way that they can be
easily composed and interchanged.

4-Personalization in the meta-level

In this section we will show how to improve the design and evolution of
personalized software by using reflective capabilities; though this ideas can be easily
applied in languages supporting meta-level facilities, we base this explanation on our
Smalltalk architecture (that strongly explodes its capability to deal with meta-classes,
blocks and methods as objects). We first explain how to intercept messages, defining a
notification layer. Then we show how methods are dispatched and handled to end up
defining the components that implement the personalization logic.

4.1 Message interception
 As explained in [Brant 98] there are many ways to intercept a message in
languages like Smalltalk, where classes are objects and the method to be executed in
response of a message request is determined in run time. In our approach we use
lightweight classes as defined in [Hinkle 94] that uses the inheritance mechanism to
forward the messages for its default implementation, but returns a modification of the
code in the case the method is personalized. As shown in Figure 2, when the lightweight
class is asked for a method it interacts with a method dispatcher to return an appropriate
method handler.

ConcreteClass

LightweightClass

 personalized> a
 default> b

MethodHandler

MethodDispatcher

+dispatch: aMessage

1

dispatcher

Notification layer

1

actingOn

1

realClass

Concrete
Object 1

Concrete
Object 2

(request for
handling)

message amessage b

*

methodHandler

CompiledMethod

1

realMethod

Dispatching / Handling layer

Figure 2 : The interception layer

 If the message is personalized, once the dispatcher decides which handler should
act, that handler is asked to execute itself. In a generic way we may think of three
different ways of handling a message: by taking actions before, after, or before and after
the real method is executed (Figure 3).

MethodHandler

+execute: anObject withParams: anArray

MethodDispatcher

+dispatch

*

methodHandler

BeforeHandler

+execute: anObject withParams: anArray

AfterHandler

+execute: anObject withParams: anArray

BeforeAfterHandler

+execute: anObject withParams: anArray

ConcreteClass

1

actingOn

CompiledMethod1

realMethod

Figure 3 : Method handlers

Once a method has been intercepted, the corresponding behavior must be

personalized. In the previous example, if the intercepted message is price, we must
calculate the price for the corresponding user. As most personalization involves some
kind of ruling mechanism, we introduce Rule Objects.

4.2 Rule objects
Personalization (or more generally business) rules are usually expressed in

logical terms in the following way: if a predicate <p> is satisfied, the actions
<a1,a2,..,an> should be executed (See for example [Ceri 99]). As rules are not first-class
objects we need to analyze the best way to map them into design constructs in order to
improve their evolution and maintenance (See for example [Arsajani01]).

As said before, personalizers have the responsibility of executing the
personalization code: in fact they implement the concept of a rule. This solution has two
main problems. First, as rules may involve many different conditions and corresponding
actions, personalizers may become monolithic as they will contain complex if then else
clauses. The second problem we should solve is related with the evolution of rules. As
previously discussed, business rules tend to change quickly; new rules related with an
aspect may be added or eliminated. In the case of pricing policies we may have rules
that apply when the customer bought many products, others related with the current
order, etc. An adequate solution is to take the concept of a rule, map it into a class and
present rules as having a condition and one or more actions to execute if the condition is
satisfied (Figure 4).

As seen in the figure there are two basic kinds of rules: those that are applied
without any interest in the returned value of the base method (DirectRule) and those that
somehow depend on it (OnResultRule). To match this organization, proper Action
classes have been defined: DirectAction and OnResultAction. When a rule is asked to
be applied it evaluates its condition and depending on its value it executes the
corresponding action. Notice that we may want to execute more than one action when a
rule is applied which motivates Composite actions.

Rule

CompositeRule

+applyTo: anObject with: params and:anObject
+applyTo: anObject with: params

DirectRule

+applyTo: anObject with: params

OnResultRule

+applyTo: anObject with: params and:anObject

*

childs

RuleCondition

+evaluate
-condition : Block

1

condition

Action

CompositeAction

+executeOn: anObject with: params
+executeOn: anObject with: params and: anObject

DirectAction

+executeOn: anObject with: params

OnResultAction

+executeOn: anObject with: params and: anObject

*

subactions
1

action

ConditionalRule

Figure 4 : Rules, conditions and actions

For example let us analyze pricing algorithms in e-stores; the policy of a store

may be something like “if the purchase is more than x dollars then a 2% discount is
applied”. Now suppose that for Christmas the store wants to apply a 3% discount on all
products, so a sub-class of OnResultAction called DiscountAction is defined, which
holds onto a discount percentage. A rule is created and configured so that it implements
the store discount policy (2%), using an instance of DiscountAction. Then, in
Christmas eve the rule is replaced by a composition of rules that cascades both
discounts. Notice that the Christmas rule is built using the same DiscountAction that
was used for the normal discount and may be reused each time we need to implement a
discount.

5-Conclusions and further work
 In this position paper we have discussed the problem of personalization from the
point of view of application’s evolution. We have presented an initial solution based on
objects’ wrappers and improved it using reflection mechanisms. A further analysis on
the personalization model showed that representing all the personalization logic in one
object (the personalizer) may be too rigid, so we introduced the concept of rules,
conditions and actions. Though not shown in this paper, rules may access the user
profile to obtain meaningful information about the user, such as purchase history.
Decoupling the user profile from the application’s logic is also a key design decision for
supporting seamless personalization. We are working on defining an application
framework that supports personalization of existing object-oriented applications.

There are three key points that need further analysis:

o Describing the rules as logic predicates, so that the specification can be done
without knowing Smalltalk specific syntax. We have experienced with the Soul
framework [Wuyts 01] that using meta-level constructs incorporates a Prolog
interpreter in the VisualWorks environment.

o We are evaluating if subjectivity techniques [Harrison 93] can be applied to
improve the relationships among the personalization rules and the user profile.

o We are analyzing if it is possible to map some of the concerns related with
personalization into aspects, in the context of aspect-orientation [Aspect 01]

6-References

[Arsajani01] A. Arsajani: “Rule Object 2001”. In Proceedings of PloP 01, Allerton,
IL, September 2001.

[Aspect 01] http://www.parc.xerox.com/csl/projects/aop/

[Brant 98] John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts.
Wrappers to the Rescue. In Proceedings of ECOOP'98, July 1998

[Ceri 99] Stefano Ceri, Piero Fraternali, Stefano Paraboschi: Data-Driven One-
To-One Web Site Generation for Data-Intensive Applications. Proc.
VLDB '99, Edinburgh, September 1999.

[Harrison 93] William Harrison and Harold Ossher. "Subject-oriented programming
(a critique of pure objects)." In Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and Applications
(OOPSLA), September 1993.

[Hinkle 94] Bob Hinkle: Reflective Programming in Smalltalk-80. Tutorial #11,
OOPSLA ’94, Portland, Oregon, USA, October 1994.

[Oreizy 99] P. Oreizy, M. Gorlik, R. Taylor, D. Heimbigner, G. Johnson, N.
Medvidovic, A. Quilici, d. Rosenblum, and A. Wolf: “An architecture-
based approach to self-adaptive software”. IEEE Intelligent Systems,
pages 54-62, May 1999.

[Rossi 01a] G. Rossi, D. Schwabe, J. Danculovic, L. Miaton: “Patterns for
Personalized Web Applications”, Proceedings of EuroPLoP 01,
Germany, July 2001.

[Rossi 01b] G. Rossi, D. Schwabe, R. Guimaraes: “Designing Personalized Web
Applications”, Proceedings of the 10th International Conference on the
WWW (WWW10), Hong Kong, 2001,Elsevier, p.p.

[Rossi 01c] G. Rossi, A. Fortier, J. Cappi, D. Schwabe: “Seamless personalization
of E-commerce applications” Submitted paper. In
ftp://sol.info.unlp.edu.ar/pub/papers/Seamless%20Personalization.pdf

[Wuyts 01] Roel Wuyts: “A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation” Phd
Thesis. Programming Technology Lab, VUB, Brussels, 2001.

