
Basis for a Course on Design Patterns: going beyond the intuition

Claudia Pons and Gustavo Rossi

Computer Science Faculty, LIFIA-UNLP
La Plata, Buenos Aires, Argentina
[cpons, gustavo]@info.unlp.edu.ar

Abstract

This article presents the motivation for teaching a

regular subject (i.e. design patterns) in a more elaborated
way. The proposal consists in adding formal foundations
to the concepts that are usually presented to students from
an intuitive point of view. Formal reasoning will allow
students to use the concepts acquired during the course in
a more mature way.

1. Introduction

Design patterns [6] document good solutions to

recurring problems in a particular context. In the last years
design patterns have become a mandatory subject in most
software engineering courses all over the world. In general,
Design Patterns are introduced according to the pioneer
work of Gamma et al.[6]. In that book, specifications
provided by design patterns are informally performed by
means of concrete examples and by appealing to intuition,
lacking a more definitive foundation. Consequently, many
ambiguities arise which cannot be solved unequivocally.
For example, the patterns mailing lists often engage in
prolonged discussions whether a particular piece of code
manifests an instance of one design pattern or the other.
Another kind of confusion that originates from such
ambiguities is whether one pattern is an special case of
another, often without any satisfactory answer given.

We elaborate a course on design patterns including their
intuitive and informal specification as a first introduction.
After students acquire the intuitive idea of patterns we
proceed by pointing out the weakness of those definitions,
so that students realize the necessity to count with a formal
foundation. Then, the most relevant strategies towards the
formalization of design patterns are presented to students.
Due to the fact that formalization of Design Patterns is still
a problem under investigation, students are motivated to
analyze and compare the different proposals available in
recent research papers and even to suggest their own
solutions.

The course turns round three questions: What are
Design Patterns?, Why is it necessary to formally specify
Design Patterns? and How can Design Patterns be
formalized? These questions are addressed sequentially
during the stages of the course which are described in the
following sections.

2. What are Design Patterns and why is it

necessary to formally specify them?

In this first stage of the course, Design Patterns are

presented to students following the book of Gamma et
al.[6]. As example, we include in Fig.1 the description of
the Observer Pattern, using UML class diagrams, sequence
diagrams and natural language.

The specification of a design pattern is not the
specification of a single program, but of a family
consisting of all programs which satisfy the structural
and/or behavioral constraints imposed by the specification.
Design patterns should be formalized to enable (at least):

- Solving the question of validation e.g., does "this
piece of code" implement "this pattern"? Given a program
π in an object oriented programming language and the
specification of a pattern Π, we are interested in the
answer to the question whether π is an instance of Π (also:
π is an occurrence of Π; π manifests Π; π implements Π)

- Solving questions of relationships between patterns,
e.g.: Is one pattern the same as another (duplication)? Is
one pattern obtained from a minor revision of another
(refinement)? Is one pattern a component of another
(composition)? Are two patterns unrelated (disjointness)?
and so forth; :

- Solving questions of patterns composition; e.g.: how
can two or more patterns be joined together? Does the
combination originate new patterns?

 - Tool support in the activities related to patterns.

Observer Pattern

Intent: define a one-to-many dependency

between objects so that when one object
changes its state, all its dependents are notified
and updated automatically.

Structure:

Observer

update()

Subject

attach(o : Observer)
detach(o : Observer)
notify()

0..*1 0..*1

ConcreteSubject
subjectState : SubjectState

getState() : SubjectState
setState()

ConcreteObserver
observerState : ObserverState

update()

Collaborations:

 : ConcreteSubject

 : AnySender setState()
notify()

 : AnySender
 : ConcreteSubject a :

ConcreteObserver
another :

ConcreteObserver

notify()
update()

update()

getState()

getState()

Figure 1. The Observer Pattern Specification.

Hence, there was a need for a formal means of
accurately describing patterns. The formal specification of
patterns is not meant to replace the existing informal
descriptions but rather to complement them in order to
achieve well-defined semantics and allow rigorous
reasoning about patterns.

The formal specification of patterns helps pattern usage
in the following situations:
- the user should decide which pattern(s) is (are) more

appropriate to solve a given design problem within a
context.

- the user should combine more than one pattern.
- the user need to find instances of patterns in a program.
- the user wants to transform a program to meet pattern

specifications that are stored in the so-called pattern
repository.

- the user wants to instantiate from a pattern specification,
a possible implementation in a chosen programming
language.

Notice that those activities can be manually performed
by the user or can be (semi-) automatically executed by
CASE tools.

In this stage of the course, a set of concrete examples of
ambiguities and inconsistencies related to pattern
validation and pattern inclusion will be analyzed with the
students. For example, no satisfactory answer can be
deduced form the specification of the Observer Pattern in
[6] to the simple question below:

“ If an observer is attached twice to the same subject,

will it receive the message update() two times when its
subject gets modified?”.

Much more complex examples, collected from the

pattern mailing lists repositories (e.g. http://hillside.net/
patterns/mailing.htm), will be analyzed in the classroom.

As a reaction to these weakness, a number of ways to
improve the precision of design pattern specification have
been introduced in the last years., which will be briefly
analyzed in the following sections.

3. How can Design Patterns be formalized?

During the course students will have the opportunity to

analyze the main tendencies: adding OCL constraints to the
pattern specification; improving the notation to specify
pattern instantiation; applying metamodeling techniques
and finally, building a full formalization schema.

3.1. Adding OCL constraints to the pattern

specification
The Object Constraint Language OCL [14] can be used

to specify invariants on the object states and to establish
pre and post conditions for the operations. Fig. 2 shows an
example of a set of constraints that can be attached to the
UML class diagram in Fig. 1. in order to reduce the
ambiguity of the specification. For example the formal
specification of operation attach()in the class
Subject establishes that an observer cannot be attached
twice to the same subject, solving in this way the

ambiguity pointed out in section 3. On the other hand the
invariant “noDanglingReferences” guarantees that
observers are always attached to some subject, preventing
this way from the occurrence of the problem of dangling
references to deleted subject which is described in [6].

Figure 2. OCL constraints enriching the specification

of the Observer Pattern.

3.2. Improving the notations to specify pattern

instantiation
The modeling of design patterns and their instantiations

are usually based on UML. However, there are still
shortcomings for the representation of the instance or
occurrence of a pattern. In particular, losing pattern-related
information after the applications and compositions of
design patterns remains a problem of UML. The modeling
elements, such as classes, operations, and attributes, in
each design pattern play some roles that are manifested by
their names. The application of a design pattern may
change the names of its classes, operations, and attributes
to the vocabulary in the application domain. Thus, the role
information of the pattern is lost. It is not obvious what
modeling elements participate in each pattern. As a result,
the benefit of using design patterns becomes compromised.

In this part of the course, students will analyze a
number of techniques for explicitly representing individual
design pattern in a complex system: Venn Diagram-Style
Pattern Annotation, Dotted Bounding Pattern Annotation,
UML Collaborations, Pattern:Role Annotations and
Tagged Pattern Annotation, as follows:

 Venn Diagram-Style Pattern Annotation: The first
notation for identifying patterns in a design diagram is
based on Venn diagrams [19]. This notation works fine

with a small number of patterns per class. When a class
participates in more and more patterns, the overlapping
regions, where the class resides, may become hard to
distinguish, especially when different gray levels need to
be selected to represent different patterns. Besides the
scalability problem, another shortcoming of this notation is
that it is not explicit which roles each modeling element
plays in each pattern.

Dotted Bounding Pattern Annotation: to avoid the
shading problem, a variation of the previous notation that
replaces shadings by dashed lines was proposed in [3].
This change solves the problem caused by shading. It, yet,
remains hard to identify precisely the roles that modeling
elements play. The scalability problem also remains since
there can be many dashed lines clashing in the overlapping
regions.

UML Collaboration Notation: the two conceptual levels
provided by UML collaborations [13] (i.e. parameterized
collaboration and collaboration usage) fit well to model
design patterns. At the general level, a parameterized
collaboration is able to represent the structure of the
solution proposed by a pattern, which is enounced in
generic terms. The application of this solution i.e. the
terminology and structure specification into a particular
context (so called instance or occurrence of a pattern) can
be represented by collaboration usage. Dashed ellipses
with pattern names inside are used to represent patterns.
Dashed lines labeled with participant names are used to
associate the patterns with their participating classes.
While this notation improves over the previous notations
with the explicit representations of pattern participants, it
raises other problems. The dashed lines appear cluttering
the presentation; the pattern information is mixed with the
class structure, making both hard to distinguish. Moreover,
this notation fails to represent the roles an operation (or
attribute) plays in each design pattern. Furthermore, in
[16] Gerson Sunye describes a number of unsolved
semantic issues regarding parameterized collaboration,
which hinder the precise specification of pattern
instantiation.

Pattern:Role Annotations: to improve the diagrammatic
presentation by removing the cluttering dashed lines,
Gamma has defined a graphical notation, called
“pattern:role” annotations documented in [19]. The idea is
to tag each class with a shaded box containing the pattern
and/or participant name(s) associated with the given class.
If it will not cause any ambiguity, only the participant
name is shown for simplification. This notation is more
scalable than the previous notations and highly readable
and informative. Unfortunately, the problems related
shading arise again as the first notation. Similarly to the
previous notation, this notation fails to represent the roles
an operation (attribute) plays in a design pattern. If there
are different instances of a pattern, furthermore, this

Context Subject::attach(o:Observer)
Pre: observers->excludes(o)
Post: observers=
 observers@pre->including(o)

Context Subject::detach(o:Observer)
Pre: observers->includes(o)
Post: observers=
 observers@pre->excluding(o)

Context ConcreteSubject::
 setState(s:SubjectState)
Post: subjectState=s and self^notify()

Context Subject::notify
Post: observers->forAll(o|o^update())

Context ConcreteObserver inv

noDanglingReferences:
self.concreteSubject.oclIsUndefined().not

notation cannot distinguish in which instance of the pattern
a modeling element participates

Tagged Pattern Annotation: in [4] a new graphic
notations (extensions to UML) was presented. This UML
extension makes it possible to explicitly represent a pattern
in the composition of patterns. Each individual pattern is
explicitly documented, so that it can be identified easily.
These extensions overcome the shortcomings of previous
notations allowing for the explicit representation of the
roles of each class, operation, and attribute in a pattern.
The UML profile includes three stereotypes: PatternClass,
PatternAttribute and PatternOperation, whose base classes
are Class, Attribute and Operation, respectively. Each
stereotype also defines one tagged value. These tagged
values define exactly what role a class, an attribute or an
operation plays in a design pattern. The name of the tagged
value is “pattern” and the value of the tagged value is a
tuple in the format of <name:string [instance:integer],
role:string>. The “name” in the tuple is the pattern name in
which a model element participates. The name fields of
PatternAttribute and PatternOperation can be omitted if the
class plays a role only in one pattern, and this omission
will not create any ambiguity. The “instance” in the tuple
indicates the instance of the pattern the model element
participates. The “role” in the tuple shows the role that a
model element plays in the pattern. For instance, the
Thermometer class plays the role of ConcreteSubject in the
Observer pattern in the example shown in Fig. 3. Then, the
stereotype
<<__PatternClass{<Observer,ConcreteSubject>}>> is
attached to the Thermometer class, establishing in this way
that the stereotyped class participates in the only instance
of the Observer pattern and plays the role of
ConcreteSubject. As another example, the temperature
attribute plays the role of subjectState in the Observer
pattern. Then, the stereotype <<PatternAttribute
{<Observer, subjectState>} is attached to the temperature
attribute, declaring in this way that this attribute

participates in the only instance of the Observer pattern by
playing the role of subjectState.

A model element may simultaneously play different
roles in different patterns. In this case, a new tagged value
with the same format is attached to the model element for
each additional pattern it participates.

The limitation of this notation is that the pattern-related
information is not as noticeable as the “pattern: role”
notation with shading, which is a trade-off. For a small
number of patterns, this new notation can combine with the
dotted bounding notation by bounding each pattern with
dashed circles so that the pattern boundaries are explicitly
depicted.

3.3. Pattern Metamodeling
Le Guennec and Sunye propose in [9] a minimal set of

modifications to the UML meta-model to make it possible
to model design patterns and represent their occurrences in
UML, opening the way for some automatic processing of
pattern applications within CASE tools.

3.4. Building a Complete Formalization

Schema
Proposals presented so far have highly positive practical

impact due to the fact that they make it possible to enhance
the formality of both the pattern specification and its
instantiation. However, the meaning of the specifications
remains still semi-formal, hindering the solution of the
patterns validation problem. Only a complete formalization
of both, the pattern and its instantiation will enable us to
solve the question of validation.

Given a pattern Π and a system π , the problem of
pattern validation can be reduced to the problem of
refinement validation in a formal language in the case we
could find a formal specification language in which it were
possible to specify the structure and behavior of the design
pattern (i.e. SpecΠ); and also that the formal specification

FahrenheitDisplay
<<PatternAttribute{<observerState>}>> display : Real

<<PatternOperation>> update()

<<PatternClass{<Observer:ConcreteObserver>}>>

Subject

attach()
detach()
notify()

Observer

update()1 0..*1 0..*

CelsiusDisplay
<<PatternAttribute{<observerState>}>> display : Real

<<PatternOperation>> update()

<<PatternClass{<Observer:ConcreteObserver>}>>

Thermometer
<<PatternAttribute{<subjectState>}>> temperature : Real

<<PatternOperation>> getState()
<<PatternOperation>> setState()

<<PatternClass{<Observer:ConcreteSubject>}>>

Figure 3. Tagged Pattern Annotation in an Observer Pattern instantiation.

language expressive enough to capture the specification of
the object oriented systems (i.e. Specπ) and finally, that this
language were equipped with a refinement calculus.

Given these three conditions, the following theorem
holds:

Theorem: π is an instance of Π iff Specπ is a
refinement of SpecΠ.

Consequently, the validation problems can be
decomposed into the following steps:

- Step 1: Finding a formal specification of the design
patterns: SpecΠ.

- Step 2: Finding a formal specification of the object
oriented program: Specπ

- Step 3: Finding the specification of the refinement
relationship: Rπ−Π

- Step 4: Applying the refinement calculus provided by
the formal language on the results of the
previous steps.

Figure 4 shows an sketch of the validation procedure,
which is described in the following subsections, step by
step.

Step 1:
In principle, we must demonstrate that patterns can

indeed be formalized. Although there is no yet a general
agreement, a number of formal specifications for some
design pattern have already been provided: Tommi
Mikkonen presents in [12] a way to formalize temporal
behaviors of design patterns whit the DISCO method,
paying special attention to their natural utilization when
composing specifications of complex systems. In [5] and
[11] formal specification of design patterns are elaborated
using the formal language LePUS and DPML respectively.
Taibi and Ngo in [18] propose a Pattern Specification
Language (BPSL) aimed to achieve equilibrium by specifying
both structural and behavioral aspects of design patterns. The
language combines two subsets of logic: one from the First-Order
Logic (FOL) and the other from the Temporal Logic of Actions
(TLA). Saeki in [17] defines a behavioral specification of
GOF Design Patterns with LOTOS.

In fig. 5 we show an specification of patterns Observer
elaborated by the students, using the formal language
Object-Z.

Figure 4. full formalization schema for pattern definition and instantiation.

[SubjectState, ObserverState]

Observer
 � (update)

 update

Subject
 � (INIT, attach, detach, notify)
 observers: � Observer
 INIT
 observers=�
 attach
 �(observers)

o?:Observer

 o�observers �
observers’=observers�{o?}

 detach
 �(observers)

o?:Observer

 o�observers �
observers’=observers–{o?}

 notify
 	o�observers
 o.update

ConcreteObserver

� (update)
Observer

observerState: ObserverState
subject: ConcreteSubject

update
�(observerState)
observerState’= subject.getState

ConcreteSubject

� (getState, setState)
Subject

subjectState: SubjectState
�
getState: SubjectState
getState= subjectState

setState�[�(subjectState)
s?:SubjectState |
subjectState’= s? � self.notify]

Figure 5. Object-Z specification of the Observer Pattern.

In Object-Z [2] a class is represented as a named box
with zero or more generic parameters. The class schema
may include local type or constant definitions, at most one
state schema and initial state schema together with zero or
more operation schemas. The operations define the
behavior of the class by specifying any input and output
together with a description of how state variables change.
Concretely, an Object-Z class is a 6-upla (vblist, parents,
localDef, State, Init, {Opi}i∈I) such that vblist is the

visibility list, parents is the list of inherited classes,
localDef are local definitions, State is a state schema, Init
is the initial state schema and Opi are operations on
State∧State’.

The Object-Z specification in Fig.5 emulates the UML
specification of the pattern depicted in Fig.1, where
ConcreteSubject and ConcreteObserver are subclasses
of Subject and Observer, respectively. The abstract class
Observer specifies an empty state schema and empty
schema for the operation update(), while the class
ConcreteObserver defines an state variable named
observerState of type ObserverState to hold
the state of the concrete observer. Similarly, the class
ConcreteSubject specifies an state variable named
subjectState of type SubjectState to hold the
state of concrete subjects. Besides, the query operation
getState() is specified as a derived state variable
(which is the most practical way to represent query
operations in Object-Z).

Step 2:
In general we count with a semi formal specification of

the program given by means of UML diagrams, or simply
programming code. From this semi-formal specification we
should produce a formal one. Proposals towards the
automatic creation of a formal specification from UML
models have been presented by Kim and Carrington [7],
Davies and Crichton [1], Pons et al.[15], Ledang [10],
among others. Fig. 6 shows the specification in Object-Z
of the Thermometer system, derived from the UML
specification in Fig. 3.

Step 3:
In Object-Z to verify the refinement relation between

two given specifications A and C, it is necessary to count
with a relation R on A.State � C.State. This relation, called
retrieve relation, is an explicit documentation of how the
properties of an abstract element are mapped to its refined
versions, and on the opposite direction, how concrete
elements can be simplified to fit an abstract definition.

Lets record that our main hypothesis estates that a
program π is an instance of the pattern Π if an only if
Specπ is a refinement of SpecΠ. In this case, the retrieve
relation can be seen as an instantiation relation which
establishes how the properties (such as, classes, attributes
and operations) defined in a pattern are mapped to its
instantiations on a concrete system, and on the opposite
direction, which roles concrete elements play in a pattern.

 Thermometer
� (getState, setState)
Subject

temperature: �
�
getState: �
getState= temperature

setState�[�(temperature)s?: �|
temperature’= s? � self.notify]

 CelsiusDisplay
� (update)

Observer

display: �
thermometer: Thermometer

update
�(display)
display’ = thermometer.getState

Figure 6. part of the Object-Z specification of the
Thermometer System.

We have already discusses about the shortcomings of
UML for the representation of the occurrence of a pattern.
We have seen that, in general, it is not obvious which
modeling elements participate in each pattern,
consequently, in this cases no retrieve relation can be
derived from the UML specification. Later on, we
presented a number of additional notations to overcome
the problem. Assuming that pattern instantiation is
represented using Tagged Pattern Annotation [4], we could
derive a retrieve relation in Object-Z in the following way:

RST:Observer.ConcreteSubject
 Thermometer

	s:Observer.ConcreteSubject,t:Thermometer

((s,t)�RST �s.subjectState=t.temperature)

ROC:Observer.ConcreteObserver
CelsiusDisplay

 	o: Observer.ConcreteObserver,

 c: CelsiusDisplay

((o,c)�ROC � o.observerState = c.display)

ROF:Observer.ConcreteSubject

 FahrenheitDisplay
	o: Observer.ConcreteSubject,

 f: FahrenheitDisplay

 ((o,f)�ROF � o.observerState=f.display)

The Tagged Pattern Annotation allowed us to recover

the retrieve relation from the UML diagram in a
straightforward way. For example the stereotype
<<__PatternClass{<Observer,ConcreteSubject>}>> which is
attached to the Thermometer class, gives rise to the
Relation RST which establishes the connection between the
concrete class Thermometer and the role it plays in the
pattern (i.e. ConcreteSubject). As another example, the

stereotype <<PatternAttribute {<subjectState>} that is
attached to the temperature attribute, originates the
expression
(s,t)�RST � s.subjectState=t.temperature
 that declares the relationship between the concrete
attribute temperature and the role it plays in the pattern
(i.e. subjectState).

This translation from Tagged Pattern Annotation to
Object-Z can be automatically performed.

Step 4:
Refinement is formally addressed in the context of

Object-Z specifications [2] as follows:
An Object-Z class C is a refinement (through downward

simulation) of the class A if there is a retrieve relation R on
A.State�C.State such that every visible abstract operation
Aop is recast into a visible concrete operation Cop and the
following hold:

(Initialization) 	C.State
 C.init �(�A.State
 A.init �R)
(Applicability) 	A.State;C.State
 R �

 (preAop � preCop)
(Correctness) 	A.State; C.State; C.State’

 R� preAop �Cop � ��A.State’
 R’� Aop

This definition allows preconditions to be weakened

and non-determinism to be reduced. In particular,
applicability requires a concrete operation to be defined
everywhere the abstract operation was defined, however it
also allows the concrete operation to be defined in states
for which the precondition of the abstract operation was
false. That is, the precondition of the operation can be
weakened.

On the other hand, correctness requires that a concrete
operation is consistent with the abstract whenever it is
applied in a state where the abstract operation is defined.
However, the outcome of the concrete operation only has
to be consistent with the abstract, and not identical. Thus if
the abstract allowed a number of options, the concrete
operation is free to use any subset of these choices, solving
non-determinism.

Using this formal reasoning we are able to prove that
the refinement relations depicted in Fig.7 hold, that is to
say:

- class Thermometer is a refinement of class
ConcreteSubject via the retrieve relation RST,

- class CelsiusDisplay is a refinement of class
ConcreteObserver via the retrieve relation ROC,

- class FahrenheitDisplay is a refinement of class
ConcreteObserver via the relation ROF.

ConcreteSubject ConcreteObserver

CelsiusDisplay

<<refine>>

FahrenheitDisplayThermometer

<<refine>>

Figure 7. Refinement as a way to solve the pattern validation

problem.

4. Conclusion
In the last years, the design pattern subject has been

incorporated in the curricula of most software engineering
courses all over the world. In general design patterns are
taught from an informal angle. Despite the fact that there is
an important number of theoretical works giving a precise
description for design patterns and providing rules for
analyzing their properties it is seldom the case that those
formalisms are taught to students. This kind of courses
qualifies an student to perform a light use of the
technology, that is to say she/he can create object oriented
models applying design patterns and she/he can discover
design patterns immersed in legacy models, but frequently
feeling unconfident about the correctness of her/his actions
and results.

 On the other hand, the standard Computer Science
Curricula [20] includes courses on logics and formal
languages; but there is a deep gap between both areas:
practical software specification techniques on the one hand
and formal specification techniques on the other hand.
Only few students can join together both areas of
knowledge, realizing the benefits of combining them.

In this article, we provide motivation for an
undergraduate course on design patterns incorporating
both informal and formal approaches. We survey the main
publication in the area and propose an organized way to
present them to the students.

Acknowledgements
This work was partially supported by Microsoft

Research RFP 2005.

5. References

[1] Davies J. and Crichton C. Concurrency and Refinement in the
Unified Modeling Language. Electronic Notes in Theoretical
Computer Science 70,3, Elsevier, 2002.

[2] Derrick, J. and Boiten,E. Refinement in Z and Object-Z.
Foundation and Advanced Applications. FACIT, Springer, 2001

[3] Dong, Jing. Representing the Applications and Compositions
of Design Pattern in UML. Procs. of the ACM Symposium on
Applied Computing, Melbourne, USA, pgs 1092–1098, 2003.

[4] Dong, Jing and Yang, Sheng. Extending UML To Visualize
Design Patterns In Class Diagrams. SEKE 2003.

[5] Eden, A. H. "Formal Specification of Object-Oriented
Design." International Conference on Multidisciplinary Design in
Engineering 2001,November 21-22, 2001, , Canada

[6] Gamma, E. Helm, R. Johnson, R. and Vlissides, J. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley Publishing Company, 1995.

[7] Kim, S. and Carrington, D., Formalizing the UML Class
Diagrams using Object-Z, proceedings UML´99 Conference,
Lecture Notes in Computer Sciencie 1723 (1999).

[8] Lauder, Anthony and Stuart Kent. Precise visual specification
of design patterns. In Eric Jul, editor, ECOOP '98 European
Conference on Object-Oriented Programming, Lecture Notes in
Computer Science, vol. 1445. pages 114-134. Springer, 1998.

[9] Le Guennec, Alain Sunye, Gerson, and Jezequel,Jean-Marc.
Precise Modeling of Design Patterns . "UML" 2000 - The
Unified Modeling Language. York, UK, LNCS 1939.

[10] Ledang, H. and Souquieres, J.. Integration of UML and B
Specification Techniques: Systematic Transformation from OCL
Expressions into B. Procs. of Asia-Pacific Software Engineering
Conf. IEEE Computer Society. Australia. December 4-6, 2002.

[11] Mapelsen, D., Hosking, J. and Grundy,J.. "Modelling:
Design Pattern Modelling and Instantiation Using DPML".
Proceedings of the Fortieth International Conference on Tools
Pacific - Volume 10 (Feb. 2002), Sydney, Australia, pp. 3-11.

[12] Mikkonen, Tommi. Formalizing design patterns. In
ICSE'98, pages 115-124. IEEE CS Press, 1998.

[13] UML 2.0. The Unified Modeling Language Superstructure
version 2.0 – OMG Final Adopted Specification. August 2003.
http://www.omg.org.

[14] OCL 2.0. OMG Final Adopted Specification. October
2003

[15] Pons, C., Baum, G., Felder M. Formal Foundations of
Object Oriented Modeling Notations. 3rd Int..Conference on
Formal Engineering Methods, IEEE ICFEM 2000. UK.

[16] Sunye, Gerson, Alain Le Guennec, and Jean-Marc Jezequel.
Design Patterns Application in UML. Elisa Bertino (Ed.):
ECOOP 2000, LNCS 1850, pp. 44-62, 2000. Springer-Verlag
Berlin Heidelberg 2000.

[17] Saeki M. (2000): Behavioral Specification of GOF Design
Patterns with LOTOS. — Proc. IEEE Asia Pacific Software
Engineering Conference, APSEC’2000, Singapore, pp. 408–415.

 [18] Taibi T. and Ngo D.C.L (2003): Formal specification of
design pattern—A balanced approach.—J. Object Technol., Vol.
2, No. 2, pp. 127–140.

[19] Vlissides, J.. Notation, Notation, Notation. C++ Report,
April 1998.

[20] Computer Science Curricula 2001. The Joint IEEE
Computer Society/ACM Task Force.
http://www.computer.org/education/.

