
Dependency Relations Between Models in the Unified Process

Claudia Pons Roxana Giandini Gabriel Baum

Lifia, Universidad Nacional de La Plata
Calle 50 esq.115, 1er.Piso. (1900) La Plata, Argentina

E-mail: cpons @sol.info.unlp.edu.ar

Abstract

The goal of the Unified Process is to guide developers
in efficiently implementing and deploying systems that
meet customer needs. During the Unified Process, a
variep of models of the system is developed. All these
niodels are not independent, but they are related to each
other. Elements in one model have trace dependencies to
other models; they are semantically overlapping and
together represent the system as a whole.

It is necessary to have a precise definition of the sintax
and semantics of the different models and their
relationships, since the lack of accuracy in their definition
can lead to wrong model interpretations and inconsistency
between models.

In this paper we distinguish three different kinds of
dependency relations between models and propose a
formal description of them. The goal of the proposed
formalization is to provide formal foundations for tools
that petform intelligent analysis on models expressed in
U M L assisting sofrYvare engineers through the
development process.

1. Introduction

The Unified Process [8] is a software development
process, that is to say it is a set of activities needed to
transform user’s requirements into a software system. The
Unified Process uses the Unified Modeling Language [161
when preparing all blueprints of the software system. The
main characteristics of the Unified Process are:

The Unified Process is Use-Case driven. Customer
needs are not easy to discern. This demands the existence
of a mechanism for capturing the user’s needs so that they
can be clearly communicated to all the members of the
project team. Use cases [7] have been adopted almost
universally to capturing requirements but they are much
more than a tool for specifying the requirements of a

0-7695-0884-7/00 $10.00 0 ZOO0 EEE
149

system. They also drive its design, implementation and
test; that is they drive the whole development process.
Based on the use-case model developers build a series of
analysis, design and implementation models that realize
the use cases.

The Unified Process is iterative and incremental, i t
repeats over a series of iterations making up the life cycle
of a system. Each iteration takes place over time and it
consists of one pass through the requirements, analysis,
design, implementation and test workflows, building a
number of different models.

All these models are not independent. They are related
to each other, they are semantically overlapping and
together represent the system as a whole. Elements in one
model have trace dependencies to other models. For
instance, a use case (in the use-case model) can be traced
to a collaboration (in the design model) representing its
realization. Figure 1 illustrates these relations between ,

models.
But this is not the only relation existing between

models in the Unified Process; due to the incremental
nature of the process, each iteration results in an increment
of previous models. An increment is not necessarily
additive. Generally in the early phases of the life cycle, a
superficial model is replaced with a more detailed or
sophisticated one, but in later phases increments are
typically additive, i.e. a model is enriched with new
features, while previous features are preserved. As a
consequence the models defined in each iteration are a
refinement (or an increment or an extension) of models in
the former iteration.

Figure 2a lists the workflows - requirements, analysis,
design, implementation and test - in the left-hand column.
The curves approximate the extent to which the workflows
are carried out in each iteration, through the development
process. Then figure 2b shows the two different kinds of
relations:

- horizontal relations between models belonging to the
same workflow in different iterations

- vertical relations between models belonging to the
same iteration in different workflows

Finally, there is a third dimension: the artifact
dimension. Each model is made up from several artifacts
(i.e. diagrams). For instance, an analysis model consists of
the following artifacts: analysis class diagram, interaction

’

Model realted by

Design venfied by
Model

Deployment
Model

’ Model TAT
Model

Figure 1: dependencies between models through the Process

Workflows

, i Test i

Figure 2a: two dimensions in the Unified Process:
extent of workflows through iterations

Use Case
Model iA

v

+
L

>
iterations (time)

Figure 2b: two dimensions in the Process:
different kinds of relation between models.

I
Collaboration

i
I
/ *

AssociationRole ~ + Iteration i
I

I * ‘\ I * ,

I Association ClassifierRole 1 ‘ender ! Messaqe ,
1 RoleEnd 1 11 [receiver 1

- ,
I

pred succ

Figure 3: artifacts composing a Collaboration model

diagrams, collaboration diagrams (see Figure 3). All the
artifacts within a single model are related and have to be
compatible with each other.

Relations between models should be formally defined
since the lack of accuracy in their definition can cause
problems, for example:
- Wrong model interpretations: the interpretation done by

the user that reads the model may not coincide with the
interpretation of the model creator.

- Inconsistency among the different models: if the relation
existing among the different sub-models is not accurately
specified, it is not possible to analyze whether its
integration is consistent or not.

- Discussion regarding the model meaning: the people
involved in the project often waste time discussing the
different possible interpretations that can be allocated to
the models.

- Evolution conflicts: when a model is modified,
unexpected behavior may occur in other models that
depend on it..

The specification of UML constructs and their
relationships [16] is semi-formal, i.e. certain parts of it
are specified with well-defined languages while other parts
are described informally in natural language. There are an
important number of theoretical works giving a precise
description of core concepts of the graphical modeling
notation UML and providing rules for analyzing their
properties; see, for instance the works of Back et a1.[2],
Aralijo [l] , Breu et a1.[3], Evans et a1.[5] [6], Kim and
Carrington [9], Knapp [lo], Overgaard [l l] [12] [13],
Pons et a1.[14], Cibr6n et a1.[4], Reggio et a1.[17], Smith
et a1.[18]. Some of these works deal with the relationships
among models. In particular, the present work is closely
related to the works of Overgaard [I 11, [12]. Its originality
resides in that it distinguishes different classes of
relationships and it also analyzes the relationships among
these relationships. On the other hand the whole analysis is

150

carried out in the syntactic level (contrarily to the works of
Overgaard that combine syntactic and semantic aspects in
order to describe relationships between models). Working
in a purely syntactic level simplifies the definitions of
properties as well as their validation.

2. First-dimension relation (Workflows)

In this section we analyze the vertical relations
between models, that is to say relations belonging to the
same iteration in different workflows. Due to space
limitations we only describe the relationships between the
requirement phase and the analysis phase.

2.1. ,Creating analysis models from use cases

A use case in the use-case model is realized by a
collaboration within the analysis model that describe how
a specified use case is realized and performed in terms of
analysis classes and their interacting analysis objects. A
use case realization has class diagrams that depict its
participating analysis classes, and interaction diagrams that
depict the realization of a particular flow or scenario of
the use case in terms of analysis object interactions. Figure

Use-case
Model

Use Case

A <<trace>>

Analysis
Model

Use-case
realization

Figure 4: relation between a use case
realization in the analysis model and a use case
in the use-case model.

4 shows the relation between a use case and its realization.
Example:

We will present the model of a system to maintain a
Library. The members of the library share a collection of
books. The system should allow them to borrow books, to
return them or to renovate a loan. When returning or when
renovating the loan of a book, the member should pay a

fee. In the event this fee is not paid, the member won’t be
able to borrow a new book or to renovate a loan. The
figure 5 shows the use case RenewLoan. This use case
specifies the functionality of the system, for the renew of a
loan.

RenewLoan

Merrber

Figure 5: renewLoan use case

Use cases can be specified in a number of ways.
Generally natural language structured as a conversation
between user and system is used, see [7] . The conversation
shows the request of a user and the corresponding answers
of the system, at a high level of abstraction. Figure 6
shows a conversation between an actor (a member of the
library) and the system. The conversation considers the
normal action sequence and also alternative sequences
(e.g. the case in that the book is not available).

In the UML a UseCase is a kind of Classifier having a
collection of operations (with its corresponding methods).
Operations describe messages that instances of the use
case can receive. Methods describe the implementation of
operations in terms of action sequences that are executed
by the instances of the use case. In general instead of
having a set of operations, a use case has only a single
operation, for example the RenewLoan use case has a
single operation named “ask for renew loan”. The method
that implements that operation contains the set of action
sequences, some of the sequences in this set correspond to
normal execution paths, while others correspond to
alternative cases.

User Actions System Answers

1. ask for
renew loan

2. validate member identification
3 . validate book availability
4. ask for debt
5 renew loan

Alternatives:
1. member identification is not valid -> reject loan
2. book is not available -> reject loan
3. member has debt -> ask for payment, then renew loan

Figura 6: Use Case Conversation

151

Let uc be the use case defined above. The definition of
uc (using the standard notation and metamodel of UML (in
[161 page 2- 1 14) is as follows:
uc.operations = <opl>
opl .name=ask for renew loan
opl .method.body=

{ < validate member identification, validate book
availability, ask for debt, renew loan>,
< validate member identification, reject loan>,
< validate member identification, validate book
availability, reject loan>,
< validate member identification, validate book
availability, ask for debt, ask for payment, renew loan >}

In general we abbreviate op.method.body by
op.actionSequence. The body of a method is a Procedure
expression specifying a possible implementation of an
operation. The definition of procedure expressions is out
of the scope of UML, we interpret a procedure expression
as a set of action sequences.

The realization of the use case:
Figure 7 shows a set of Classifier Roles and their

connections, while figure 8 shows one of the iteration
diagram specifying the message flows between objects
playing the roles in the collaboration. Figure 9 contains the
textual representation of the diagrams. These diagrams
realize the use case above.

2.2. Formalizing the realization relation between
Use Cases and Collaborations

Lets define a set of concepts that are necessary in order
to formalize the relations between use cases and
collaborations.

Def. 1: a sequence is a totally ordered set of elements.
Let p and q be sequences, p I q implies that p is a prefix of
q, i.e. q = p r for some sequence r.

Def. 2: let (MS, I) be the poset of messages in an
interaction (messages are partially ordered by the
predecessor/successor relation). The set of linearizations
on MS is defined as the set of sequences of messages in

1
:Loan
Manaaer

R
:Library
Member

Figure 7. Realization of the use case: collaborating ClassifierRoles

Manaaer Manaaer Manaaer
R :Librarv

Member

renewLoan(id, b)

[doO]payFee (d)

authorizeRenew

request idValidation(id)

askForDebt(return d)
>

renewLoan(id, b)
>

Figure 8: part of the Realization of the use case: one Interaction diagram

152

Let RenewLoan be the Use Case defined above, and let CRenewLoan be the collaboration. The definition of
CRenewLoan (using the standard notation and metamodel of UML (UML 99, page 2-100) is as follows:

CRenewLoan.representedClassifier= RenewLoan
CRenewLoan.interaction={ int 1 ,int2, int3,int4)
CRenewLoan.classifierRole={ R 1 ,R2,R3,R4,R5 }
R1 .name=LoanManager, R2.name=Book, R3.name=Member,
R4.name=MemberManager, RS.name=BookManager
CRenewLoan.associationRole={ A 1 ,A2,A3,... }

int 1 .message=[(Actor, LoanManager, renewLoan(id,b)), (LoanManager, MemberManager, requestIdValidation),
(LoanManager, BookManager, requestBookAvailability), (LoanManager, MemberManager, askForDebt) ,
(LoanManager, BookManager, renewloan))
int2.message=((Actor, LoanManager, renewLoan(id,b)), (LoanManager, MemberManager, requestIdValidation),
(LoanManager, BookManager, requestBookAvailability), (LoanManager, MemberManager, askForDebt),
(LoanManager , Actor,payFee), (LoanManager, BookManager, renewloan)]

Where each message m is represented by a triple (m.sender,m.receiver,m.action), where m.sender denotes the role
of the instance that invokes the communication, m.receiver is the role of the instance that receives the
communication, m.action is the action which causes a stimulus to be sent according to the message.

Figure 9: textual representation of the CRenewLoan Collaboration

MS (i.e. the chains in the poset), and it is denoted as
l in(MS, 5).

Def. 3: maxLin(MS, 5) is the set of maximal
linearizations on MS. It is obtained from lin(MS, I) by
dropping every sequence that is contained in another
sequence in the set, for example:

lin(MS, I) ={<a,b,c,d>, <b,c>,<c,d>}
maxLin(MS, I) ={ <a,b,c,d>}
Def. 4 : let S be a set of sequences of actions.

external(S) denotes the sequences of S obtained omitting
all the actions that are not visible externally.

Def. 5 : a conformance declaration is a correspondence
between action names in a use case and action names in a
collaboration. Each name in the use case is mapped to (a
name of) an action in the collaboration. This mapping
provides more flexibility in the development process
allowing analysts to modify the name of the actions as the
process evolves.

For example, the following is a conformance
declaration between the Use Case and the Collaboration
above:

Actions in the use case Actions in the collaboration

At this point we can define the realization relation
between a Collaboration C and a Use Case UC. A Use
Case is realized by a Collaboration if the Classifiers Roles
in the Collaboration jointly cooperate to perform the
behavior specified by the Use Case, but not more. In the
case that the Collaboration includes more behavior than
the one specified by the Use Case, the Use Case would be
only a partial specification of the behavior described by
the Collaboration. On the other hand, a use cases specifies
actions that are visible from outside the system, but do not
specify internal actions, such as creation and destruction of
instances, communication between internal instances, etc.

Definition 6: A collaboration C is a realization of a
Use Case UC according to the conformance declaration 6,
denoted CLJJC, if both of the following hold

a- VUOE UC.operation. VutE uo.actionSequence.
3 i n t ~ C.interaction. 3msE lin(int.message) .
G(uo.name) = act.operation.name
A &+(ut)= external((ms ->tail).action)

b- VintE C.interaction . VmsE maxLin(int.message) .
~ U O E UC.operation . j u t e uo.actionSequence .
G(uo.name) = act.operation.name
A &+(ut)= external((ms ->tail).action)

153

Where: act = (ms->head).action
ms->head is the first element in the sequence ms
ms->tail is the subsequence obtained from ms by

ms.action is an abbreviation for ms->collect (e 1
&+(ut> = ut->collect (a I &(a)

dropping the first element

e.action)

Definition above states that every action sequence
specified by the Use Case must have a corresponding
action sequence in the Collaboration, that is equal to it
(except for internal actions), and vice versa.

3. Second-dimension relations (Time)

In this section we analyze the horizontal relations
between models, that is to say relations belonging to the
same workflow in different iterations.

3.1. Evolving the use-case model

A use case model may be evolved in different ways.
The UML considers at least two forms of evolution: the
extends and the generalization relationships between use
cases. In this paper we only take into consideration the
former.

Use Case Model Use Case Model

iteration n I iteration n +I -

Figure I O : relation between a use case in the
use case model and its extension

The extend relation represents the enrichment of a use
case by the definition of additional actions (see figure 10).
An extend relationship from use case A to use case B
indicates that an instance of use case B may include
(constrained by specific conditions specified in the
extension) the behavior specified by A.

The definition of extend includes both a condition for
the extension and a reference to an extension point in the
target use case, that is, a position in the use case where
additions may be made. Once an instance of a (target) use
case reaches an extension point to which an extend
relationship is referring, the condition of the relationship is
evaluated. If the condition is fulfilled, the sequence obeyed

by the use-case instance is extended to include the
sequence of the extending use case.

Example:

The use case in figures 5 and 6 can be extended in
order to count how many people have renovated the loan
of a technical book. This extension can be achieved
without modifying the original use case, by means of an
extend relationship and a new use case specifying the
increment of behavior. Figure 10 shows this relationship
between use cases. In this case the extension point
specified by the extend relationships is the action of
renewing a loan. The condition of the extension is that the
book is a technical one.

Let Statistic be the use case above mentioned
specifying the increment of behavior. Statistic has a single
operation with a single action sequence, as follows:
Statistic.operation.actionSequence=
{ <updateRenewsCounter>)

ext.base= RenewLoan
ext.extension= Statistic
ext.condition= the book is technical
ext.extensionPoint= (renew loan }

Let StatisticRenewLoan be the use case obtained from
RenewLoan by the application of the extension above, i.e.
StatisticRenewLoan = RenewLoan O,,, Statistic.

The textual representation of StatisticRenewLoan is as
follows:
StatisticRenewLoan.operation.actionSequence=
(< validate member identification, validate book
availability, ask for debt, renew loan,
updateRenewsCounter> , < validate member identification,
reject loan>,
< validate member identification, validate book
availability, reject loan>,
< validate member identification, validate book
availability, ask for debt, ask for payment, renew loan ,
updateRenewsCounter >)

The extend relationship ext is as follows:

Formalizing use case extensions:

A use Case UC is the

i.e. UC = UC1 O,,, UC2 if the following holds:

extension of UC1 by UC2
through an “extend” relationship ext;

a- Applicability Conditions: UCI is extensible by ex? if
for each extension point of ext, there exist a corresponding
action inside the sequences of actions of the use case:

Vi E ext. extensionpoint. 3uo E UC1 .operation .
h o t € uo.actionSequence . i.location E uot

,154

b- UCl-Completeness: every action sequences in UC1 is
extended in every possible way:

'dol E UCl.operation .30 E UC.operation .
(o.name=ol.name A (Vs1Eol.actionSequence.

extensions(s 1 ,ext,UC2) co.actionSequence))

c- UCl-Correctness: every action sequence in UC is an
extension of some action sequence in UC1.

\JOE UC.operation .301~ UC1.operation .
(o.name=ol .nameA(b'jsE o.actionSequence.3sl E 01 .acti

onsequence. SE extensions(sl,ext,UC2)))

Definition 7 (function definitions):
isExtensible: Actionsequence x Extend

The predicate is true if the action sequence contains
some extension point defined by the extend relation.
b's:ActionSequence . b'ext:Extend . isExtensible(s,ext) ++
3 iE ext.extensionPoint . i.locationE s

extensions: Actionsequence x Extend x UseCase ->
Set(Acti0nSequence)

The function extensions(s,ext,uc) returns the set of all
possible extensions of the sequence s given by the Extend
relation ext and the Use Case uc. The function is defined
by cases.
Case 1 : 1 isExtensible(s,ext)
extensions(s,ext,uc)={ s)
Case 2: isExtensible(s,ext)
extensions(s,ext,uc)=

{ before(s,i.location);s2;after(s,i.location) /
i e ext.extensionPoint A i.locationE s A

S ~ E uc.actionSequence]

Definition 8: UC extends UCl if there exists a use case
UC2 such that UC is the extension of UCl by UC2
through an ext relation:
UC extends,,UCl H 3UC2. (UC=UCl O,,, UC2)

3.2. Evolving the collaboration model

The UML does not consider special dependency
relationships between Collaboration. However since
Collaborations realize Use Cases, it is important to reflect
the relationships between Use Cases (e.g. extend
relationships) on its realizing Collaborations. As well as
Use Cases are extended by adding actions (defined in other
Use Case), Collaborations can be extended with additional
message sequences specified in another Collaboration.

For further deatails about the extension relationship
between Collaborations based on the corresponding
extension relationship between Use Cases, readers are
referred to [15].

4. Third-dimension relations (Artifact)

Every model is made up from a number of related sub-
models (or artifacts) that have to be semantically
compatible obeying to several constraints between them.

The UML specification document [161 defines the
abstract syntax of UML by class diagrams and well-
formedness rules in OCL [16]. Most of the well-
formedness rules in that document are examples of
constraints on third-dimension relations. For example

- rule for ClassifierRole in page 2-104 in [16] saying
that the features of the ClassifierRole must be a subset of
those of the base Classifier:

Self. base.allFeatures->includesAll

- rule for Association in page 2-42 in [16] stating that
the connected Classifiers of the AssociationEnds should be
included in the NameSpace of the Association:

(self.allAvailab1eFeatures)

self.allConnections->forAI1
(r I self.nameSpace.allContents->includes (r.type))

Furthermore, the building of a formal model allowed us
to find out and correct ambiguities and inconsistencies in
the UML Language. For example, a classifier role is a
description of the features required in a particular
collaboration , i.e. a classifier role is a projection of a
classifier. The classifier so represented is referred to as the
base classifier. Collaboration, classifier and classifier roles
are generalizable elements One possible way to specialize
a collaboration is to specialize some classifier role in the
collaboration. The UML specification document gives a
set of OCL rules to restrict generalization relation between
collaborations. The rule number 5 in page 2-106 in [16]
states that "a role whit the same name as one if the roles in
a parent of the Collaboration must be a child (a
specialization) of that role". This rule is expressed by the
formula:
'ds:Collaboration *YCE s.contents

* V ~ E s.parent.allContents*
(c.name=p.name + PE c.allParents)

This rule is too restrictive, since the specialization of a
classifier role could be accomplished in other ways. For
example the rule above should be extended in the
following way:

t7's:Collaboration
' d c ~ s.contents k f p ~ s.parent.allContents*
(c. name=p.name +
(PE c.allParents

v (p.allAvailableFeatures~ c.allAvailableFeatures A

p.baseE c.base.allParents)))

On the other hand it in necesary to define
compatibility rules among the different views of a system

155

(e.g. Class diagrams, Statecharts, etc.). We give examples
of compatibility rules:

Example 1: Pre/post conditions vs. State Machines
Any model element may be associated with a

constraint that expresses some property of it. There are
problems when the constrained element has also a
behavior that is precisely defined else where in the model.
For example, a constraint on an operation (as a pre-post
condition) may be inconsistent with the effects of the
transitions triggered by its calls in the associated state
machine. As a consequence, it is necessary to integrate
both views of the system guaranteeing that they are
consistent with each other. The following rule formalizes
this requirement:

Example 2: Generalizations vs. other elements
Generalization diagrams have a strong influence on

other diagrams in the model of the system.
For example, if two classes c, and c2 are connected by

a generalization relation (e.g. c I is a subclass of c?), the
behavior of instances of c I should be a refinement of the
behavior of instances of c1. This requirement is defined by
the following formula:

Vcl,c2:Classifier* (ZsA(cl,cz) -+
refinement(behavior(cl) , behavior(c2)))
A similar problem occurs when constraints are linked

to classes in a generalization hierarchy: if c i is a subclass
of c2 then all the constraints over C I should be consistent
with all the constraints on c2. This requirement is
expressed by the following formula:

Vcl,c2:Classifier* (IsA(cI,c2) 4

consistent(constraints(cl) uconstraints(c2)))

5. Relations between relations

As well as the different models of a system are not
independent, the different relationships among models
neither are independent. In this section we point out some
properties of relationships.

Theorem: Let UC1 and UC2 be use cases. If UC2 is an
extension of UCl through exf , and each use case is
realized by a corresponding collaboration, then there exists
a collaboration realizing UC2 such that it is an extension
of c 1 :

VUC1, UC2: UseCases. VC1, C2: Collaborations .
((UC2 extends,, UC1 A C126 UC 1 A C2 26 UC2) +
3C3. (C3 extendsexl C1 A C3 2s UC2))

Figure 10 illustrates the relation between the extend
relationship and the realization relationship.

‘i <uealized by>> <<realized by>> 1

i i

UCl realization

V
n ----

UC2 realization

Figure 10: relations between relations in the Unified
Process

6. Concluding Remarks

During the Unified Process, a variety of models of the
system is developed. All these models are not independent,
but they are related to each other. Elements in one model
have trace dependencies to other models; they are
semantically overlapping and together represent the system
as a whole.

Relations between models should be formally defined
since the lack of accuracy in their definition can lead to
wrong model interpretations, inconsistency among models,
inconsistent evolution of models, etc.

In this paper we distinguish three different kinds of
dependency relations between models - workflows,
iterations and artifacts - and propose a formal description
of them. The goal of the proposed formalization is to
provide formal foundations for tools that perform
intelligent operation on models, such as:

- checking the consistency between models belonging
to different workflows, such as a requirements model and
an analysis model (i.e. consistency along the workflows
dimension).

the consistency of models through its
evolution along the process (i.e. consistency along the time
dimension)

- checking the internal consistency of models (i.e.
consistency along the artifact dimension).

- checking the consistency of the process as a whole
(i.e. consistency among the different dimension).

A step beyond this work will be to use the
formalization to define automatic rules of evolution that
assist the software engineer during the development
process. For example, given an analysis model the rules
could suggest possible forms of realizing such a model in
terms of design models, and given a model the rules could
suggest possible way to refine or to extend it.

- checking

156

References

[I] Arai?jo, J, Formalizing Sequence Diagrams, In Luis
Andrade, Ana Moreira, Akash Deshpande and Stuart Kent,
editors, Proc. OOPSLA‘98 Wsh. Formalizing UML. Why?
How?, Vancouver, (1998).

[2] Back, R. Petre L. and Porres Paltor I., Analysing UML Use
Cases as Contract. Proceedings of the UML’99 Second
International Conference. Fort Collins, CO, USA, October 28-
30/99. Lecture Notes in Computer Science, Springer-Verlag,
(1999).

[3] Breu,R., Hinkel,U., Hofmann,C., Klein$., Paech,B.,
Rumpe,B. and Thumer,V., Towards a formalization of the
unified modeling language. ECOOP’97 procs., Lecture Notes in
Computer Science ~01.1241, Springer, (1997).

[4] CibrAn, M.A., Mola, V., Pons,C., Russo,W. Building a
bridge between the syntax and semantics of UML Collaborations.
In ECOOP’2000 Workshop on Defining Precise Semantics for
UML. CannedSophia-anti polis, France, June 2000.

[5] Evans,A., France,R., Lano,K. and Rumpe,B., Towards a
core metamodelling semantics of UML, Behavioral specifications
of businesses and systems, H. Kilov editor, Kluwer Academic
Publishers, (1 999).

[6] Evans,A., France,R., Lano,K. and Rumpe, B., Developing
the UML as a formal modeling notation, UML’98 Beyond the
notation, Muller and Bezivin editors, Lecture Notes in Computer
Science 161 8, Springer-Verlag, (1998).

[7] Jacobson, I., Christerson, M., Jonsson P. and Overgaard, G.,
Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, (1993).

[8] Jacobson, I..Booch, G Rumbaugh, J., The Unified Software
Development Process, Addison Wesley. ISBN 0-201-571 69-2
(1 999)

[9] Kim, S. and Carrington,D., Formalizing the UML Class
Diagrams using Object-Z, proceedings UML‘99 Conference,
Lecture Notes in Computer Sciencie 1723, (1 999).

[IO] Knapp, Alexander, A formal semantics for UML
interactions, <<UML>>’99 - The Unified Modeling Language.
Beyond the Standard. R.France and B.Rumpe editors,
Proceedings of the UML’99 conference, Colorado, USA,.
Lecture Notes in Computer Science 1723, Springer. (1999).

[I I] Overgaard, G., and Palmkvist,K., A Formal Approach to
Use Cases and Their Relationships. In P. Muller and J. BCzivin
editors, Proceedings of the UML’98: Beyond the Notation,
Lecture Notes in Computer Science 161 8. Springer-Verlag,
(1 998).

[12] Overgaard, G., A formal approach to collaborations in the
UML, <<UML>>’99 - The Unified Modeling Language. Beyond
the Standard. In UML’99 conference, Colorado, USA,. Lecture
Notes in Computer Science 1723, Springer. (I 999).

[13] Overgaard,G.. Using the Boom Framework for formal
specification of the UML. in Proc. ECOOP Workshop on
Defining Precise Semantics for UML, France, June 2000.

[141 Pons,C., Baum,G., Felder,M., Foundations of Object-
oriented modeling notations in a dynamic logic framework,
Fundamentals of Information Systems, Chapter I , Kluwer
Academic Publisher, (1999).

[151 Pons C., Giandini,R. and Baum,G, Relations between
different models in the Unified Process. Pons, C., Giandini,R.
and Baum,G. International Workshop on Model Engineering
(IWME’OO), ECOOP’2000. Cannes/Sophia-Antipolis,, France,
June 2000.

[161 The Unified Modeling Language (UML) Specification -
Version 1.3, July 1999. UML Specification, revised by the OMG,
htt~://www.rational.conll

[171 Reggio,G., Astesiano,E., Choppy, C. and Hussmann,H.,
Analysing UML active classes and associated state machines. In
Proc. FASE 2000 - Foundamental Approaches to Software
Engineering, LNCS 1783, Spring Verlag, 2000.

[I81 Smith, J., DeLoach,S., Kokak,M.and Baclawski,K, Category
theoretic approaches of representing precise UML semantics. in
Proc. ECOOP Workshop on Defining Precise Semantics for
UML, France, June 2000.

157

