Reasoning About the Correctness of Software
Development Process

Claudia Pons and Gabriel Baum

LIFIA — Universidad Nacional de La Plata. calle 50 esq.115. 1900 Buenos Aires, Argentina
{cpons,gbaum}@sol.info.unlp.edu.ar

During the object-oriented software development process[3], a
variety of models of the system is built. All these models are not
independent, but they are related to each other. Elements in one
model have trace dependencies to other models; they are
semantically overlapping and together represent the system as a
whole. It is necessary to have a precise definition of the syntax
and semantics of the different models and their relationships,
since the lack of accuracy in their definition can lead to wrong
model interpretations and inconsistency between models.

An essential element to the success of software development
process is support offered by case tools. Existing case tools
facilitate the construction and manipulation of models, but in
general they do not provide checks of consistency between
models. The weakness of tools is mainly due to the lack of a
general underlying formal foundation for the software
development process (particularly focused on relationships).

While the notion of formal contract regulating the behavior of
software agents[1][2][4] is accepted, the concept of contract
regulating the activities in the software development process is
quite vague. In general there is not documented contract
establishing obligations and benefits of members of the
development team. In the best of the cases the development
process is specified by either graph of tasks or o-o diagrams in a
semi-formal style, while in most of the cases activities are carried
out on demand, with little previous planning. However, a
disciplined software development methodology should encourage
the existence of formal contracts, so that contracts can be used to
reason about correctness of the development process, and
comparing the capabilities of various groupings of agents in order
to accomplish a particular contract. We define the concept of
software process contract (sp-contract). Sp-contracts applies the
notion of formal contract to the software development process
itself. That is to say, the software development process can be
seen as involving a number of agents (the development team and
the software artifacts) who carry out actions with the goal of
building a software system that meets the user requirements. Sp-
contracts introduce precision of specification, avoiding
ambiguities and inconsistencies, and enabling developers to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICSE’02, May 19-25, 2002, Orlando, Florida, USA.

Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

708

reason about the correctness of their joint activities. The goal of
the proposed formalism is to provide foundations for case tools
assisting software engineers during the development process. Sp-
contracts provide a formalization of software artifacts and their
relationships. Also they clearly establish pre and post conditions
for each software development task, allowing for the verification
of consistency between models.

The originality of sp-contracts resides in the fact that software
developers are incorporated into the formalism as agents (or
coalition of agents) who make decisions and have responsibilities.
Given a specific goal that a coalition of agents is requested to
achieve, we can use traditional correctness reasoning to show that
the goal can in fact be achieved. The weakest precondition
formalism[1] allows us to analyze a single contract from the point
of view of different coalitions and compare the results.

There are different levels of granularity in which sp-contracts are
defined. On one hand we have contracts regulating primitive
evolution, such as adding a single class in a Class diagram, while
on the other hand we have contracts defining complex evolution,
such as the realization of a use case in the analysis phase by a
collaboration diagram in the design phase, or the reorganization of
a complete class hierarchy. The formalism manages complexity by
means of a hierarchical definition and classification of
contracts[5]. On one hand, the library of contracts is organized
into a generalization-specialization hierarchy. Then, it is possible
to define a new contract by specializing an existing one. On the
other hand, contracts can be specified in a compositional way, and
weakest preconditions for a complex contract are calculated from
weakest preconditions of its constituent contracts.

1. REFERENCES

[1] Back, R and von Wright, J., Refinement Calculus: A
Systematic Introduction, Springer Verlag, 1998.

[2] Helm, R. Holland, I and Gangopadhyay, D. Contracts:
specifying behavioral compositions in object-oriented
systems, Proc. OOPSLA'90. ACM Press. Oct 1990.

Jacobson, I..Booch, G Rumbaugh, J., The Unified Software
Development Process, Addison Wesley. 1999.

(3]

(4]

Meyer, B. Advances in object oriented software engineering.
Chapter 1 “Design by contract”. Prentice Hall, 1992.

[5] Pons,C and Baum G. Software Development Contracts, 5th
European Conference on Software Maintenance and
Reengineering, Special Session on Formal Foundation of

Software Evolution. Portugal, March 2001.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

