
Formal Foundations of Object-Oriented Modeling Notations

Claudia Pons Gabriel Baum

Lifia, Universidad Nacional de La Plata
Calle 50 esq.115, ler.Piso, (1900) La Plata, Buenos Aires, Argentina

e-mail: { cpons,gbaum} @sol.info.unlp.edu.ar

Abstract
In this paper we describe and classifL the different

solutions that have been proposed to realize the integration
ofgraphic modeling languages, known and accepted by the
software developers, with formal modeling languages
having analysis and verification tools.

Inspired from that classification we define a new
integration proposal, based on first-order dynamic logic.
The principal benefits ofthe proposedformalization can be
summarized asfollows: - The different views on a system
are integrated in a single formal model: this allows us to
define rules of compatibility between the separate views, on
syntactical and semantic level. -Using formal
manipulation, it is possible to deduce further knowledge
from the specification. -The faults of specifications
expressed using a user-friendly notation can be revealed
using analysis and verification techniques based on the
formal kernel model.

The principal diflerence between this model and other
object-oriented formal models is that it integrates both of
the levels in the architecture of modeling notations into a
single conceptual framework. The integration of modeling
entities and modeled entities into a single formalism allows
us to express both static aspects and dynamic aspects of
either the model or the modeled system within a first-order
formalism.

1: Introduction

The increasing complexity of software systems makes
their development complicated and error prone. A widely
used and generally accepted technique in software
engineering is the combination of different models (or
views) for the description of software systems. The primary
benefit of this approach is to model only related aspects
(like structure or behavior). Using different models clarifies
different important aspects of the system, but it has to be
taken into consideration that these models are not
independent and they are semantically overlapping.

The models constitute the hndamental base of
information upon which the problem domain experts, the
analysts and the software developers interact. Thus, it is of
a fundamental importance that it clearly and accurately
expresses the essence of the problem. On the other hand,
the model construction activity is a critical part in the
development process. Since models are the result of a
complex and creative activity, they tend to contain errors,
omissions and inconsistencies. Model verification is very
important, since errors in this stage have an expensive
impact on the following stages of the software development
process.

Models are constructed using a modeling language
(which may vary from natural language to diagrams and
even to mathematical formulas).

The success of software development methods, such as
Object Oriented Analysis [6], Object Oriented System
Analysis [34], Object Modeling Technique [33], BoochS
design method [4] and the Rational Unified Process [I71
are mainly based on their use of intuitively appealing
modeling constructs and rich structuring mechanisms,
which are easy to understand, apply and transmit to the
customers. However, the lack of precise semantics for the
modeling notations used by these methods can lead to
inconsistencies and ambiguities.

On the other hand, formal languages for modeling, such
as Z [35], VDM [19], F-Logic [21], DS-Logic [39] has a
well-defined syntax and semantics. However, its use in
industry is not frequent. This is due to the complexity of its
mathematical formalisms, which are difficult to understand
and communicate. In most cases, experts on system domain
who decide to use a formal notation, center their effort
upon the managing of formalism instead of focusing on the
model itself. This leads to the creation of formal models
that do not properly reflect the real system.

As a consequence, it has been proposed to combine the
advantages of both approaches (see section 2), intuitive
graphical notations on the one hand and mathematically
precise formalisms on the other hand, in development tools.
The basic idea for this combination is to use mathematical

10 1
0-7695-0822-7/00 $10.00 0 2000 IEEE

notation in a transparent way, hiding it as much as possible
under the hood of graphical notations. This approach has
advantages over a purely graphical specification
development as well as over a purely mathematical
development because it introduces precision of
specification into a software development practice while
still ensuring acceptance and usability by current
developers.

2: Combining modeling techniques

Basically, four different proposals to carry out the
integration of graphical notations and mathematically
precise formalisms have been identified:

Supplemental: the supplemental proposal consists in
enriching an informal model with formal concepts. Good
examples of it are Syntropy [7], and LanoS [15] and
WeberS [38] works, which propose the use of the formal Z
notation [35] to enrich semi-formal notations.

Extension: the extension proposal consists in extending
an existing formal notation, with concepts that are closer to
the application domain as for instance, the concepts
adopted by the object-oriented paradigm. In this way,
formal notation becomes easier to be understood and
managed by software developers. The most relevant
examples of this proposals are the language Z extensions,
such as Z++ [23] and Object-Z [8]. The languages TROLL
1181 OOZE [I] and MAUDE [25], inspired on algebraic
specification languages are also part of this group.

Interfuce: given a formal modeling language, this
proposal consists in developing an altemative graphic
notation to facilitate the creation and visualization of
models. Examples of this proposal are the graphic
interfaces provided by formal languages such as OASIS
[28] and LTL [32].

Semantics: this proposal consists in formally defining
the semantics of a modeling language, known and accepted
by the community. Its main components are rules to
associate syntactic structures of the modeling language
with elements within a formally defined semantic domain.

In our opinion, “semantics” constitutes the most
adequate proposal, since it allows that the specifications
expressed in a notation known and accepted by the
software developers acquire an accurate meaning through
its “translation”into a formal domain. Our point of view is
based on the fact that both the supplement integration
proposal and the extension integration proposal require that
the developers know the formal notation, since this
constitutes a visible part of the specification. On the other
hand, the disadvantage of the interface integration
proposals is that the user is compelled to adopt a new
graphic language, which is usually influenced by the
formalism, thus making it scarcely intuitive.

The main advantage of the semantic proposal regarding
the others, resides in that graphic language is tumed into a
formal language hence, thus the specifications expressed
in a graphic language can be formally analyzed to early
find out contradictions and ambiguities in the software
development process. One of the keys to the success of this
proposal resides in hiding the mathematical notation, as
much as possible, behind the graphic notation. For
example, it should be possible to use formal semantics to
develop CASE tools. Only language developers should use
formalism to build the CASE tools and justify their
correction, while application software developers could
handle graphic models avoiding the underlying
mathematical formalism.

The Unified Modeling Language UML [36] is a
standard graphic language for modeling and specifying
object-oriented systems. The language consists of a set of
constructs common to most object-oriented languages.
From the standardization of the UML active discussions
have risen about the semantics accuracy of its
constructions. While the Object Management Group OMG
was responsible for the standardizing of the UML as
notation, the semantics of the UML is still a research issue.

There are an important number of theoretical works -
see, for instance [27] and [I21 - that deal with different
parts of UML, formally defining its syntax and semantics.
However, there is still a long way to run regarding this
matter. It is particularly hard to compare the results of the
respective articles, and it is even harder to combine such
results with the aim of obtaining a semantic standard for
UML. This difficulty arises because of the different works
that use diverse formal methods (or languages), or cover a
notation subset, or assume a particular system subclass to
be specified. However, an important amount of the
proposals can be classified in two groups: formalizations
based on the model and formalizations based on the
metamodel. We explain this classification in the following
section.

2.1: Formalizing modeling languages

A number of approaches for giving semantics to
modeling languages (specially the UML) can be classified
in two different groups: model-based and meta-modet-
based approaches. This classification is inspired from the
four levels in the architecture of modeling notations [36].
The main difference between these approaches is the focus
of the formalization. Formalizations in the first group
concentrate their attention on the model level (see figure
la), while formalizations in the second group focus on the
metamodel level (see figure 1 b):

In the model-based approaches (see [26]; [l I]; [37]; [39];
[24]; [22](a)), the individuals in the semantic domain are

102

the business objects, for example accounts and clients of
a bank. (i.e. the formalization focuses on the particular
system that is being described).
In the meta-model-based approaches (see [IO]; [5]; [36];
[9]; [22](b)) the objective is to give a precise description
of core concepts of the graphical modeling notation and
provide rules for analyzing their properties. The
individuals appearing in the semantic domain are
modeling elements, such as classes, attributes, operations,
associations, generalizations, etc. (i.e. the formalization is
focused on the language itself instead of on any particular
system described by the language).

The principal advantages and disadvantages of each
approach are summarized in figure 2.

3: The M&D-theory

It is appropriate for the specification of the
information that is inherent to the application.
It allows the detection of inconsistencies and
errors in the specifications expressed in the
modeling language.
It allows the representation of constraints over
the modeling elements in an adequate way (for
example between Class and StateMachine)
It allows for the detection of errors and
inconsistencies in the modeling language itself.
It gives a first order framework to represent

We introduce the M&D-theory, a proposal for giving
formal semantics to the UML. The basic idea behind this
formalization is the definition of a single semantics domain
integrating both the model level and the data level. In this
way, both static and dynamic aspects of either the model

It is not suited for expressing consistency
constraints between metaentities (e.g. structural
relationships between classes).
It is not possible to represent model evolution
in a first order formalism.
It is difficult to represent constraints over the
business objects.

model- I based r meta-
model- 1 based

and the modeled system, can be described within a first
order formal framework. The entities defined by the M&D-
theory are classified in two disjoint sets:

Modeling entities
Modeled entities

Figure 3 shows this dichotomy of entities. Modeling
entities correspond to concrete syntax of the UML, such as
Classes or StateMachine. In contrast, modeled entities,
such as Object or Link represent run-time information, i.e.
instances of classes and processes running on a concrete
system.

The M&D-theory provides two different kinds of
instantiation relations (see figure 3):

Horizontal instantiation: this relationship connects a
modeling entity with its modeled entities, for example
Objects are instances of a Class (or we can say that
Objects are modeled by a Class) and Links are
instances of an Association, S2 is an instance of
Savings.

Figure l a : model-based formalization Figure 1 b: meta-model-based formalization

Advantages I Disadvantages I

model evolution. I I
Figure 2: advantages and disadvantages of each group

103

Figure 3: dichotomy of entities

. Vertical instantiation: this relationship represents the
instantiation mechanism of the metalanguage (dynamic
logic in our case). For example, BankAccount is an
instance of the metaclass Class, holder is an instance
of the metaclass Association, C, SI and S2 are instance
of Object.

It is interesting to highlight that horizontal instantiation
preserves vertical instantiation. For example, S2 is an
instance (horizontal) of Savings, and there exist MI and
M2 such that S2 is an instance (vertical) of M2 and Savings
is an instance (vertical) of M1, whereas M2 is an instance
(horizontal) of M1. In the example in figure 3, M1 is the
metaentity Class and M2 is the metaentity Object. The
formal proof of this property is in [141.

3.1: Structure of the theory

The M&D-theory is a first-order order-sorted dynamic
logic theory’ [I61 [39], consisting of three sub-theories:

’ A first-order order-sorted dynamic logic therory Th =

(E, 9) consists of a signature z that defines the language of
the theory, and a set 9 of Caxiomas .A signature E = ((S,
I), F, P, A) consists of a a set of sort symbols S, a partial
order relation between sorts I, function symbols F,
predicate symbols P, and Action symbols A.

M&D-theory= UML-theory + SY S-theory + JOINT-theory

The sub theory UML-theory:
The theory describes modeling entities (i.e. models). In

the UML, Class Diagrams model the structural aspects of
the system. Classes and relationships between them, such
as Generalizations, Aggregations and Associations
constitute Class Diagrams. On the other hand, the dynamic
part of the system is modeled by Sequence and
Collaboration diagrams that describe the behavior of a
group of instances in terms of message sendings, and by
State Machines that show the intra-object dynamics in
terms of state transitions.

Modeling entities are related to other modeling entities
Consider for example the association between Class and
StateMachine by the relation labeled behavior: This
association indicates that StateMachines can be used for the
definition of the behavior of the instances of a Class. Other
example is given by the relation existing between
StateMachine and State, that specifies that a StateMachine
is composed by a set of States. It is important to formally
define how the different UML diagrams are related to one
another, to be able to maintain the consistency of the
model. Moreover, it is important to specify the effect of
modifications of these diagrams, showing what is the

104

impact on other diagrams, if a modification is made to one
diagram.

The theory consists of a signature &.,j~= ((SUML,~),
FuML, PUML, AUML) and a formulahML over CUML:

UML-theory = GML, ~ M L 1
The set SUML contains sort symbols representing

modeling elements, such as Class and StateMachine. The
order relation between sorts allows for the hierarchical
specification of the elements.

The sets of symbols &;ML and P U M L define functions
and predicates over modeling entities.

The set AUML consists of action symbols representing
evolution of specifications over their life cycle. One of the
most common forms of evolution involves structural
changes such as the extension of an existing specification
by addition of new classes of objects or the addition of
attributes to the original classes of objects. At the other
extreme, evolution at this level might reflect not only
structural changes but also behavioral changes of the
specified objects. Behavioral changes are reflected for
example in the modification of sequence diagrams and state
machines.

The formula +JML is the conjunction of two disjoint sets
of formulas, & and of static and dynamic formulas
respectively. The former consists of first-order formulas
which have to be valid in every state the system goes
through (they are invariants or static properties or well-
formedness rules of models). These rules are used to
perform schema analysis and to report possible schema
design errors. The latter consists of modal formulas
defining the semantics of actions, that is to say the
evolution of models.

The sub theory SYS-theory:
This theory describes the modeled entities (i.e. data and

process). The elements in the data level are basically
instances (data value and objects) and messages. At the
data level a system is viewed as a set of related objects
collaborating concurrently. Objects communicate each
other through messages that are stored in semi-public
places called mailboxes. Each object has a mailbox where
other objects can leave messages.

Modeled entities are related to other modeled entities.
For example the relationship named Slot' between Object
and AttributeLink, denotes the connection between an
Object and the values of its attributes.

The theory consists of a signature &= ((Ssys,S),

SYS-theory = (&US, 'YSYS)

FSYS, PSYS, ASYS) and a formulaws Over &US:

The set Ssys contains sort symbols representing the
data in the system and its relationships, such as objects,
links, messages, etc.

The sets of symbols FSYS and PSYS define functions and
predicates over data.

The set Asvs consists of action symbols representing
evolution of data at run time, such as object state changes.

The formula ysYs is the conjunction of two disjoint sets
of formulas, ys and of static and dynamic formulas
respectively. The former consists of first-order formulas
which have to be valid in every state the system goes
through (they are invariants or static properties or well-
formedness rules of data). Whereas, the latter consists of
modal formulas defining the semantics of actions, that is to
say the possible evolution of the data.

The sub theory JOINT-theory:
This part of the theory describes the connection

between model and data levels. Modeling entities are
related to modeled entities. There is a special relationship
among some modeled entities with their corresponding
modeling entity, This relationship denotes Instantiation:
for example an Object is an instance of a Class, whereas
Links are instances of Associations.

Finally, $JOINT is a formula constructed over the
extended language &&D, and thus it can express at the
same time data properties (e.g. behavioral properties of
objects), model properties (e.g. properties about the system
specification) and properties relating both aspects. Details
of the theory can be found in [29], [30] and [31].

3.2: Static and dynamic aspects of metaentities

Within the M&D-theory, we are able to express all
aspects relevant to modeling entities, as follows:

Syntax and Semantics: In conventional textual notation,
the syntax of a language is described by the set of
characters (alphabet) and the valid sequences of symbols
(words and phrases). The language is the set of all valid
symbols. If the notation includes diagrams, the syntax seem
to be more complex since it is not limited to a linear
sequence of characters.

On the other hand, the semantics of a language talks
about the meaning of each construction of the language.
Usually semantics is given by explaining the constructions
of a new language in terms of well-known concepts. This
set of well-known concepts is called the semantics domain.

Static concepts and dynamic concepts: In the description
of a language there are two dimensions that are orthogonal
to both syntax and semantics, they are static concepts and
dynamic concepts.

The differences between static semantics and dynamic
semantics is well-recognized. While the static semantics
characterizes static properties (invariant in time) of the

105

elements described for the language, the dynamic
semantics describes the evolution or behavior of such
elements over the time. But, talking about syntax, in
general only well-formedness rules of the language are
defined, but the problem of evolution or dynamism is
neglected. That is to say, syntax is analyzed just from the
static point of view. The lost dimension (i.e syntax-
dynamic) appears when the constructions of the language
(i.e the models) are likely to change during their lifecycle.
It is important to make clear that we are not talking about
modifications on the syntax of the language itself (i.e
evolution on the metamodel level), but about modifications
on particular UML models (i.e evolution on the model
level).

In figure 4 we show the relations between both
dimension. The most remarkable difference is observable
for the dynamic semantics. While dynamic semantics on
the data-level means run-time behavior, dynamic semantics
on model-level describes model evolution in the
development process.

Model
(Syntactic domain)

Static well-formedness rules

Modeled system
(semantics domain)
well-formedness rules

Figure 4: static and dynamic aspects of syntax
and semantics

3.3: Advantages of the integration

The integration of modeling entities and modeled
entities into a single formalism allows us to express both
static aspects and dynamic aspects of either the model or
the modeled system within a first order framework. In
figure 5 we summarize how the M&D-theory deal with
each of the four dimension that we discussed previously.
The validity problem (i.e. for given a sentence Q of the
logic, to decide whether Q is valid) is less complex for first-
order formalisms than for higher order formalisms.

Model I Modeled system I
First-order axioms

Figure 5: the M&D-theory

Although first order logic is undecidable (and as a
consequence, nor do dynamic first order logic), computer
systems satisfy certain properties (e.g. systems are
interpreted over arithmetic structures, the state of a
program is given by a finite set of values) that allow us to
calculate the validity of formulas in an effective way.

4: Using the formal model

In this section we describe the principal applications of
the M&D-theory.

4.1: Formalizing the UML

The M&D-theory introduce precision in the
specification of object-oriented systems. Basically the
theory formally defines the syntax and semantics of the
standard modeling notation Unified Modeling Language
(UML). Specifications expressed in a notation known and
accepted by the software developers acquire an accurate
meaning.

Example I : Abstract syntax
The UML specification document [36] defines the

abstract syntax of UML by class diagrams and well-
formedness rules in OCL [36]. In the M&D-theory, the
abstract syntax is expressed by means of sorts and
functions in the model-level. The possible language
constructs are restricted by well-formedness rules on
models, such as:
[1 1 In a Classifier, attribute names are unique:
Vc:ClassifierVf,g~ attributes(c) name(f)=name(g)+f=g
[2] Cyclic inheritance is not allowed:
Vcl,c2:ClassifierIsA(cl,c2) idsA(c2 ,cl) + c2 = c l
[3] the trigger of the initial transition of the top level of a
state machine should be a creation. In all the other cases
initial transitions do not have trigger:
Vt:Transition (kind(source(t))=#initial +
(trigger(t)=nullElement v (isTop(parent(source(t))) A

trigger(t)=create)))
Furthermore, the building of a formal model allowed us

to find out and correct ambiguities and inconsistencies in
the UML Language. For examples of this subject readers
are referred to [40].

Example 2: semantics of structural diagrams
The M&D-theory specifies the semantics of the

structural constructs of the UML (i.e Class diagrams) by
static axioms describing the well-formedness rules of data,
and axioms specifying the inter-level connections, such as
the connection between Class and Object . For example:

106

[I] Values of attributes match the type defined in their
Classifier: Va:AttributeLink*
IsA(classifier(value(a)) , type(attribute(a)))
[2] An instance cannot belong to more that one composite
instance: Vi:Instancm
3el , e 2 ~ oppositeLinkEnds(i)
((aggregation(associationEnd(e I))=#composite A

aggregation(associationEnd(e2))=#composite) -+ e l =e2)
[3] Constraints associated to a Class are satisfy for all the
instances of that Class:
Vi:Instance* VCE allConstraints(classifier(i))*
(eval(c)[self/i] = true)

Example 3: semantics of behavioral diagrams
The M&D-theory describes the semantics ofbehavioral

constructs of the UML (e.g. State Machine) by means of
dynamic axioms explaining the behavior of objects in terms
of transitions in the state machine associated to its class. In
the UML specification document [36] this dynamic
semantics is explained in an informal way using natural
language.

The M&D-theory formally describes the semantics of
state machines through the axioms specifying the
relationships between evolution actions in the data level (in
particular CallActions) and the state machine linked to
class of the receiver of the action.

4.2: Specifying compatibility between sub-models

The different views of a system (Class diagrams,
Statecharts, constraints, etc.) are integrated in a single
formal model. This integration allows us to define
compatibility rules among the different views, both at the
syntactic and the semantic levels, since it provides a single
formal frame where the different views of the system
coexist. We give examples of compatibility rules:

Example I : Prdpost conditions vs. State Machines
Model elements may be associated with a constraint

expressing some properties. There are problems when the
constrained element has also a behavior that is precisely
defined else where in the model. For example, a constraint
on an operation (as a pre-post condition) may be
inconsistent with the effects of the transitions triggered by
its calls in the associated state machine. As a consequence,
it is necessary to integrate both views of the system
guaranteeing that they are consistent with each other. The
following rule formalizes this requirement:

V<op,s,r,p>:Message* (classifier(r)=owner(op) -+
(eval(precondition(op)[self / r, parameters / p])=true
-+[r.<op,s,r,p>] eval(postcondition(op)[self / r, parameters
/ PI)=true) 1

This dynamic formula states that if the preconditions of
an operation hold before the execution of the operation, so
the post-conditions hold after the execution. Since the
effect of the operation are determined by the state machine
associated to the class of the object performing the
operation, this rule guarantee consistency between both
specifications.

Example 2: Generalizations vs. other elements
Generalization diagrams have a strong influence on

other diagrams in the model of the system. For example, if
two classes cl and c2 are connected by a generalization
relation (e.g. c1 is a subclass of c2), the behavior of
instances of cI should be a refinement of the behavior of
instances of CI. This requirement is defined by the
following formula: Vcl,c2:Classifier (IsA(cl,c2) -+
refinement(behavior(q) , behavior(c2)))

4.3: Deduction of non-explicit information

One of the fundamental elements of any logic is its
deductive apparatus that consists in a collection of rules
which can be applied to certain initial information to derive
additional information, in an purely mechanical way.
Through the formal deduction mechanisms of the logic, it
is possible to obtain information that is not explicitly
presented in a specification. Examples of deductions in the
logic can be found in [31].

4.4: Verifying system correctness

Graphical specifications can be formally analyzed (by
using verification tools available in the formal model) in
order to detect contradictions and ambiguities early in the
software development process. The formal language allows
us to express well-formedness rules of both the model and
the data of the system. Given a system, it is possible to
decide if it satisfies the rules or not. In this section we give
examples of verification of well-formedness rules.

Example I : Design mistakes
Let spec be the UML model in figure 6. Notice that the

model has a problem of cyclic inheritance. It is possible to
prove that sem(spec)=O, that is to say that spec is
inconsistent with the well-formedness rules of the theory.

In the M&D-theory, the formula 'p below specifies the
well-formedness rule of inheritance hierarchies:

And, the IsA predicate is defined as follows:

Vc,cl:Classifie~ (IsA(c,cI) t)

107

(c=cl v cl~allSupertypes(c)))

Let @INST be the instantiation axiom corresponding to the
model in figure 6, as follows:

@INST = 3a,b,c:Classifier*
(name(a)=A A name(b)=B A name(c)=C
A 3gl ,g2,g3:Generalization *supertype(gl)=a A

subtype(gl)=b A supertype(g2)=c
A subtype(g2)=a A supertype(g3)=b A subype(g3)=c

Agl E speciahzations(a)A g l E generalizations(b) A

g 2 ~ specializations(c) A g 2 ~ generalizations(a) A

g 3 ~ specializations(b)~ g 3 ~ generalizations(c))

Theorem: the model specified by@INsr is inconsistent with
the well-formedness rulecp , that is to say:

Pro08 The proof is straightforward. It can be read in [31].
(cp A@INST) /=false

4.5: Formalizing Evolution

Most works on evolution of the system specification,
such as ([3], [20], [2]), deal with the problem of structural
evolution for example modifying inheritance hierarchy of
adding a new class, but they do not deal with the behavior
evolution problem, as for instance, changing the way in
which an object reacts when receiving a certain message.
The evolution mechanism proposed in the M&D-theory
deals with both typos of evolution.

In the M&D-theory, each evolution action is defined by
means of two formulas:

- Necessary preconditions to describe the applicability
conditions of operations. The formula ((op)true -+con4
states that the operation op is applicable only if the
condition cond is true.

Figure 6: a UML model with
a cyclic inheritance hierarchy

- Sufficient postconditions to describe
(direct effect and change propagation) of the

the effect
operations.

The formula ([oplcond) states that after the application of
the operation op the condition cond is true.

These formulas may refer to either modeling entities, or
modeled entities or both. This feature allows us to define:

- intra-level change propagation: how a modification
over a modeled entity impacts on other modeled entities,
and how a modification over a modeling entity impacts on
other modeling entities. For example, the deletion of a
feature of a Class impacts on other models such as
StateMachines or Constraints refemng the deleted feature.
On the other hand the propagation of the deletion of an
object representing a whole to the deletion of other objects
(i.e its parts) is an example of propagation between
modeling entities.

- inter-level change propagation how a modification
over an modeled entity impacts on the modeling entities,
and how a modification over a modeling entity impacts on
the modeled entities. For example the deletion of an
attribute of a Class should be propagated to all the
instances of that Class.

The specification of each evolution action consists of
four sections: Action act, Precondition T, Effect
7 Propagation 6 The schema above represents the
following dynamic formula:

((act)true +T) A ([act] (y ~ $
Preconditions are applicability conditions, that is to say

conditions under which an evolution action is semantically
correct. The clause effect specifies the direct impact of the
action, whereas the clause propagation specifies the side
effects of the action on other related entities. The following
is an example of an evolution action:

Action deleteFeature(c,f)
Precondition
[I] The Feature must exist in the Classifier: € attributes(c)
[2] The deleted Feature cannot be referenced from other
elements in the package:
VmE allContents(p) f e referencedElements(m)
Effect
[I] The Feature is deleted: 7Exists(f)Af6Z features(c)
Propagation
[I] The corresponding slot must be deleted from all the
existing instances of c (and subclasses):
b”i:Instancw ((Exists(i)r\classifier(i& cuallSubclasses(c))

+ --,3kslots(i) atribute(l)=f)

It is possible to observe how model evolution combines
with modeled data evolution. The M&D-logic allows
expressing consistency rules among both different UML
diagrams and these diagrams and the modeled data. Then,
using the deduction mechanism of the logic, it is possible
to validate these rules through the evolution.

4.6: Specifying Design Patterns

A pattern is a particular design that appears in certain
situations, and that has been recognized as “good design”,

108

that is, it leads to obtaining more flexible and elegant
systems that are consequently more reusable. There are
catalogs, for instance 2131 , where numerous design
pattems using natural language complemented by graphic
languages such as UML are described. It would be
desirable to have a more formal description of the pattems.

The M&D-logic can assist in the task of expressing and
recognizing the design pattems. A pattem can be formally
expressed by a formula in the logic stating structural
obligation (i.e. hierarchy of classes, association between
classes and operation signatures), responsabilities and
collaborations between objects. Then, this formula allows
us to detect the pattem into a specific design, in the
following way:
Let:
- M be the UML specification of an object-oriented system.
- SpecM the instance of the M&D-theory formalizing M, i.e.

- U amodel for SpecM, i.e. UEsemantics(SpecM).
- Qattem the formula expressing the pattem.

Intuitively, M conforms the pattem if and only if it
satisfies both structure and collaboration obligations
required by the pattem. That is to say, the formula Q pallem

is true in the model M: U I= Q panem

4.7: Hiding the formal model

translation (M)=SpecM.

To gain acceptance of the proposed formal model by
typical engineers, we are developing a semi-automatic
transformation method. This transformation method defines
a set of rules to systematically create a single integrated
dynamic logic model from the several separate elements
that constitute a description of an object-oriented system
expressed in Unified Modeling Language (UML). The key
components of the transformation method are rules for
mapping the graphic notation onto the formal kemel model.

5: Conclusion

Due to the missing formal foundation of the Unified
Modeling Language UML the syntax and the semantics of
a number of UML constructs are not precisely defined. We
have described an object-oriented conceptual model
representing the information acquired during analysis and
design. We propose this conceptual model as a formal
foundation for the UML.

The principal benefits of the proposed formalization can
be summarized as follows: the different views on a system
are integrated in a single formal model. This allows us to
define rules of compatibility between the separate views,
on syntactical and semantic level. Using formal
manipulation, it is possible to deduce further knowledge
from the specification. The faults of specifications

expressed using a user-friendly notation can be revealed
using analysis and verification techniques based on the
formal kemel model.

The principal difference between this model and other
object-oriented formal models is that it integrates both of
the levels in the architecture of modeling notations into a
single conceptual framework. The integration of modeling
entities and modeled entities into a single formalism allows
us to express both static aspects and dynamic aspects of
either the model or the modeled system within a first order
formalization. The validity problem (i.e. for given a
sentence Q of the logic, to decide whether Q is valid) is less
complex for first-order formalisms than for higher order
formalisms .

Furthermore the two-level model is particularly useful
for description of system evolution, and formal description
of design pattems.

References

Alencar, A. and Goguen, J., OOZE: an object-oriented Z
environment, ECOOP9 I Proc., Lecture Notes in Computer
Science vo1.5 12, Springer-Verlag, (1991).

Bertino, E., Ferrari, E., Guemni G. and Merlo, I.,
Extending the ODMG Object Model with time,
proceedings of ECOOP98, Lecture Notes in Computer
Science 1445, (1998).

Bergstein, Paul, Maintenance of object-oriented systems
during structural evolution

Booch, G., Object Oriented Analysis and Design with
Applications, Second Edition, Addison-Wesley Publishing
Company, lnc, (I 994).

Breu,R., Hinkel,U., Hofmann,C., Klein,C., Paech,B.,
Rumpe,B. and Thumer,V., Towards a formalization of the
unified modeling language. ECOOP97 procs., Lecture
Notes in Computer Science vol. 1241, Springer, (1997).

Coad,,P. and Yourdon,E., Object Oriented Analysis,
Yourdon Press, Englewood Cliffs,NJ, (1991).

Cook,S. and Daniels,J., LetS get formal, Journal of Object-
Oriented Programming(JOOP), July-August, (1 994).

Duke,R., King,P., Rose,G. y. Smith,& The Object-Z
specification language, T.Korson, V.Vaishnavi and
B.Meyer, editors, Technology of Object-Oriented
Languages and Systems:TOOLS 5. Prentice Hall, (1991).

Evans,A., France,R., Lano,K. and Rumpe, B., Developing
the UML as a formal modeling notation, UML98 Beyond
the notation, Muller and Bezivin editors, Lecture Notes in
Computer Science 16 18, Springer-Verlag, (1 998).

Evans,A., France,R., Lano,K. and Rumpe,B., Towards a
core metamodelling semantics of UML, Behavioral
specifications of businesses and systems, H,Kilov editor, ,
Kluwer Academic Publishers, (1999).

France,R., Bruel,J. and Larrondo-Petrie. An integrated

109

object-oriented and formal modeling environment, Journal
of Object Oriented Programming (JOOP), 10(7), (1997).

France, R. and Rumpe, B. editors, Proceedings of the
UML’99 conference, Beyond the Standar, Colorado, USA,
Lecture Notes in Computer Science 1723, Springer-Verlag
(1 999).

Gamma, Helm, Johnson and Vlissides, Design Pattems,
Addison -Wesley Publishing Company (1994).

Geisler, R., Klar M. and Pons, C., Dimensions and
Dichotomy in Metamodeling, In proc. of Third BCS-FACS
Northern Formal Methods Workshop, Ilkley, UK,
September 1998, Series in Computing, Springer-Verlag.
(I 998).

Goldsack,S. and Kent,S., Formal Methods and Object
Technology”, Chapter 3: LOTOS in the Object-oriented
analysis process. Editors S.J. Goldsack, S.J.H. Kent. Serie
FACIT, Springer-Verlag. (1996).

Harel, David, Kozen, Dexter and Tiuryn, Jerzy. Dynamic
Logic. To appear. (2000)

Jacobson, I, Booch, G, Rumbaugh, J. The Unified Software
Development Process, Addison Wesley. ISBN 0-201 -
57169-2 (1999)

Jungclaus,R., Saake,G., Hartmann,T., Semadas,C.,
TROLL- a language for 0-0 specifications of information
systems, ACM Transactions on IS, vo1.14 no.2. (1996).

Jones,C., Systematic software construction using VDM.
Prentice Hall, (1990).

Kesim, F. and Sergot, M.. A logic programming framework
for modeling temporal objects, IEEE Transactions on
knowledge and data engineering, vo1.8,no.5, (1996).

Kifer,M. and Lausen,G., F-Logic: a higher order language
for reasoning about objects, inheritance and scheme.
Proceedings of the ACM SIGMOD symposium on
principles of database systems, SIGMOD RECORD,
Vo1.18, No.6, (1990).

Kim, S. and Camngton,D., Formalizing the UML Class
Diagrams using Object-Z, proceedings UML’99
Conference, Lecture Notes in Computer Sciencie 1723, (a)
second part ofthe paper, (b) first part of the paper. (1999).

Lano,K., Z t t , An object-oriented extension to Z. In John
Nicholls, editor, Z user workshop, Oxford 1990,
Workshops in Computing, Springer Verlag, (1991).

Lano,K., and Biccaregui,J., Formalizing the UML in
Structured Temporal Theories, Second ECOOP Workshop
on Precise Behavioral Semantics, TUM-I98 13, Technische
Universitat Munchen, (1998).

Meseguer,J., Winkler,T., Parallel Programming in Maude.
Proceedings of Research Directions in High Level Parallel
Programing Languages. France, (199 I).

Moreira,A. and Clark,R., Combining Object-Oriented
Analysis and Formal Description Techniques, In 8th
ECOOP Conference, Procs. Lecture Notes in Computer
Science 82 I , Springer, (1 994).

Muller. P. and Bezivin. J. editors, Proceedings of the
UML’98 conference, Beyond the notation, Mulhouse,
France, Lecture Notes in Computer Science 1618, Springer-
Verlag (1998).

Pastor,O. and RamosJ., Oasis 2.2 : A Class-Definition
Language to Model Information System Using an Object-
Oriented Approach”. SPUPV-95.788, Universitat P. de
Valencia. (1 996).

Pons,C., Baum,G., Feldet,M., Integrating object-oriented
model with object-oriented meta-model into a single
formalism, Second ECOOP Workshop on Precise
Behavioral Semantics, European Conference on Object-
oriented Programming, Brussels, Belgium, LNCS, (1998).

Pons$., Baum,G., Felder,M., Foundations of Object-
oriented modeling notations in a dynamic logic framework,
Fundamentals of Information Systems, Chapter 1,
T.Polle,T.Ripke,K.Schewe Editors, Kluwer Academic
Publisher, (1999).

Pons,C., Ph.D Thesis, Faculty of Science, University of La
Plata, Buenos Aires, Argentina, http://www-
lifia.info.unlp.edu.ar/-cponsi (1999)

Reggio,G. and Larosa,M., A graphic notation for formal
specification of dynamic systems, proceedings of FME97,
Lecture Notes in Computer Science 13 13, Springer.(1997).

Rumbaugh,J., Blaha,M., Premerlani,W., Object Oriented
Modeling and Design, Prentice Hall, (1991).

Shlaer,S. and Mellor,J., Object Oriented Systems Analysis:
Modeling the World in Data, Yourdon Press Computing
Series, Yourdon Press, Englewood Cliffs, NJ, (1988).

Spivey,M., The Z notation: a reference manual. Prentice
Hall, Englewood Cliffs, NJ, Second edition, (1 992).

UML 1..3, Object Management Group, The Unified
Modeling Language (UML) Specification - Version 1.3, in
www.omg.org, (1999).

Waldoke, S., Pons,C., Paz Mezzano,C. and Felder,M., A
Formal Approach to Practical Object Oriented Analysis and
Design, Procs of Argentinean Symposium on Object
Orientation, Buenos Aires, (1998).

Weber,M. “Combining Statecharts and Z for the Design of
Safety-Critical Control Systems”, Proceedings of Third
Intemational Symposium of FME96. Oxford (1996).

Wieringa,R. and Broersen,J., Minimal Transition System
Semantics for Lightweight Class and Behavior Diagrams,
In PSMT Workshop on Precise Semantics for Software
Modeling Techniques, Technische Universitat Munchen,
Report TUM-19803, (1998).

CibraqM., Mola,V., Pons,C.,Russo,W., Building a bridge
between the syntax and semantics of UML Collaborations
ECOOP’2000 Workshop on Defining Precise Semantics for
UML. Cannes/Sophia-Antipolis, France, 12-16 June 2000.

110

http://www
http://www.omg.org

