
Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

Model Consistency in the Object Oriented Software
Development Process

Gabriela A. Pérez
LIFIA - Laboratorio de Investigación y Formación en Informática Avanzada

Universidad Nacional de La Plata, Facultad de Informática

La Plata, Argentina, 1900

gperez@sol.info.unlp.edu.ar

ABSTRACT
Model Refinement is a relationship that relates two elements
representing the same concept at different levels of abstraction. In
UML, Refinement is described in an informal way.
To avoid wrong model interpretations, we study a formalization
of the refinement relation. This work provides an enhancement to
the UML metamodel specification.

Categories and Subject Descriptors
D.2 [Software Engieneering]: Requirements/Specifications,
Methodologies (e.g., object-oriented, structured)

General Terms
Documentation, Design, Standardization, Languages.

Keywords
Object Oriented Analysis and Design, Unified Process, UML, Use
Cases.

1. INTRODUCTION
A software development process, e.g. The Unified Process [5], is
a set of activities needed to transform user's requirements into a
software system. Modern software development processes are
iterative and incremental, they repeat over a series of iterations
making up the life cycle of a system. Each iteration takes place
over time and it consists of one pass through the requirements,
analysis, design, implementation and test activities, building a
number of different artifacts (i.e. models). All these artifacts are
not independent; they are semantically overlapping and together
represent the system as a whole. Elements in one artifact have
trace dependencies to other artifacts. On the other hand, due to the
incremental nature of the process, each iteration results in an
increment of artifacts built in previous iterations.
Model Refinement is carried out in different ways: for example:
on the internal dimension (artifact-dimension), we can restrict the
use case specification; On the vertical dimension (activity -
dimension), analysis models are refinements of use case models,
but on the other hand, on the horizontal dimension (iteration-
dimension), models built in an iteration are usually refinements of
models (of the same kind) built in previous iterations.

2. INTERNAL DIMENSION: USE CASE
SPECIFICATION

Use cases can be specified in a number of ways, generally with
natural language structured as a conversation between user and
system. This conversation considers the normal action sequence
and also alternative sequences. Each sequence represents a
possible scenario of execution of the use case. Then, the complete
description of a use case is composed by an scenario sequence.
In the UML metamodel, an action sequence is an instance of the
ActionSequence metaclass, which is subclass of the Action
metaclass. This fact generates some conflicting situations, like
* An ActionSequence could have arguments
* An ActionSequence could have an associated message
As a solution for these problems, we propose a new metamodel
where the metaclass Action is sub classified with both
CompositeAction and SimpleAction subclasses. A
CompositeAction will be composed by actions, which could be
acceded by the actionSequence association (this schema follows
the pattern Composite [2]).
On the other hand, underlined actions1 can appear in a use case
conversation. The meaning of this is it will be refined.
It is interesting to be able to distinguish both concrete actions (i.e.
atomic actions, that will not be refined) and abstract actions (i.e.
actions that require a refinement). This situation neither is
represented in the UML metamodel. We propose to sub classify a
SimpleAction in both ConcreteAction and AbstractAction.
ConcreteAction will be the superclass of the concrete actions that
were defined in the metamodel until now (i.e. CallAction,
CreateAction, etc.), while an AbstractAction will specify those
actions that will be refined. These new metaclasses improve
formality of the Use Case metamodel allowing for the definition
of the Use Case refinement hierarchy, as we will see in next
section.

3. HORIZONTAL DIMENSION:
COLLABORATION REFINEMENT

Collaborations as well as use cases can be refined through
subordinate collaborations, forming a refinement hierarchy. Each
subordinate collaboration implements in more detail one part of

1 The notation used for conversation is based on [1]

398

…

<<realize>>

<<realize>> <<realize>>

<<include>>
<<include>>

…

<<refine>>
<<refine>>

Enroll - inACourse

Validate
Student’s Conditions

SaveThe
Inscription

Use case Refinement tree and Collaboration Refinement tree.

the global functionality and can have its own sets of roles and
interactions.
In order to formally specify the refinement relation between
collaborations we define additional well formedness rules on the
metaclass Collaboration.
In the case that a collaboration refines a message, we propose a
standard format for such collaboration that allows a formal
verification of well formedness of the refinement relation.
In order to understand this format it is necessary to consider that
the sender of a message has less importance than the receiver of
this message. The sender can be an instance of any ClassifierRole,
however the receiver of the message is the responsible of the
interpretation of that message. For this reason, we propose that
the subordinate collaboration that describes the refinement of the
original message begins this refinement with an instance of the
ClassifierRole that received this message in the superordinate
collaboration.
In addition, considering that the only messages that can be refined
are those associated with CallActions, (since the other actions are
atomic), we propose that the name of each subordinate
collaboration will be formed by both the name of the Operation
associated with that instance of CallAction (associated to the
message), and the name of the base Classifier that contains such
operation. In this way, examining the name of a subordinate
collaboration we can associate it to at least one message in the
superordinate collaboration, without ambiguity.
On the other hand, the ClassifierRole receiving of a refined
message must maintain a relation with the ClassifierRole that
sends the first message in each thread in the subordinate
collaboration. It would be natural that in the refinement, we want
to specify in more detail the ClassifierRole in charge of that
behavior.
The ClassifierRole (first sender) in the subordinate collaboration
should belong to the same generalization hierarchy as the original
Classifier. In case that this Classifier is an interface the first
sender must be a class that implements it.

4. CONSISTENCY CHECKING BETWEEN
MODELS IN DIFFERENT DIMENSIONS

Since different models that are built during the software
development process are related to each other along different
dimensions, it is natural to perceive that interdependencies
between dimensions could arise. For example, when a use case is
realized by collaboration, it is expected that some specific
relations hold between their respective subordinated elements, as
we can see in the figure below.

UML does not specify any constraint regulating these
relationships. We define new well formedness rules -on the

Collaboration metaclass- that allow us to verify consistency
between two different refinement hierarchies, as follows:
self.representUseCase implies
(self.representedClassifier.hasIncluded implies
(self.representedClassifier.include.addition -> forAll
(subUseCase | self.usedCollaboration-> exists (subcol |
subcol.representedClassifier = subUseCase))))
This rule means that if a superordinate collaboration implements2
a superordinate Use Case, then there must exist a subordinate
collaboration implementing each subordinate Use Case.

5. CONCLUSIONS
In the UML specification document, several concepts are still
described in an ambiguous, informal way. In previous works, we
have analyzed other of these concepts ([4] [7] [8]). In this article
we analyze the dependency relationship between models known
as: “Model Refinement”.
In order to avoid inconsistencies and wrong model interpretations,
in this article we proposed, in first instance, a formalization of the
Use Case specification, represented by a conversation between an
actor and the system. The Use Case conversation did not have a
representation in the UML metamodel. In second instance we
proposed to formalize the refinement relations between model
elements of the same kind. Finally, on top of these formalizations,
we discussed refinement relations between models of different
kind (use case models and collaboration models realizing them)
In particular, we defined well formedness rules in the OCL
language, restricting Use Case specification as well as refinement
hierarchy of both Use Cases and Collaborations.
The rules defined in this work form an enhancement of the UML
metamodel specification. These rules should be used as a formal
foundation for the construction of case tools performing
consistency checking of models. Support offered by tools will
improve the quality of the software development process.

6. REFERENCES
[1] Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley.
[2] Gamma, H. Design Patterns. Addison-Wesley, Professional

Computing Series, 1995.
[3] Giandini,R, Pons, C and Baum,G.. An algebra for Use Cases in the

UML. OOPSLA´00 Workshop on Behavioral Semantics,
Minneapolis, USA, Oct. 2000.

[4] Giandini, R., Pons, C., Pérez,G. Use Case Refinements in the OO
Software Development Process. Proceedings of CLEI 2002, ISBN
9974-7704-1-6, Uruguay. Nov. 2002.

[5] Jacobson, I..Booch, G Rumbaugh, J., The Unified Software
Development Process, Addison Wesley. (1999)

[6] UML Specification. Version 1.4, Sept. 2001. Page 2-121
[7] Pons, Claudia, Pérez,Gabriela, Giandini, Roxana. Incremental

Specialization vs. Overriding Specialization in the UML, IDEAS
2002. La Habana, Cuba., April 2002.

[8] Pérez,G., Giandini, R., Pons, C. Model Refinements in the Object
Oriented Software Development Process ASSE. Argentina, ISSN
1666-1087 (61 - 73), Sept.2002.

2 The attribute representedClassifier represents the Classifier

(Class, Use Case, etc.) that the collaboration is realizing ([6])

399

