
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.35 (2007), pp. 43-53.
ISSN: 1137-3601. © AEPIA (http://www.aepia.org/revista).

ARTÍCULO

Modular Creation of Neuronal Networks
for Autonomous Robot Control 1

Germán L. Osella Massa, Hernán Vinuesa, Laura Lanzarini

Instituto de Investigación en Informática LIDI
Facultad de Informática, Universidad Nacional de La Plata
50 y 115, 1er piso. (1900) La Plata, Buenos Aires, Argentina

{ gosella, hvinuesa, laural } @ lidi.info.unlp.edu.ar

Abstract

In general, complex control tasks can be solved by dividing them into simpler ones which are easier to handle.
Several authors have developed different solutions that combine Layer Evolution techniques with Evolving Neural
Networks, giving rise to controllers made up by several networks. In this type of solution, the selection of the
module to be used in each case is not an easy problem to solve. This paper is focused on a new evolutionary
mechanism that allows combining modules which solve the different parts of a problem, giving place to a single
recurrent neural network. In this way, simple modules which are trained independently of the problem to solve are
used. The communication among them is established by evolution, which gives rise to a single neural network
representing the expected solution. The proposed method in this paper has been used to solve the problem of
obstacle evasion and target reaching using a Khepera II robot. The tests carried out, both in the simulated
environment and over the real robot, have yielded really successful results.

Keywords: Evolutionary Neural Networks, Evolutionary Robotics, Modular Evolution

1. Introduction

Evolutionary Algorithms have proved to be highly
useful to solve control problems. However, when
dealing with complex tasks, it is difficult to find a
good solution in a reasonable time.

A complex task refers to that whose solution is not
simple but involves learning a strategy to achieve
the expected objective. Problems like prey capture
and target reaching belong to this category [4].

In addition, there exist situations which cannot be

solved by a single agent. Such is the case of robotic
football or the prey capture problem, in which the
predator is slower than the prey. In both cases,
beyond the differences among agents, the group is
in charge of carrying out the strategy [11].

In order to solve this type of problems, different
approaches that divided the original problem into
simpler parts have been proposed [6] [8]. Even
though the existing methods vary in the way they
acquire knowledge, most of them adopt a strategy
based on the evolution and combination of different
modules.

1 This work was in part supported by the Agencia Nacional de
Promoción Científica y Tecnológica under the PAV 076 project.

44 Inteligencia Artificial V. 11, Nº 35, 2007

Figure 1: Unified Neural Network obtained after combining two modules with some inputs in common.

In this direction, solutions have been developed to
offer adaptive mechanisms that minimize the
necessary knowledge to obtain a good controller,
giving rise to neural networks composed by several
others [1]. As the controller is composed by several
modules, the way to determine which neural
network should be run at each time instant is
important [12][13]; in this line, there exist different
alternatives, which range from the use of an ad-hoc
designed decision tree [5] to mechanisms that
organize the structure automatically [2].

2. Objective

This proposal is based on the decomposition of the
original problem into simpler independent tasks.
Each task is solved by a different module which,
after being individually obtained, is combined into a
single structure.

This paper presents a new strategy based on
NeuroEvolution that integrates these independent
modules into a unified neural network, generating
the necessary interfaces between each module to
produce a controller that is capable of solving a
complex task.

This approach allows reducing the training time
necessary to obtain a solution to the complete
problem, since integrating each part implies an
easier adaptation. Also, as a consequence of this
decomposition, general reusable neural modules are
produced.

Section 3 describes the proposed method giving also
a description of the method on which is based.
Section 4 presents the problem to solve including
some implementation aspects. Both of the
independently evolved modules are described in
Section 5. The results of applying this method to
solve an obstacle evasion and target reaching
problem using a Khepera II robot are presented in
Section 6. Finally, some conclusions and future
work are presented in Section 7.

3. Modular NeuroEvolution

As previously described, certain type of complex
tasks may be considered as the combination of
several, simpler tasks. If each of these simpler tasks
is successfully and independently solved, it should
be possible to combine such solutions to complete
the complex task. On this assumption, this paper
presents an extension to the NeuroEvolution of
Augmenting Topologies (NEAT) method [9], which
incorporates the concept of modules.

This proposal assumes that there exists a set of
neural networks in which each of them, called a
module, is capable of solving one of the simple
tasks. The objective of this work is focused on
getting a unified neural network, constituted by the
combination of all of these modules, capable of
solving the complex task. A brief description of the
original NEAT method will be presented in order to
understand the proposed extension.

Inteligencia Artificial V. 11, Nº 35, 2007 45

3.1. NeuroEvolution of Augmenting Topologies

The standard NEAT implementation has been
shown to be a highly effective NE method in several
domains [10]. It addresses three problems
commonly found in ANN systems: 1) how to
crossover topologically disparate chromosomes, 2)
how to protect new topological innovation, and 3)
how to keep topologies as simple as possible
throughout evolution [9]. This is accomplished
through historical markings, speciation, and
incremental complexification.

First, each genome in NEAT includes a list of
connection genes, each of which refers to two node
genes being connected. In order to perform
crossover, the system must be able to tell which
genes match up between any two individuals in the
population. For this reason, NEAT keeps track of
the historical origin of every gene. Two genes that
have the same historical origin represent the same
structure (although possibly with different weights),
since they were both derived from the same
ancestral gene from some point in the past. Tracking
the historical origins requires very little
computation. Whenever a new gene appears
(through structural mutation), an innovation number
is incremented and assigned to that gene. The
innovation numbers thus represent a chronology of
every gene in the system, and allows crossover of
diverse networks without extensive topological
analysis. With historical markings the problem of
having to match different topologies [7] is avoided.

Second, NEAT networks are speciated so that
individuals compete primarily within their own
niche. This way, topological innovations are given
time to optimize their structure before they have to
compete with the entire population. Also, networks
share the fitness of their species [3], to prevent one
species from taking over the entire population.

Third, NEAT networks are built from a minimal
configuration and complexified incrementally to
ensure that solutions of minimal complexity are
searched first. This procedure has two advantages:
First, it minimizes topology bloat, and second, it
improves the efficiency of evolution by
complexifying the search space only as needed.

For more details about NEAT, see Stanley and
Miikkulainen [9].

3.2. NEAT with Modules

The incorporation of neural modules to the NEAT
method implies carrying out several modifications.
The first is related to the neural networks that
compose the initial population. In the original
proposal, it is assumed that there is no enough
knowledge of the problem to specify the topology of
those networks. In addition, starting with minimal
networks allows the method to explore first the
simpler solutions. In this extension, networks
solving different parts of the problem are known and
it is possible to fill the initial population with
variations of a unified neural network. This network
is built up from merging each of the available
modules within a same structure.

Since the tasks solved by each module are part of a
single complex tasks, it is expected that more than
one module will use the same inputs or produce the
same output. The unified neural network will have
as input the union of the inputs of each module. The
modules are connected to those inputs without
undergoing any modification. The unified network
outputs depends on the task to solve and for this
reason the network will have as many output
neurons as the problem needs.

More than one module may generate the same
output of the network. It is also possible that
different modules produce opposite stimuli for
similar inputs, since the tasks solved by each of
them may be contradictory. To allow the evolution
to adjust the contribution of each module to the
unified network outputs, rewarding expected
responses and making compatible opposite stimuli,
each module output neurons become hidden
neurons. To each of these converted neurons, a new
connection is added that link this neuron to the
output neuron that produces the response which was
originally yielded by former neuron. The connection
is established with weight 1.0, so the original
stimulus reaches the output neuron without being
affected. This new connection is not considered as
part of any module, but belongs to a unified neural
network. Figure 1 shows the combination process of
two modules to produce a unified neural network.

During the building process of the unified network,
each connection and neuron integrated into the
network is marked with an identifier associated to
the module which it belonged. This is done to
simplify the tracking of the modules that composes
each network once the evolution has started.

46 Inteligencia Artificial V. 11, Nº 35, 2007

Figure 2: Khepera Robot II next to a coin of € 2.

Another proposed modification to NEAT is the way
in which genetic operators are applied to produce
new genomes. Originally, the mutation operator was
in charge of generating innovations, perturbing
weights, establishing new connections among
existing neurons, or inserting a new neuron after
dividing an existing connection.

In this paper, the mutation operator scope has been
restricted. It is only possible to modify the weight of
a connection if it didn’t originally belong to any of
the modules making up the network undergoing
mutation. In the same way, it is not allowed to
establish new connections among neurons of the
same original module, being only valid to do so
among neurons of different modules. Eventually, it
is only possible to add a neuron if an existing
connection is previously divided, which, once again,
should not be a connection contributed by any of the
modules. These restrictions force the evolutionary
method to generate the necessary structure to allow
the original modules to interact so they together can
reach the solution of the posed complex task.

The rest of the evolving method is not different
from standard NEAT; historical markings are kept
in the genomes of the population, the original
crossover operator is used, and the population is
divided into species according to a compatibility
criterion, dividing the fitness of each member
proportionally to the number of genomes belonging
to the same niche.

The reason for which the topology and connection
weights of each module cannot be changed is due to
the fact that, since these are fixed, the evolutionary
algorithm will search in a more reduced space than
if it were to do it over an entirely mutable network.
This should favor a faster convergence towards
better solutions.

Figure 3: Detail of the sensors.

It is worth noting that bigger structures could be
generated compared with the ones that could be
obtained if started from a minimum topology.
However, when the difficulty of the task increases,
the complexity of the neural network proportionally
increases, and generating a structure which acts as
interface between the modules is simpler than
solving the whole problem.

4. Experimental Setup

4.1. Khepera II Robot

The robot used is a Khepera II, see Figure 2, which
has 8 sensors and 2 DC motors controlling each
wheel. The 8 sensors are placed as Figure 3 shows,
and each of them can be used in two different ways:
as an object proximity sensor and as an environment
lightness sensor. In the first case, sensors are used as
senders and receivers of infra-red pulses, and in the
second, only the reception function is used. In both
cases, the returned values are between 0 and 1023.
The closer the proximity sensors are to an object,
the higher the value obtained. The detection range is
between 0 and 10 cm, depending on the infra-red
reflection capacity of the object sensed.

The higher the lightness intensity, the lower will be
the value yielded by the light sensors and 1023
represents completely darkness. The detection range
depends on the source intensity. For example, a
source of 50W at 40 cm can produces significant
values in the sensors.

Motors' speed is given as an integer value between -
128 and 127, in which negative values make the
robot move back, positives, move forward, and 0
makes the robot remain still. The higher the value
applied to a motor, the higher the speed.

Inteligencia Artificial V. 11, Nº 35, 2007 47

function EvaluatePopulation
 for each genome of the population
 Create a controller from this genome
 for i = 1 : 4
 Place the robot at position i
 Compute the controller's score
 using the appropriate Eval
 function.
 If during this evaluation the robot
 collides, the trial is interrupted
 and the current Eval value is
 returned with what is gathered up
 to this point.
 end for
 Calculate the genome’s fitness as the
 average of the 4 previous scores.
 end for
end function

Figure 4: Algorithm used to evaluate
the population in 4 different trials.

4.2. YAKS: Yet Another Khepera Simulator

YAKS is a simulator of a Khepera II written in C++,
which not only has a simulated environment but it
can also be used to control a real robot connected to
a PC through an RS-232 interface. To simulate the
object or light recognition process, as well as robot
movements, the simulator has samples tables, where
each of them is used for recognizing a particular
object. These tables were generated from
measurements made on a real robot, which gives
more realism to the simulator. Moreover, the
simulator allows adding noise to the sensors.

The simulated robot, as well as the real one, has 8
proximity sensors whose values are normalized
within range]1,0[. It also has 8 light sensors with
values also normalized between]1,0[, where
darkness is represented by 0. For security reasons,
motors are not allowed to move at a speed higher
than 10. The values for the motors are also
normalized within range]1,0[where 0 means it
runs backwards at speed 10, 1 means it runs forward
at speed 10, and 0.5 makes the motor stop.

4.3. Problem Description

The goal is to evolve a controller based on recurrent
neural networks to provide to a Khepera II robot
with the capacity of avoiding obstacles and reaching
specific targets. Since only light and proximity
sensors of the robot have been used, the targets will
be represented by white lights placed at any position
within their environment. The robot is expected to
move freely, without colliding with obstacles, until
it reaches a lighted area in which it will try to
remain.

Using the proposed extension of NEAT previously
described, two modules independently obtained will
be combined: one allowing evading obstacles, and
another allowing reaching the nearest light. Each of
these modules is represented by a recurrent neural
network generated by the standard NEAT method
[9].

Figure 5: Topology of the best performing controller for the obstacle evasion problem.

48 Inteligencia Artificial V. 11, Nº 35, 2007

Figure 6: Topology of the best performing controller for the light finder problem.

The strategy proposed in this article, even though
applied to obtain a controller from two previously
generated behaviors, can be easily extended by
incorporating additional modules with their
corresponding fitness functions. In this way, having
previously trained independent modules eases
obtaining more complex controllers.

5. Evolved Modules

Both the obstacle evasion module and light finder
module have been evolved using the standard
NEAT method running for 500 generations each,
using the same parameters: 150 genomes in the
population, 90% crossover rate, 4% chance to add a
hidden node, 7% chance to add a link with a 5%
chance of adding a recurrent link, 20% weight
mutation with a 10% probability of replacing the
value.

In both cases, the fitness of a genome is computed
averaging the score obtained in four different trials.

Each trial differs in the initial position of the robot
within the environment. Since tests have been
carried out in a rectangular maze, each trial starts
with the robot placed at a different corner. Figure 4
contains the pseudo code of the algorithm used to
evaluate the population. In the next subsections, a
description of each module with the utilized
evaluation function will be presented.

5.1. Obstacle Evasion Module

The initial neural network is composed by 8 linear
input neurons, two non-linear output neurons, and
an additional bias neuron which can connect itself to
any other neuron with the exception of an input one.
The inputs to the network are linearly scaled to the
range]1,0[from the values captured by the sensors.
The outputs of the network are scaled between

]1,1[− to control the speed of the motors driving
each of the robot wheels to fit the simulator
requirements.

Inteligencia Artificial V. 11, Nº 35, 2007 49

The following evaluation function is used to
measure the score obtained in each trail.

() () ()[]∑
=

−×−−×+×=
500

1

11
t

irrlrlObs SMMMMKEval (1)

where
 lM and rM are values in the interval]1,1[−
corresponding to the left and right motor speeds,
respectively. These are the network outputs.
 irS is the maximum value of the proximity
sensors in the interval]1,0[.
 K is a value proportional to the area covered by
the agent during the training.

The optimization of the term ()rl MM + pushes the
controller to maximize its movement since the
highest value is obtained when the robot goes
forward at the maximum speed. The term
()rl MM −−1 refers to the robot's rotation. If the
robot is spinning on its axis, the speeds of the
motors are opposite. The higher the rotation, the
lower the value of this term is. The controller needs
to minimize this effect in order to increase its score.
Finally, the term ()irS−1 forces the robot to move
away from the obstacles to increase its score.

To obtain controllers capable of covering large
distances, the environment was divided into a grid
of 100x100 equal sectors, and the coefficient sectors
was used to measure the territory which the robot
covered throughout the test.

()

=

×
=
∑∑
= =

otherwise
yxsector

sector

sector
K

xy

x y
xy

0
, coveredagent theif1

100100

100

1

100

1

 (2)

In summary, the robot’s run is weighted in (1) along
500 steps and scaled proportionally to the number of
covered sectors. Figure 5 shows the topology of the
best performing controller obtained after 30
independent runs.

5.2. Light Reaching Module

This module has 16 inputs, 8 for each robot’s
proximity sensors and 8 for each of the light

sensors, and two output neurons, one for each of the
motors.

Like in the previous module, the network inputs are
linearly scaled to the range]1,0[and the outputs,
between]1,1[− . Again, a minimal topology is used
when the evolution begins.

In order to measure the controllers' score during
each trial, the next evaluation function is used:

() ()[]∑
=

×+−−×+×=
500

1
1

t
lightrlrlLight SMMMMEval βα (3)

where
 lM and rM are the same values described in the
previous subsection.
 lightS is the maximum value of the light sensors
in the interval]1,0[, where 0 corresponds to the
absence of light and 1 to a full detection.
 α and β are constants used to regulate the
dominant behavior.

In (3), the robot’s movement is weighted the same
way as in the previous module: The controller will
attempt to maximize its movements minimizing
rotations. However, adding a quantity proportional
to the highest value sensed from the light sensor
permits a controller to be acceptable even if it does
not move. This allows the robot to stop moving and
stay near the light. Figure 6 shows the architecture
of the best controller obtained after 30 independent
runs.

6. Results

Modules represented in Figures 5 and 6 are
integrated to a single neural network following the
method described in section 3.2. Figure 1 shows the
resultant topology. It can be noted that both modules
share the same information provided by the
proximity sensors input neurons.

The unified neural network combines the output of
each module through two new neurons which are in
charge of controlling the robot’s motors. In this
way, the network is composed by 16 inputs, 8 for
each robot’s proximity sensor and 8 for each light
sensor, 4 hidden neurons and 2 output neurons, one
for each motor.

50 Inteligencia Artificial V. 11, Nº 35, 2007

Figure 7: Average best fitness values per generation for each of the tested methods

Figure 8: Average best fitness values per generation with minimum and

maximum values for each of the tested methods.

Figure 9: Behavior of the best individual generated

using standard NEAT.

Figure 10: Behavior of the best individual generated

using NEAT with modules.

The initial population is created with networks
whose genomes are produced applying the mutation
operator defined in section 3.2 to the unified neural
network.

As explained in that section, the population is
evolved according to the NEAT method with
restrictions imposed to the mutation operator.

The fitness of a controller is calculated combining
the evaluation functions of each of the original
modules into a single expression. In this way, both
of the original behaviors are measured
simultaneously. The resulting evaluation function is:

LightlightObsobs EvalcEvalcEval ×+×= (4)

where
 ObsEval and LightEval correspond to the
controller’s score for the obstacles evasion and light
reaching tasks, respectively.
 obsc and lightc are constants that balance the
relative weight of each of the scores of the original
tasks.

In this work, obsc and lightc are 1 and 1.3
respectively, to put more emphasis on light seeking
(+30%) over obstacle avoidance because to reach a
light, there is an implicit pressure in its evaluation
function to traverse the environment. The same
happens with the obstacle avoidance function.

Inteligencia Artificial V. 11, Nº 35, 2007 51

If both evaluation functions are added without being
scaled, the controller which travels more distance
will have a better score, diminishing the importance
of being near a light.

The method proposed in this paper was compared to
standard NEAT and to an intermediate version
which makes use of the same initial topology than
the version with modules does (like the example of
Figure 1), but allows the entire architecture to
evolve, i.e., all the genetic operators of the standard
NEAT are used without restrictions.

In order to compare the performance of the three
alternatives presented, 30 runs were carried out,
independent one from the other; each of them for
500 generations using the same parameters as
before. Figure 7 shows the average of the best
fitness values obtained per generation in each kind.
Figure 8 shows each of these results separately,
including the minimum and maximum fitness
obtained, to easily visualize the dispersion of these
values per generation.

It is worth to mention that the proposed method
outperforms the standard NEAT method; both in the

number of generations necessary to reach a given
fitness value and in the maximum value reached.
Also, starting the evolution with unified networks
that are completely mutable is not better than the
standard NEAT performance but worse.

This can be justified if the initial topology is taken
into account. When an evolution is started with a
more complex mutable neural network, the search
space is larger that when started with a simpler one.
Thus, finding the suitable combination for the
topology and weights is a more difficult task and it
may require more time to reach the same fitness.

Figure 9 shows the performance of the best
individual found in the 30 runs of the standard
NEAT method while Figure 10 shows the best of
the proposed extension. In the three trials, the robot
began from positions different from the ones used
during the evaluation of its fitness.

Figure 11 shows the topology of the controller
generated by this proposal. Three new hidden
neurons have appeared interconnecting both
modules and interacting with the neural network’s
inputs and outputs.

Figure 11: Best controller generated with the proposed method.

52 Inteligencia Artificial V. 11, Nº 35, 2007

7. Conclusions and Future Work

Evolutionary techniques, though capable of
providing excellent results in several areas, present
some unfavorable characteristics: the adaptation
process may be slow and costly in running time for
some problems; and it is difficult to reuse the
acquired knowledge.

This paper has presented a strategy which aims at
solving both problems, proposing the combination
of simple modules, based on recurrent neural
networks, generated independently of the problem
to solve. Finally, the communication among them is
established by evolution, which gives rise to a single
neural network representing the expected solution.

The results obtained for the obstacle evasion and
light reaching problems using a Khepera II robot
have proved that the proposed strategy is more
efficient. The reason for this improvement may be
attributed to the fact of incorporating partial
solutions, instead of not using any previous
knowledge.

An automatic mechanism suitable for combining
each module’s fitness function still has to be
established. In this paper, each evaluation function
had to be scaled to make them all comparables
(within the same interval), to avoid the fact that one
of the functions may diminish the others. In
addition, the election of the coefficient was
manually made.

In future works, the performance of the proposed
method will be measured in problems with higher
complexity which can be decomposed in a higher
number of modules. In order to simplify the
definition of the fitness function for the unified
network, the possibility of incorporating multi-
objective evolution techniques will be studied. This
will permit to obtaining a set of neural networks that
are in the Pareto frontier. As they all represent
variations of the expected behaviors, each
maximizing a different aspect, it will be useful to
select the most appropriate one.

References

[1] Bruce, J. and Miikkulainnen, R. Evolving

Populations of Expert Neural Networks.
Department of Computer Sciences, The
University of Texas at Austin. Proceedings of
the Genetic and Evolutionary Computation
Conference. (GECCO 2001), San Francisco, CA.
pages 251-257, 2001.

[2] Corbalán L., Osella Massa G., Lanzarini L., De
Giusti A. ANELAR. Arreglos Neuronales
Evolutivos de Longitud Adaptable Reducida. X
Congreso Argentino de Ciencias de la
Computación. CACIC 2004. Universidad
Nacional de La Matanza. Buenos Aires.
Argentina. ISBN: 987 9495 58 6. 2004

[3] Goldberg, D.E., Richardson, J. Genetic
Algorithms with Sharing for Multimodal
Function Optimization. Proceedings of the
Second International Conference on Genetic
Algorithms on Genetic algorithms and their
application. Cambridge, Massachusetts, United
States, pages 41-49. 1987

[4] Gomez, F. and Miikkulainen, R. Incremental
Evolution of Complex General Behavior.
Department of Computer Sciences, The
University of Texas at Austin. Adaptive
Behavior. Vol 5, pages 317-342, 1997.

[5] Olivera J., Lanzarini L. Cyclic Evolution. A new
Strategy for Improving Controllers Obtained by
Layered Evolution. Journal of Computer Science
and Technology. Vol 4, nro. 1, pages 211-217,
2005.

[6] Lara, B, Hüsle, M., Pasemann, F. Evolving
Neuro-Modules and their interfaces to Control
Autonomous Robots. MPI-MIS-Preprint 21,
accepted paper for "The 5th World Multi-
Conference on Systemics, Cybernetics and
Informatics" (SCI2001), Orlando, Florida USA,
July 22-25, 2001.

[7] Radcliffe, N.J. Genetic Set Recombination and
its Application to Neural Network Topology
Optimization. Neural computing and
applications, Vol. 1, pages 67-90, 1993.

[8] Reisinger, J., Stanley, K.O., Miikkulainen, R.
Evolving Reusable Neural Modules. Proc. of the
Genetic and Evolutionary Computation
Conference, 2004.

Inteligencia Artificial V. 11, Nº 35, 2007 53

[9] Stanley, K.O., Miikkulainen, R. Evolving neural
networks through augmenting topologies.
Evolutionary Computation, Vol. 10, pages 99-
127, 2002.

[10] Stanley, K.O., Miikkulainen, R. Competitive
CoEvolution Through Evolutionary
Complexification. Journal of Artificial
Intelligence Research, 21. 2004.

[11] Stone P., Veloso M. Multiagent Systems: A
Survey from a Machine Learning Perspective.
Autonomous Robots. Vol. 8, n. 3, pages 345-383,
2000.

[12] Yao, X. and Liu, Y. Ensemble Structure of
Evolutionary Artificial Neural networks.
Computational intelligence Group, School of
Computer Sciencie University College.
Australian Defence Force Academy, Canberra,
ACT, Australia 2600. 1996.

[13] Yao, X. Evolving Artificial Neural networks.
School of Computer Sciencie The University of
Birmingham Edgbaston, Birmingham B15 2TT.
Proceedings of the IEEE. Vol. 87, No. 9, pages
1423-1447, 1999.

