
M. Weske, M.-S. Hacid, C. Godart (Eds.): WISE 2007 Workshops, LNCS 4832, pp. 411–422, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Incremental Quality Improvement in Web Applications
Using Web Model Refactoring

Luis Olsina1, Gustavo Rossi2, Alejandra Garrido2,
Damiano Distante3, and Gerardo Canfora3

1 GIDIS_Web, Universidad Nacional de La Pampa, Argentina
2 LIFIA, Universidad Nacional de La Plata and CONICET, Argentina

3 RCOST, University of Sannio, Italy
olsinal@ing.unlpam.edu.ar,

{gustavo,garrido}@lifia.info.unlp.edu.ar,
{distante,canfora}@unisannio.it

Abstract. Web applications must be usable and accessible; besides, they evolve
at a fast pace and it is difficult to sustain a high degree of external quality. Agile
methods and continuous refactoring are well-suited for the rapid development
of Web applications since they particularly support continuous evolution.
However, the purpose of traditional refactorings is to improve internal quality,
like maintainability of design and code, rather than usability of the application.
We have defined Web model refactorings as transformations on the navigation
and presentation models of a Web application. In this paper, we demonstrate
how Web model refactorings can improve the usability of a Web application by
using a mature quality evaluation approach (WebQEM) to assess the impact of
refactoring on some defined attributes of a Web product entity. We present a
case study showing how a shopping cart in an e-commerce site can improve its
usability by applying Web model refactorings.

Keywords: refactoring, Web applications, usability, quality evaluation.

1 Introduction

The evolution of Web applications (WAs) is driven by a myriad of different factors:
new requirements (stable and volatile), users’ feedback, new technologies giving the
chance to change the look and feel or the interaction style of the application, etc. In all
cases, this evolution usually follows unpredictable patterns that imply a constant
pressure on development teams. Agile methods have emerged to help developers cope
with, and even welcome, continuous change in requirements [1]; as such, these
methods are particularly suitable for developing WAs. Refactoring is one of the
fundamental practices of agile development used to add flexibility and extensibility
before introducing new functionality [3].

Refactoring was defined in the context of object-oriented systems to “factor out”
new abstractions and perform other small transformations to the source code of an
application without changing its behavior [11]. These transformations aim at
improving the design of the code, making it more reusable and flexible to subsequent

412 L. Olsina et al.

semantic changes. Though refactorings are performed in small steps, they are usually
composable, yielding larger transformations that improve readability, reusability and
maintainability of a system [15]. Refactoring to patterns has also been proposed to
help keep the balance between under-engineering (continuously adding new
functionality without a previous clean-up) and over-engineering (applying design
patterns to create overly complex designs) [6].

In the context of WAs, refactoring may not only be applied to improve internal
quality, but also to enhance navigability and presentation, which are external qualities
influencing usability. In [4] we have defined the concept of Web model refactoring
(WMR), i.e., refactoring applied to the navigation and presentation models of a Web
application. WMRs aim at improving the application’s usability by small
transformations in the application’s navigational topology, and/or interface look and
feel. Additionally, WMRs guide the introduction of Web patterns [18] into the
application’s structure. In order to assess how WMRs improves usability, we use a
well-known Web quality evaluation approach, namely WebQEM [8], and test the
application’s quality features before and after refactoring.

As an example that we will elaborate in this paper, Fig. 1.a shows a reduced
version of the Amazon shopping cart and Fig. 1.b shows the same cart with some
added information and operations. In our research we want to identify this kind of
transformations and be able to measure the associated quality improvement, if any.

Fig. 1.a. Basic shopping cart Fig. 1.b. Enhanced shopping cart

The main contributions of this paper are the following: (a) we propose WMR as a
way to incrementally improve the external quality of a WA from the final user
viewpoint; (b) we show how to incorporate quality assessment in the process of
refactoring; and, (c) we demonstrate how WMR improves usability on a particular
case study.

The structure of the paper is as follows. Section 2 summarizes the concept of
WMR and the WebQEM quality evaluation approach. Section 3 shows how to apply
WebQEM in the context of WMR by using a simple but meaningful case study.
Section 4 presents related work and Section 5 concludes the paper and describes some
further work.

 Incremental Quality Improvement in Web Applications 413

2 Background

2.1 Web Model Refactoring

Refactoring is a technique that assists developers in the process of continuous
improvement of source code or design models of an application [20]. We are
interested in defining refactorings for the design models of a WA. Well-known design
methods agree on the definition of a three-stage design process for WAs, resulting in
the definition of three models: application model, navigation model and presentation
model [2, 7, 16, 17]. While refactorings applied to the application model are similar to
those already in the literature [19, 20], we have defined WMRs as those refactorings
that can be applied to the navigation and presentation models of a WA [4].

2.1.1 Intent, Scope and Granularity
Refactoring was originally conceived as a technique that applies syntactic
transformations to the source code of an application without changing its behavior but
improving its maintainability [11]. Web code refactorings, e.g., those applied to the
source code or HTML structures, are outside the scope of this paper but discussed
elsewhere [13, 14]. Similarly, WMRs apply model transformations that affect the way
in which the application presents contents, enables navigation through contents and
provides interaction capabilities [4], but do not change the semantics as defined for
these models.

Since WMRs transform entities that are perceived by the user, their changes are
directly reflected in the way the final user may interact with the WA. Therefore, the
intent of WMRs is to enhance usability [9]. These refactorings focus on those (small)
changes that may improve comprehension, facilitate navigation, smooth the progress
of operations and business transactions, etc. Furthermore, in the same way as
traditional refactorings may be used to introduce design patterns [6], WMRs might be
also driven by Web patterns [18] and therefore produce the same well-known benefits
of the patterns they introduce.

Navigation refactorings aim at improving the application’s navigability by small
transformations of its navigation model. This model is usually described with a
navigational diagram composed of nodes, links, indexes and other access structures.
Behavior defined by the navigation model of a WA is represented by: (i) the set of
available nodes and navigation links between nodes; (ii) the set of available user
operations and the semantics of each operation. Navigation model refactorings may
thus change, among others: the contents available in a node, the set of outgoing links
of a node and the user operations accessible from a node. Alongside, navigation
model refactorings have to preserve the set of possible operations and their semantics,
and the navigability of the set of nodes [4]. Preserving the navigability of the set of
nodes means that existing nodes may not become unreachable though the set may be
augmented. Moreover, this type of refactorings should not introduce data,
relationships or operations that are not in the application model.

The presentation model describes the look and feel of pages, the interface widgets
they contain, the interface controls that trigger the application functionality and the
interface transformations occurring as the result of user interaction. Presentation
model refactorings may thus transform the look and feel of a page by changing the

414 L. Olsina et al.

position of widgets or the interface effects, by adding new widgets or replacing them
to enhance understanding, etc. At same time, the behavior defined by the presentation
model, which must be preserved by the refactorings on this model, concerns with the
actions that the user may trigger in a page, including both operations and links
activation of the underlying nodes.

Most navigation model refactorings may imply other refactorings at the
presentation model (e.g., new information added to a node requires the corresponding
user interface to change in order to present the additional information). In contrast,
presentation model refactorings must be neutral to the underlying navigation
structure.

2.1.2 Examples
To illustrate the ideas presented above, we next describe some representative WMRs
using a simplified template comprising: type of refactoring (navigation or
presentation), motivation, mechanics and example. Other refactorings, including
composite refactorings, can be found in [4].

Add Information (Navigation)
Motivation: we may eventually find the need to display more information than what
is currently on a page. The information may come from different sources and have
different purposes: it may be data extracted from the application model or obtained
from the navigation model itself; it may be information added with the purpose of
attracting customers or to help during navigation. This refactoring may be used to
introduce patterns like Clean Product Details [18] to add details about products in an
e-commerce site. With the aim of attracting customers, we may introduce
Personalized Recommendations [18] or rating information.

Mechanics: the mechanics varies according to the different sub-intents above. In the
most general case: add an attribute to a node class in the navigation model where the
information is to be added. If the information is extracted from the application model,
attach to the attribute the statement describing the mapping to the application model.

Example: this kind of refactoring can be applied to the node behind the page
appearing in Fig. 1.a, to show information about price and savings of each product in
the list; as a consequence we obtain the enriched version of the shopping cart shown
in Fig. 1.b. It is worth noting that the information added to the shopping cart node is
already available from the application model.

Turn Information into Link (Navigation)
Motivation: during the process of completing a business transaction, some Web pages
may show intermediate results or a succinct review of the information gathered until a
certain point. A common example occurs when checking the status of the shopping
cart during the process of buying some products in an e-commerce website. Such
Web pages should provide the user with the chance to review the information
associated to the intermediate results (e.g., items in the shopping cart) by means of
direct links to the pages showing details on them. When this does not happen, the
page can undergo the kind of refactoring we propose here to improve it.

Mechanics: select the portion of the information about the target item that better
distinguishes it. In the navigational diagram, add a link from the node representing the

 Incremental Quality Improvement in Web Applications 415

intermediate results to the nodes showing detailed information on the items to review;
the anchor of the link could be the selected portion of information.

Example: this refactoring may be used to add links from names of products in a
shopping cart to the pages showing detailed information about the products.

Replace Widget (Presentation)
Motivation: the presentation model describes, for each node in the navigation model,
the kind of widgets that display each data attribute and the widgets that permit to
activate operations or links. Inspection of usage of the site may show that some
information item or operation should be displayed with a different widget, to improve
operability, usability or accessibility.

Mechanics: in the page of the presentation model that contains the widget found
unsuitable, replace the current widget by a more appropriate one.

Example: check-boxes are best suited to enable users select one or more items from a
list to perform an operation on them. A typical example is that of an email reader that
allows selecting individual emails by means of check-boxes in order to apply,
afterwards, operations like “delete”. Thus, users do not expect check-boxes to
dispatch an operation when they are clicked but just to show a check-mark in the box.
In the case of Cuspide’s shopping cart, which appears in Fig. 3, checking any box
under the title “Borrar” automatically deletes the item from the cart, which is
confusing and does not allow changing one’s mind. In this case, a more suitable
widget would be a button with label “Borrar” or the usual trash can icon (see Fig. 4).

2.2 The Web Quality Evaluation Method (WebQEM) Approach

WebQEM [8] is an evaluation method for WAs, i.e., a method for the inspection of
characteristics, sub-characteristics (named calculable concepts and sub-concepts in
Fig. 2), and attributes stemming from a quality model for WAs. WebQEM relies on a
set of well-defined metrics and indicators for measurement and evaluation, in order to
give recommendations for improvement. The main parts of the measurement and
evaluation framework (named INCAMI [10], which stands for Information Need,
Concept model, Attribute, Metric and Indicator), and the WebQEM method that
instantiates it are, namely:

• The non-functional requirements specification component, which deals with the
definition of the Information Need and the specification of requirements by means
of one or more Concept Models -see Fig. 2. (Note that a concept model can be
instantiated in external quality, quality in use models, among many others).

• The measurement design and execution component, which deals with the
specification of concrete Entities to be measured, the metrics selection to quantify
the attributes of the quality model, and the recording of the gathered measures; this
component is centered in the Metric concept [10].

• The evaluation design and execution component, which deals with the definition of
indicators, both elementary and global ones, decision criteria and aggregation
models that will help to enact and interpret the selected concept model; this
component is centered in the Indicator concept (see [10] for more details).

416 L. Olsina et al.

Project

name
description
beginDate
endDate
director
contactInfo

type =
{own,standard,
mixture}

Entity

name
description

EntityCategory

name
description
superCategory

1

1..*

-entityCategory 1

1..* belongs_to

Attribute

name
definition
objective

1..*

1..*

-entityCategories 1..*

1..*

asociated_with

RequirementProject

1..*

1..*

-attributes 1..*

1..*

identifies

InformationNeed

purpose
viewpoint
contextDescription

1

1-informationNeed

1

1

satisfies

1

1

-object
1

1

specifies

ConceptModel

name
specification
references
type
constraints

CalculableConcept

name
definition
references 0..*

1..*

-subConcepts

0..*

subconcept

1..*

1..*

1

1..*

1 combines
1..*

1

-foci

1..*

1

described_by

0..* 1

-models

0..* 1represented_by

Fig. 2. Key terms and relationships that intervene in the non-functional requirements definition
and specification component, which is instantiated by WebQEM

3 A Strategy for Incremental External Quality Improvement

Our proposal to continuously improve the external quality of a WA, such as its
usability, is to enrich the lifecycle of a WA with a new activity: WMR. After each
requirements/design/implementation cycle and before the next cycle begins, the
design models of a WA should be inspected in order to find opportunities for
refactoring. Thus, similarly to the well-known advantages of traditional refactoring [3,
20], the quality of the design will be incrementally improved, as well as the external
quality. We also propose an additional activity to assess the benefits of applying
WMR by evaluating the application’s quality before and after refactoring. This is a
first step to systematize the process of WMR as a quality-driven activity.

3.1 The Shopping Cart Case Study

The external quality (e.g., the usability and content) of the Cuspide shopping cart can
be improved by systematically applying WMR. Instead of using a set of “good
practices” for shopping carts, we used the Amazon.com shopping cart as a reference
for desirable requirements and quality attributes of a shopping cart. In fact, Amazon is
certainly a well-known instantiation of good practices for this type of application
component. Referring back to Fig. 2, we can state that given an entity (the Cuspide
shopping cart), the information need can be specified by its purpose (evaluate and
compare), from the user viewpoint (developer), in a given context (using WMR in the
context of an agile process). Moreover, the information need has the focus on a
calculable concept (external quality) and sub-concepts (usability and content), which
can be represented by a concept model (external quality model) and associated
attributes (as shown in the left side of Table 1).

 Incremental Quality Improvement in Web Applications 417

3.1.1 The External Quality Specification
To evaluate the impact of WMR, we have specified the external quality of the
Cuspide shopping cart with regard to some usability and content attributes,
contrasting it with some features of the Amazon shopping cart. In this sense, we
carried out evaluation activities before and after applying WMRs. The external
quality requirements that were assessed appear in the left column of Table 1. In
addition, elementary, partial and global indicator values are shown for the Cuspide
shopping cart before refactoring (as we analyse in the next sub-section). Many of
these quality requirements were illustrated in [9], as well as the justification for the
inclusion of the Content characteristic for assessing the quality of information in the
Web.

Table 1. External quality requirements (with regard to usability and content) for a shopping
cart. EI = Elementary Indicator value; P/GI = Partial/Global Indicator value.

External Quality Requirements EI P/GI
Global Quality Indicator 61.97%
1 Usability 60.88%
1.1 Understandability 83%
1.1.1 Shopping cart icon/label ease to be recognized 100%
1.1.2 Information grouping cohesiveness 66%
1.2 Learnability 51.97%
1.2.1 Shopping cart help 50%
1.2.2 Predictive information for link/icon 66%
1.2.3 Informative Feedback 41.5%
1.2.3.1 Continue-buying feedback 66%
1.2.3.2 Recently viewed items feedback 0%
1.2.3.3 Proceed-to-check-out feedback 100%
1.2.3.4 User current status feedback 0%
1.3 Operability 49.50%
1.3.1 Shopping cart control permanence 100%
1.3.2 Expected behavior of shopping cart controls 50%
1.3.3 Controls Accessibility
1.3.3.1 Support for text-only version of controls 0%
2 Content 63.05%
2.1 Information Suitability 63.05%
2.1.1 Shopping Cart Basic Information 50%
2.1.1.1 Line item information completeness 50%
2.1.1.2 Product description appropriateness 50%
2.1.2 Other Contextual Information 76.89%
2.1.2.1 Shipping costs information completeness 100%
2.1.2.2 Applicable taxes information completeness 100%
2.1.2.3 Return policy information completeness 33%

3.1.2 Design and Execution of the Measurement and Evaluation
Following the WebQEM’s steps (outlined in Section 2.2), evaluators should design,
for each attribute of the instantiated quality model, the basis for the measurement and
evaluation process. This step is accomplished by defining each specific metric and

418 L. Olsina et al.

Fig. 3. Shopping cart in Cuspide (www.cuspide.com.ar) before refactoring

indicator for the given information need. Lastly, in the execution phase, we record the
final values for each metric and indicator. The right columns of Table 1 show the
indicators values, and Fig. 3 the entity to be measured.

For example, for the “Line item information completeness” attribute (coded 2.1.1.1
in Table 1), having the Amazon shopping cart as reference, we designed a direct
metric named “Degree of completeness of the Line item information”. It specifies
three categories considering an ordinal scale type, namely: 0. Incomplete; 1. Partially
complete, (i.e., it only has title, price, quantity, and sometimes availability fields); and
2. Totally complete (it has 1 plus author, added on date, and availability).

Moreover, an elementary indicator can be defined for each attribute of the
requirement tree. For instance, for the previous attribute, the elementary indicator
“Performance Level of the Line item information completenes” interprets the metrics
value of the attribute. Note that an elementary indicator interprets the level of
satisfaction of this elementary requirement. After this, a new scale transformation and
decision criteria (in terms of acceptability ranges) are defined. In our study, we use
three agreed acceptability ranges in a percentage scale: a value within 40-70 (a
marginal range) indicates a need for improvement actions; a value within 0-40 (an
unsatisfactory range) means changes must take place with high priority; a score
within 70-100 indicates a satisfactory level for the analyzed attribute. Table 1 shows a
value of 50% for the 2.1.1.1 attribute of the Cuspide shopping cart, taking into
account that a value of 1 mapped to 50% and a value of 2 mapped to 100% of
satisfaction.

Furthermore, to design and execute the global evaluation, we should select and
apply an aggregation and scoring model [8]. In this case study, we used an additive
scoring model, so applying weights and the sum operator we related the hierarchically
grouped attributes, sub-concepts, and concepts accordingly, yielding in the end the
partial and global indicators (the rightmost column of Table 1). Thus, decision-makers
can analyze the results and give recommendations. We can see that many indicators
are below the threshold of the satisfactory acceptance range; thus, many attributes of
the external quality of the Cuspide shopping cart may benefit from improvement.

 Incremental Quality Improvement in Web Applications 419

3.1.3 Applying WMR to the Example
As discussed above, Cuspide should plan changes in the Shopping Cart Basic
Information sub-characteristic (ranked 50%) mainly in attributes 2.1.1.1 and 2.1.1.2.
For example, the 2.1.1.1 attribute should have at least the author’s name besides the
title of the item, since, as shown in Fig. 3, it is not possible to distinguish between two
or more items with the same starting title (e.g., “INGENIERIA DE SOFTWARE”). We
may apply the refactoring Add Information (see Section 2.1.2) to the shopping cart
node to incorporate the author’s name to each item in the list. Moreover, note that it is
not possible to navigate to the pages showing the detailed information on the items in
the shopping cart for further information. We can apply the refactoring Turn

Information into Link to solve this problem. The outcome of applying these two
refactorings is shown in Fig. 4. As a result we can predict the total satisfaction (100%)
of both attributes mentioned above. Fig. 4 also shows the result of applying the
refactoring Replace Widget (see Section 2.1.2) to correct the unexpected behavior of
the delete item control.

Fig. 4. The Cuspide shopping cart after refactoring

3.2 Discussion

As stated before, our research aims at: (a) presenting WMRs that may improve the
external quality of a WA; and (b) integrating quality assessment in the refactoring
process. There are two ways in which we can face the refactoring activity during the
development cycle: as an informal improvement process or in the context of a
structured evaluation framework. In the first case, we analyze our application (either
by collecting users’ feedback or by carefully inspecting its functionality) and find
opportunities for refactoring. In fact, this is the way in which refactoring has been
applied so far in the software community. When the designer is aware of a good
catalogue of possible refactorings, the process is simplified. The second case (using a
structured evaluation framework) arises when we are able to formally perform an
evaluation before and after the refactoring. Moreover, by performing the evaluation of
the entity to be refactored before and after the process, we can quantify and justify the
quality gain, independently of the chosen lifecycle. Therefore the incremental quality
improvement can be evaluated and/or predicted.

420 L. Olsina et al.

The most important aspect of this strategy is that, ultimately, we can map atomic or
composite refactorings to attributes. In other words, associated with each meaningful
attribute, there are one or more refactorings that may be applied to meet this
requirement. Moreover, at the organization level, we can have a catalogue of WMRs
and eventually a mapping to a catalogue of attributes. By knowing beforehand the
impact of the transformations, we could estimate the improvement gain. In our case
study, we were able to make a correspondence between refactorings and attributes
that influence the external quality. Table 2 shows the result of this correspondence,
with refactorings to the left of the table and the attributes they improve to the right.

Table 2. Mapping between refactorings and attributes (shown in Table 1) that can be applied to
improve the external quality. NM = Navigation Model; PM = Presentation Model.

Refactorings that may apply Attributes that may improve
Add Information (NM) 1.1.1 / 1.2.3.3 / 1.2.3.4 / 2.1.1.1 /

2.1.1.2 / 2.1.2.1 / 2.1.2.2 / 2.1.2.3
Add Category (NM) 1.1.2 / 1.2.1
Add Operation (NM) 1.2.3.3 / 1.3.1
Add Index (NM) 1.2.1
Add Guided Tour (NM) 1.2.1
Anticipate Target (NM) 1.2.2
Enrich Index (NM) 1.2.3.1 / 2.1.1.2
Introduce History (NM) 1.2.3.2
Multiply Category (NM) 1.1.2 / 1.2.1
Recategorize Item (NM) 1.1.2 / 1.2.1
Turn Info into Link (NM) 2.1.2.2
Add Widget (PM) 1.1.1
Replace by Text (PM) 1.3.3.1
Replace Widget (PM) 1.3.2

Of course we might not have to apply all the refactorings to all the Cuspide

shopping cart attributes listed in Table 2. Some of them may not need real
improvement, e.g., those in which the actual elementary indicator value is 100%.
However, for those attributes which are weak or absent we can predict, after applying
a focused cost-effective refactoring, a total level of satisfaction of all these
requirements. Ultimately, our strategy for incremental improvement can be used both
to predict the quality and to actually make the real assessment after refactoring.

4 Related Work

Our research differs from existing work in the refactoring field in three aspects: the
subject, the intent, and the underlying strategy. Regarding the subject, we deal with
the navigation and interface models of a WA, while existing literature works either at
the code level or at the implementation design level (e.g. by refactoring on UML
diagrams). Even for those Web design methods whose notations are based on UML-
like diagrams [2, 7], our refactorings are different from conventional model

 Incremental Quality Improvement in Web Applications 421

refactorings [19]. Regarding the intent, WMRs aim at improving the user’s experience
with the WA and not internal attributes such as maintainability. Finally, regarding the
underlying strategy, our approach differs from others in that it integrates an evaluation
methodology (WebQEM) in order to improve non-functional information needs.

Ricca and Tonella [13] have worked on code restructuring for WAs. They define
different categories of restructuring, like syntax update, internal page improvement,
and dynamic page construction. Refactoring differs from restructuring in that the
latter implies larger transformations that are usually run in batch mode by applying
certain rules. Instead, refactorings are smaller and applied interactively. However, one
main difference with our work is that their transformations apply on the source code,
in this case, html, PHP and/or Javascript. Another difference is that WMRs are
defined to improve operability, attractiveness, information suitability, among other
non-functional characteristics, at the levels of characteristic and measurable attributes.

On the other hand, Ping and Kontogiannis apply refactoring at the level of
hypermedia links, i.e., to the navigational structure of the application [12]. They
propose an algorithm to cluster links into several types and group Web pages
according to these link types. Applying this technique should provide a roadmap for
the identification of controller components of a controller-centric architecture.
Although their target is the navigational structure of a WA, they do not provide the
mechanics to apply the transformation, but only a first step to recognizing where to
apply them. In addition, in a recent work, Ivkovic et al. [5] include in their refactoring
strategy a soft-goal hierarchy identification step. Even though this work represents a
valuable contribution, a sound framework to justify measurement and evaluation
results for analysis and recommendation of quality improvements is missing.

5 Concluding Remarks and Further Work

In this paper we have presented our proposal to continuously improve the external
quality of WAs during their entire life-cycle. The approach is based on the use of WMR
combined with WebQEM, a mature method for assessing the quality characteristics of a
WA. We defined WMRs as those refactorings that can be applied to the navigation and
presentation models of a WA, with the purpose of improving its external characteristics,
while preserving its behavior. We showed how to incorporate a quality evaluation
method in the process in order to assess the improvement gained by refactoring. We also
presented a case study showing how a typical shopping cart in an e-commerce site can
improve its usability by applying some WMRs from our catalog.

Our current line of research is being devoted to extend our catalogue of WMRs
and their possible composition, and to map each of the refactorings to quality
attributes of a WA. A further research issue is to develop tool support both for
applying WMRs and for enabling assessment, based on the OOHDM design method.

References

1. Beck, K.: Test-Driven Development. Addison-Wesley, Reading (2002)
2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling

Language for Designing Web Sites. In: Proc. of WWW9, Amsterdam, NL (2000)

422 L. Olsina et al.

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading (2000)

4. Garrido, A., Rossi, G., Distante, D.: Model Refactoring in Web Applications. In: WSE
2007. 9th IEEE Int’l Symposium on Web Site Evolution, Paris, France, IEEE CS Press,
Los Alamitos (2007)

5. Ivkovic, I., Kontogiannis, K.: A Framework for Software Architecture Refactoring using
Model Transformations and Semantic Annotations. In: Proc. IEEE, CSMR 2006, pp. 135–
144 (2006)

6. Kerievsky, J.: Refactoring to Patterns. Addison-Wesley, Reading (2005)
7. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering. In:

Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 105–119. Springer, Heidelberg
(2002)

8. Olsina, L., Rossi, G.: Measuring Web Application Quality with WebQEM. IEEE
Multimedia 9(4), 20–29 (2002)

9. Olsina, L., Covella, G., Rossi, G.: Web Quality (Chapter fourth). In: Mendes, E., Mosley,
N. (eds.) Springer Book titled “Web Engineering” (2006) ISBN 3-540-28196-7

10. Olsina, L., Papa, F., Molina, H.: How to Measure and Evaluate Web Applications in a
Consistent Way (Chapter Thirteenth). In: Rossi, Pastor, Schwabe, Olsina (eds.) Springer
Book titled Web Engineering: Modelling and Implementing Web Applications. Human-
Computer Interaction Series, vol. 12 (2007) ISBN: 978-1-84628-922-4

11. Opdyke, W.: Refactoring Object-Oriented Frameworks. Ph.D.Thesis, Illinois University at
Urbana-Champaign (1992)

12. Ping, Y., Kontogiannis, K.: Refactoring Web sites to the Controller-Centric Architecture.
In: CSMR 2004, Tampere, Finland (2004)

13. Ricca, F., Tonella, P.: Program Transformations for Web Application Restructuring. In:
Suh, W. (ed.) Web Engineering: Principles and Techniques. ch. 11, pp. 242–260 (2005)

14. Ricca, F., Tonella, P., Baxter, I.D.: Restructuring Web Applications via Transformation
Rules. In: SCAM, pp. 152–162 (2001)

15. Roberts, D.: Eliminating Analysis in Refactoring. Ph.D. Thesis, Illinois University (1999)
16. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design.

Theory and Practice of Object Systems 4(4) (1998)
17. UWA Consortium: Ubiquitous Web Applications. Proceedings of the eBusiness and

eWork Conference e2002: Prague, Czech Republic (2002)
18. Van Duyne, D., Landay, J., Hong, J.: The Design of Sites. Addison-Wesley, Reading

(2003)
19. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-consistent

UML Refactorings. In: Proc. of the 6th Int’l Conference on UML (2003)
20. Zhang, J., Lin, Y., Gray, J.: Generic and Domain-Specific Model Refactoring using a

Model Transformation Engine. In: Beydeda, S., Book, M., Gruhn, V. (eds.) Model-driven
Software Development. ch. 9, pp. 199–218. Springer, Heidelberg (2005)

	Incremental Quality Improvement in Web Applications Using Web Model Refactoring
	Introduction
	Background
	Web Model Refactoring
	The Web Quality Evaluation Method (WebQEM) Approach

	A Strategy for Incremental External Quality Improvement
	The Shopping Cart Case Study
	Discussion

	Related Work
	Concluding Remarks and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

