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Abstract 

Computational reflection makes it easy to solve problems 
that are otherwise difficult to address in Smalltalk-80, such 
as the construction of monitors, distributed objects, and 
futures, and can allow experimentation with new 
inheritance, delegation, and protection schemes. FulI 
reflection is expensive to implement. However, the ability 
to override method lookup can bring much of the power of 
reflection to languages like Smalltalk- at IXJ cost in 
efficiency. 

Introduction 

One of the attractions of object-oriented languages is their 
extensibility. Programmers gain confidence that facilities 
that are not already available in a given environment can 
easily be constructed. Current systems make it easy to 
define data types like complex or arbitrary precision 
numbers. New object types become as “first class” as those 
built into the language. A big part of the appeal of object- 
oriented programming is that programmers believe that, if 
they really wanted to, they could redefine the world. 

However, there are a few kinds of objects that are difficult 
to implement in conventional object-oriented programming 
languages such as Smalltalk- [Goldberg 19831 and C++ 
[Stroustrup 19861. For example, a future object [Halstead 
19851 acts as a surrogate for a result that is in the process 
of being computed. Messages to the future cause the sender 
to wait until the result is computed, at which time the 
message is relayed to the result. Object-oriented languages 
make it easy to redefine simple methods, but futures must 
intercept any message sent them. 
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Monitors, atomic objects, and distributed objects present 
similar difficulties. These applications all require that an 
object be able to intercept any message sent to it on a per- 
object rather than a per method-basis. In Smalltalk-80, the 
method dispatch mechanism is buried within the Virtual 
Machine, beyond the programmer’s grasp. 

Recent work on object-oriented computational reflection 
/$faes 1987h] has provided a general framework for 
addressing problems like those discussed above. Reflection 
is intriguing because it seems to allow programmers to 
make open-ended, localized extensions to the languages and 
systems with which they are working. 

Reflective systems are f?equently constructed using 
metacircular interpreters, This approach provides the 
highest possible degree of flexibility at the expense of 
performance, We believe that full reflection may not be 
necessary to address many of the kinds of problems that 
have attracted so much attention to it. For this reason, we 
have focused on how a handful of reflective facilities can 
efficientlv bring much of the Rower of full reflection to 
Smalltalk-80. In particular, this paper discusses redefining 
the default method lookup mechanism, and looks at how 
lightweight classes can be used to implement metaobjects. 

Reflection 

A reflective program is one that reasons about itself. A 
fully reflective procedural architecture [Smith 19831 is one 
in which a process can access and manipulate a full, 
explicit, causally connected representation of its own state. 
“Causally connected” means that any changes made to a 
process’s self-representation are immediately reflected in its 
actual state and behavior. 

waes 1987a] [Maes 1987b] describes an object-oriented 
reflective language called 3XRS. 3-KRS partitions every 
object into a domain specific referent and a reflective 
m&object. The referent contains information describing 
the real-world entity that the object represents. The 
metaobject contains information describing its referent as a 
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computational entity in itself. Enforcing this separation 
encourages the emergence of standard protocols for 
communicating between objects and metaobjects. The 
distribution of the system’s self-representation among the 
system’s metaobjects makes this self-representation easier 
to think about and manipulate. 

Manipulation of an object’s metaobject can affect the way 
in which computation for its referent object is carried out. 
For instance, in 3-KRS, an object can have method lookup 
redefined by giving it a new metaobject that defined a 
“deviating” interpreter. Such changes can be made on a per- 
object basis, since each object has its own metaobject. 
Specialized metaobjects can be introduced dynamically. The 
ability to introduce temporary, localized changes to an 
object’s semantics without changing the object itself 
accounts for a great deal of reflection’s power. 

Maes distinguishes between systems with reflective 
facilities and full-fledged reflective architectures. 
Reflective facilities allow a program to reflect upon certain 
aspects of itself. For example, in Lisp, eval permits 
reflecting upon programs given as data, and catch and 
throw allow reflecting upon the runtime stack. 

Actor Languages 

An Actor [Agha] is a process that explicitly decides whether 
and how to handle or delegate any messages it receives. 
This ability is used to construct futures, monitors, etc. 
Actor languages are designed for multiprocessors; the 
requirement that each actor be a separate process makes 
actors inefficient on single processors. Further, using a 
parallel programming language for sequential programming 
causes a certain mental overhead. 

Smalltalk- [Goldberg 19761 was similar in some respects 
to the Actor languages. In Smalltalk-72, an object’s class 
was a process that repeatedly examined the object’s message 
stream and then dispatched on the message. As the 
language evolved, message lookup was subsumed into the 
Smalltalk Virtual Machine for efficiency’s sake and because 
deviations from case-style method dispatching were rare and 
usualIy hard to understand. Smalltalk- permitted more 
reflection than Smalltalk- because objects could 
manipulate the message stream. 

Replacing user-defmed message-handling with standardized 
method lookup was a success. It led to efficient Smalltalk 
implementations and a large body of reusable software. 
However, the power of the Actor language is needed to deal 
with parallelism and other aspects of modem applications. 
We believe that object-oriented systems should provide 
primitive facilities that allow actor-like objects to be 
constructed out of more rudimentary components. Thus, 
the full power of actors will only be used when appropriate. 

Lisp Based Systems 

The Common Lisp Object System (CLOS) [Bobrow 19881 
[Keene 19891 is a marriage of Common Loops and New 
Flavors that provides a very powerful generic function-based 
method combination mechanism. The CLOS Metaobject 
Protocol provides a metacircular definition of the entire 
CLOS system. The MOP is intended to permit open-ended 
experimentation with new object-oriented programming 
paradigms, and has been used to successfully implement a 
number of distinctly un-CLOS-like object-oriented 
programming systems. The MOP is designed to permit the 
modification of basic language mechanisms such as method 
lookup from with CLOS itself. 

The mechanisms provided in CLOS’s standard method 
combination scheme are quite powerful. CLOS generic 
functions can specialize on any of their arguments, not just 
the first, and may specialize on instances as well as classes 
and types. The :before, :after, and :around method 
types modify particular primary methods. Class-wide 
before, after and around methods for arbitrary messages 
cannot be defmed without making alterations at the meta- 
level. 

Co&e’s ObjVLisp system [Cointe 19871 permits a 
Me&lass hierarchy distinct from the class hierarchy. This 
allows arbitrarily deep meta-regress, where appropriate. 
This system allows the lookup method used by the 
system’s send primitive to be changed by manipulating the 
metaclass. Metaclass customization can also be used to 
control internal object representations, method caching, and 
access to instance variables. 

Reflecting on the Smalltalk Virtual 
Machine 

Most of the existing object-oriented systems that permit 
meta-level system manipulation, such as 34X3, CLOS, 
ObjVLisp, and ABCL/R Watanabe 19881 have been 
constructed using Lisp-based metacimular interpreters. 
Reflection is then implemented by modifying the 
language’s interpreter. Smalhalk-80, on the other hand, 
uses a virtual machine. 

Although the Smalltalk-80 virtual machine is a byte code 
interpreter that is usually implemented in machine language 
or C, the official definition of the virtual machine is written 
in Smalltalk[Goldberg 831. Moreover, the SmaIltallc-80 
debugger uses a byte-code interpreter written in Smalltalk. 
Indeed, debugging and tracing are frequently cited as 
applications that are well addressed using reflection. In 
general, though, secondary interpeters are probably too 
inefficient to serve as a practical mechanism for the 
implementation of reflective features. Hence, we have 
focused instead on adding certain reflective facilities to the 
Smalltalk virtual machine. 
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Smalltalk already exhibits many reflective facilities; 
programs can examine their run-time stacks and can redefine 
their methods. These facilities were exploited by LaLonde 
and Van Gulik mnde 19881 to construct a backtracking 
facility in Smalltalk. We can add more reflective facilities 
by examining each part of Smalltalk and seeing how each 
could be overridden. 

1) Variable read and write 

Variable accesses can be reflected upon in a number of 
ways. If variable accesses are implemented using messages, 
as in Selflungar 88] , then reflective mechanisms for 
messages will also work for variables. Another alternative 
is to introduce active variables, as was done in Smalltalk- 
by Messick and Beck [Messick 19851. This approach 
involved modifying the Smalltalk- compiler to convert 
variable accesses into message sends to ActiveVariable 
objects, which in turn regulated access to their contents. 

2) Sending a message 

Messages sent hy an object can be intercepted by modifying 
the SmalItalk-80 compiler to wrap code around each send 
operation. Mechanisms that allow a specialized interpreter 
to preempt the default one can also be used to intercept 
message sends. The Smalltalk debugger is implemented 
using an interpreter that runs on top of the Smalltalk 
virtual machine. Intercepting each message sent by an 
object seems useful primarily for applications like tracing 
and debugging. 

3) Receiving a message 

We have concentrated on the mechanism for handling 
messages sent & an object. The message send is one of the 
fundamental notions upon which object-oriented systems 
are based, so redefining its meaning is very powerful. 
Later, we will show how to efficiently redefine message 
look-up and some of its many uses. 

4) Returns 

If an object can intercept messages sent to it before 
dispatching them, its dispatching routine can inspect results 
returned to it before returning them itself. Thus, redefining 
returns falls out of redefining message dispatching. 

Changing Method-Lookup in 
Smalltalk 

Pascoe [pascoe 19861 described a clever scheme for 
customizing method dispatch in Smalltalk-80. His 
approach, rather than relying on compiler and code 
modifications, involved the creation of a parallel hierarchy 
of classes called Encapsulators. An Encapsulator is an 
object that surrounds another (single) object. Pascoe 

exploited Smalltalk-80’s doesNotUnderstand: 
mechanism to construct these objects, 

When a message is sent to a Smalltalk- object, the 
method dictionaries associated with that object’s class and 
its superclasses are searched at nmtime. If none of these 
classes implement a method for a given message, the 
Smalltalk virtual machine sends the object the message 
doesNotUnderstand:. The original message selector 
and message arguments are bundled together in a Message 
object and passed as the argument to 
doesNotUnderstand:. The default method for this 
message is stored in class Object, This method invokes the 
Smalltalk &bugger, since sending an object a message it 
does not implement is usually a sign of programmer error. 
However, objects that override docsNotUnderstand: can 
intercept unimplemented message at runtime, and process 
them as they see fit. 

Encapsulators are ‘wrapped around” the objects they 
encapsulate. Unadorned Encapsulators forward every 
message sent to them to their client object. However, pre- 
and post- actions (EPreAction and EPostAction) as 
well as initialization code can be specified by overriding 
certain default Encapsulator methods (EPreAction, 
EPostAction, and Elnitialize). EPreActions can 
include message screening, synchronization, and the like. 
EPostActions can gain access to the value returned, 
perhaps altering the returned value, if appropriate. 

Pascoe’s approach, in effect, uses message forwarding to an 
encapsulated component to effect method lookup 
customization. This is message forwarding, and not true 
delegation, because the self problem [Liebermann 19861 is 
not addressed (see below). 

Encapsulators are good for building objects like distributed 
objects [Bennett 19871 [McCullough 19871, since the 
object being forwarded to is in another address space from 
the original object receiving the message. However, they 
do not work well for atomic objects, since it is possible for 
the object being encapsulated to escape from the 
encapsulator and allow other objects to send it messages 
directly. 

Messick and Beck discuss a tool to insert code before and 
after a given method without having to recompile the 
method. They call such methods advised methods, after a 
related feature in Interlisp. They used this facility for 
setting conditional breakpoiits, for argument and result 
type checking, for coercion, for tracing, and for changing 
method interfaces. Advised methods show the value of 
being able to wrap a piece of code around an existing 
method without changing it. 

One interesting aspect of Messick and Beck’s work is that it 
illustrates how manipulation of the Smalltalk- system’s 
self representation can be undertaken at several different 
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levels of the system. The implementation of active 
variables took advantage of the fact that Smalltalk- 
allows the Smalltalk compiler itself to be modified by users 
of the system. The advised method feature involved the 
manipulation of compiled methods. It is instructive to 
contrast these approaches with those that use only pre- 
existing reflective facilities (such as the backtracking work) 
and with those that entail modification (or replacement) of 
the virtual machine itself (see below). 

Method Lookup in TS 

Customized method-lookup routines can be efficiently 
implemented. One technique was used by Chris Lanier as 
part of TS, an optimizing compiler for Smalltalk that we 
are building [Johnson 198881 This technique employs a 
class instance variable that refers to a method lookup 
routine for that class. It uses a variation of in-line caching, 
as originally implemented in PS, ParcPlace Smalltalk 
[Deutsch 19831 that allows custom method lookup routines 
to be executed with almost no performance penalty. 

Note that the vast majority of classes will not need to 
override method lookup. A mechanism for allowing 
method-lookup to be overridden should impose no overhead 
on classes that do not use it. 

In-line method caching is a technique for optimizing 
method lookup that takes advantage of the dynamic locality 
of type usage by caching the method last associated with a 
given message send m-line. Deutsch and Schiffman report 
that this strategy is effective about 95% of the time. 

In-line caching works as follows. A message send with no 
cache entry is anunlinked entry. For example, consider 
this message send: 

push receiver Stack the receiver.. . 
push argl,...,argn Stack the args... 
call unlinkedDispach ;Lookup and fill in cache 
<message selector> Selector to send... 
<unused> ;Untinked entries don’t use. 

;Send will return here... 

When the unlinkedDispatch routine is called it performs a 
standard method-lookup, and associates a method with the 
given receiver and selector. It then modifies the call in 
place as follows before completing the send: 

push receiver Stack the receiver... 
push argl,...,argn Stack the args. . . 
call IinkedDispach ;Try prewicus method first. . . 
<last class> ;C/ass of cached method.. . 
<method> ;Method to callfirst... 

Send will return here... 

The modified call is said to be linked. (The changes made 
to create the cache entry are shown in italics.) A linked 

cache entry contains the class of the method stored in the 
cache, together with the address of the method itself. The 
linkedDispatch routine must determine whether the class of 
the cached entry matches the class of the receiver of the 
current message send. If this is the case (as it usually will 
be) the method can be dispatched to directly. When there is 
a mismatch, the cache entry must be relinked by performing 
a full method-lookup. Some implementations of in-line 
caching call the method itself directly, instead of using a 
dispatching routine. The code to check the validity of the 
cache entry must then be prefixed to every compiled 
method. 

Deutsch and Schiffman note that this sort of dynamic code 
modification is generally condemned in modem 
programming practice. It is, however, very much in the 
spirit of the work on reflection. 

Under TS, each class stores its method look-up routine in 
one of its instance variables. Since the linkedDispatch and 
unlinkedDispatch routines are the method-lookup routines, 
redefining method lookup means creating new dispatch 
routines. There is a new version of the linkedDispatch 
routine for each redefinition of method lookup. The code 
that links cache entries must check whether the dispatch 
routine has changed, too, and might need to jump to a new 
dispatch routine. Classes that use the default method 
lookup routine will behave exactly like PS, so method- 
lookup will continue to be fast. The overhead associated 
with this method lookup scheme was about the same as 
that of method caching alone in PS. We plan to eventually 
write method-lookup routines in Typed Smalltalk, but at 
the moment all of them are written in machine language. 

Reflective Facilities in Smalltalk 

Under ParcPlace Smalltalk (PS) we implemented our 
specialized method lookup routines in Smalltalk- itself. 
Whenever an object belonging to a class designated as a 
dispatching class (using a bit in the class object’s header) is 
sent a message, that object is instead sent 
dispatchMessage: aMessage. This feature is 
implemented using essentially the same mechanism as 
doesNotUnderstand:. The method associated with 
dispatchMessage is then free to handle the message as it 
sees fit. A mechanism for allowing a dispatching class’s 
methods to call other class methods without reinvoking the 
dispatching mechanism is provided. 

A related class type is the parentless class. These classes 
invoke the message dispatching mechanism if the message 
sent to them is not found in the method dictionary of the 
first class searched. The effect achieved is the same as that 
of removing the class’s superclass chain. 

These features are augmented with mechanisms for 
supporting lightweight anonymous classes and m&objects. 
Metaobjects are class objects that refer to a single instance, 
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their referent. They are similar in this respect to 
Smalltalk’s Metaclass objects, which describe a single class 
object. We currently implement lightweight classes and 
metaobjects as subclasses of Behavior. We allow these 
objects to be introducted and removed from the inheritance 
paths of individual objects dynamically. These class 
objects are not ma& visible to the parts of the Smalltalk 
system that are involved with the management of the 
system’s class hierarchy, and have no global names. The 
figure below illustrates how a metaobject that specializes a 
single instance of class Point fits into the class hierarchy. 

Figure 1 

The use of a doesNotUnderstand-based dispatching 
mechanism limits the efficiency of the code that uses it. 
Our TS based implementation of specialized method lookup 
routines based on in-line caching can be very efficient. The 
only overhead is the extra time needed to link dispatch 
routines, which is very small. We believe that a synthesis 
of the two approaches discussed above can retain the 
flexibility associated with programming reflective code in 
Smalltalk-80, as well as the efficiency of the TS-based 
lookup customization scheme. 

Applications 

A classic example of the need for redefining message 
dispatching is making an object that only responds to one 
message at a time, i.e. an atomic object [Yokote 19861. 
An atomic object has a semaphore, and every process that 
sends a message to it must first acquire that semaphore. 
When the message returns, the semaphore is released. This 
is easily implemented by having the message dispatch 
routine acquire the semaphore before executing the method 

and releasing it afterwards. Our implementations of 
monitors and atomic objects bear a fairly strong 
resemblance to those given in Pascoe 19861. 

A future object differs from an atomic object because the 
final methods that are executed belong to the value of the 
future, not the future object itself. The future has a 
semaphore and a value. The semaphore is originally 
locked. Once released, the semaphore is never locked again, 
and messages are relayed to the new value of the future 
instead of being executed by the future itself. 

The Smalltalk- code that follows illustrates a simple 
implementation for Future objects. The code below shows 
how a future object for the result of a block that calculates 
2+2 might be created. The given block is executed in 
parallel with the active process. The promising: method 
immediately returns a Future object, which can be thought 
of as a place holder for the result being computed in 
parallel. Messages sent to the future (such as the 
printstring message below) while the process computing 
the Future’s result is still in progress cause the current 
process to be suspended until the Future arrives. 

f C- Future promising: (2+2]. 
f printstring ‘4.0’ 

Future class methodsfor: ‘instance creation’ 

The instance creation message below creates an instance of 
Future promising the result of the given block. Classes 
that implement a dispatchMessage: method (other than 
the default one for class Object) use a bit in the class 
object’s header to indicate that this method should be 
executed any time a message is sent to an instance of that 
class. We allow dispatching classes to execute 
perform:withArguments: without reinvoking the 
dispatchMessage: method. This is how the default 
dispatchMessage: method dispatches messages. 

promlslng: aBlock 
1 aFuture 1 
aFuture <- self new. 
*aFuture promising: aBlock 

The Future instance method below first allocates a 
semaphore. It then creates and starts a process that 
calculates a result for the given block and signals this 
semaphore when this calculation is complete. The Future 
object itself is the immediate result of this method. 
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Future methodsfor: 
‘initlallzation/dlspatchlng’ 

promising: aBlock 
“Create a semaphore, and fork a block that 
will signal it. The result of this block is stored 
in result... *’ 

semaphore <- Semaphore new. 
[result c- aBlock value. 
semaphore signal] fork. 
%ell 

The dispatchMessage: method is invoked when the 
Future object is sent (nearly) any message whatsoever. In 
the example given above, the message sent it is 
printstring. This method first tests to see whether the 
message sent the Future is a promising: message. If so, 
it is dispatched using the inherited message dispatching 
method.. Otherwise, the method waits until the Future 
arrives. It then tests the result to see if it is a SmallInteger. 
Since these do not have unique object pointers, they do not 
work with the become: message. In such cases, the value 
is converted to a floating point value. Finally, the 
become: message is executed to exchange the identities of 
the Future and result objects. 

The beauty of using become: here is that all subsequent 
references to the object pointer originally returned when the 
Future object was created will now refer directly to the 
result object. Subsequent references to this object will no 
longer incur any dispatching overhead. In systems where 
become: is slow and dispatching is fast (e.g. TS) it would 
be better to omit the become:. The final act of the 
method below (and hence of the Future object itself) is to 
forward the message that invoked dispatchMessage: (the 
printString) to the result object. 

dispatchMessage: aMessage 

“If rhis is our init message, /et it by... ” 
aMessage selector == #promising: 

ifTrue: [“super dispatchMessage: 
aMessage]. 

“Wait until our result is available...” 
semaphore wait. 

“If our result is a Smalllnteger, it has no oop.. ” 
(result isKindOf: Smalllnteger) 

ifTrue: [result + result asfloat]. 

Remote objects are like future objects in that they do not 
need to perform method look-up, but transform the message 
into another form. In the case of remote objects, messages 
get translated into network packets and sent to the machine 
at which the objects are located. Bennett 19871 
[McCullough 1987-J. 

Actors can also be implemented easily. Each actor has a 
message queue and a process. The process repeatedly reads a 
message from the message queue and then dispatches on it. 
The message dispatch routine for the actor simply turns the 
message into an object and places it onto the queue. 

Languages based on delegation and prototypes let each 
object have its own specialized methods. We implement 
per-object behavior modification using Metaobjects. True 
delegation Lieberman 19861 requires that the original self 
be maintained somehow when a message is delegated to one 
of an object’s components. Efficiently rebinding self in 
this fashion at runtime would seem to require modifications 
to the Smalltalk virtual machine. 

We have investigated two strategies that can be employed at 
the Smalltalk level to implement this behavior. One 
approach involves passing the “outer self” to an object’s 
component as part of a message delegating the original 
message to that component. Another approach entails 
augmenting an object’s components with a Component 
metaobject. This metaobject screens all its messages for 
messages sent to self from itself, and forwards these to the 
object designated as the component’s container. 

There is a very strong similarity between the notions of 
delegation to an object’s components and inhertance [Stein 
19871. We contend [Johnson 1988a] that inheritance, and 
multiple inheritance in particular, are overused in 
situations where forwarding or delegating messages to 
components would be more appropriate. One reason for 
this might be that inheritance is frequently the best 
supported code sharing mechanism available. In contrast, 
message forwarding must be implemented explicitly on a 
method-by-method basis. 

Dispatching classes let the Smalltalk programmer 
experiment with a number of alternate approaches to the 
problem of composing new objects from existing ones. 
Among these are: 

“Become the result and do the 
deferred message.. . ’ 
result become: self. 
“super dispatchMessage: aMessage 
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1) Priorttized forwarding to components 

It is easy, using dispatching classes, to construct objects 
that test their instance (component) variables in some 
prioritized order to see whether their contents responds to a 
given message, and to forward such messages to these 
components. 

2) Dynamic fields 

Message interception (sometimes in conjunction with 
metaobjects) can also be used to construct objects with 
dynamic fields. Such objects can respond to the standard 
external instance variable access protocol, and convert 
references they don’t understand to dictionary accesses. 
Alternately, they can permit dictionary-style iteration over 
static, record-like objects. One scheme for doing this using 
doesNotUnderstand: is given in [Foote 19881. 

3) Dynamic protection 

Specialized dispatching routines could also perform dynamic 
protection functions, based on the class of the sender of the 
message. A protected object’s class (or metaobject) might 
contain several dictionaries mapping classes or even 
individual instances to sets of message selectors. An 
object’s membership (or lack thereof) in one of these sets 
would determine its elegibility to send the object the given 
message. Some sort of wildcard conventions, as well as 
default groups, might be allowed. 

4) Multiple views 

An alternate way to protect objects is to export references 
not to the objects themselves, but to objects that forward 
restricted sets of the original object’s protocol to the 
original objects. Such a scheme could permit different 
clients to have different “views” of an object. This 
mechanism might resemble operating system capabilities. 

5) Protocol matching 

Yet another application is the construction of protocol 
mapping adapters. These are objects that can be fitted 
between sets of existing objects to translate between 
differing sets of protocol assumptions. Such capabilities 
might prove valuable in constructing open systems [Hewitt 
19831. 

Customized method dispatching code can also be be used for 
the collection of performance data, and dynamic 
optimizations such as result caching and coercion. Another 
application is the construction of persistent objects. 

Conclusions 

Computational reflection provides a framework for 
organizing object-oriented systems that addresses a number 

of programming problems that are awkward to address in 
conventional object-oriented systems. In Smalltalk-80, the 
addition of facilities for overriding the message dispatch 
process on a class wide basis can provide much of the same 
power. 

An object, during the course of its lifetime, may enter into 
a number of different relationships with other objects in its 
environment. Some of these relationships will be 
permanent, or at least relatively static, and others might be 
quite ephemeral. Some of these relationships might be 
quite complex. In conventional object-oriented systems, 
one such relationship, inheritance, is well supported. 
However, the facilities for allowing the programmer to 
construct similarly powerful mechanisms of this sort of his 
or her own are limited. It remains to be demonstrated that 
such facilities will lead to the discovery of mechanisms of 
enduring value. The reflective facilities discussed herein 
can allow such issues to be explored in Smalltalk-80. 

Adding a carefully chosen set of reflective facilities to a 
language like Smalltalk- lets it solve many of the same 
problems that a fully reflective system can, with much 
greater efficiency. These facilities can be implemented so 
that they have little impact on code that doesn’t use them. 

Smalltalk- is not well suited for parallel programming or 
distributed programming, as can be seen by the number of 
attempts to extend it for these areas. However, instead of 
extending the language repeatedly each time a wetiess is 
discovered, it is better to give it enough power to extend 
itself. This makes it more likely that an existing system 
can be modified to reuse it in future contexts that cannot 
now be predicted. By adding the ability to redefine message 
dispatching, object-oriented languages like Smalltalk- 
will have less need to be extended in the future. Reflective 
facilities can also assist complex systems in adapting to 
changing requirements as they evolve by permitting a wider 
range of mechanisms for fitting existing objects to new 
situations. 
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