
Reflective Facilities in Smalltalk-

Brian Foote
Ralph E. Johnson

Dept. of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield
Urbana, IL 61801

foote@p.cs.uiuc.edu (217) 333-3411
johnson@p.cs.uiuc.edu (217) X4-0093

Abstract

Computational reflection makes it easy to solve problems
that are otherwise difficult to address in Smalltalk-80, such
as the construction of monitors, distributed objects, and
futures, and can allow experimentation with new
inheritance, delegation, and protection schemes. FulI
reflection is expensive to implement. However, the ability
to override method lookup can bring much of the power of
reflection to languages like Smalltalk- at IXJ cost in
efficiency.

Introduction

One of the attractions of object-oriented languages is their
extensibility. Programmers gain confidence that facilities
that are not already available in a given environment can
easily be constructed. Current systems make it easy to
define data types like complex or arbitrary precision
numbers. New object types become as “first class” as those
built into the language. A big part of the appeal of object-
oriented programming is that programmers believe that, if
they really wanted to, they could redefine the world.

However, there are a few kinds of objects that are difficult
to implement in conventional object-oriented programming
languages such as Smalltalk- [Goldberg 19831 and C++
[Stroustrup 19861. For example, a future object [Halstead
19851 acts as a surrogate for a result that is in the process
of being computed. Messages to the future cause the sender
to wait until the result is computed, at which time the
message is relayed to the result. Object-oriented languages
make it easy to redefine simple methods, but futures must
intercept any message sent them.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/0327 $1.50

Monitors, atomic objects, and distributed objects present
similar difficulties. These applications all require that an
object be able to intercept any message sent to it on a per-
object rather than a per method-basis. In Smalltalk-80, the
method dispatch mechanism is buried within the Virtual
Machine, beyond the programmer’s grasp.

Recent work on object-oriented computational reflection
/$faes 1987h] has provided a general framework for
addressing problems like those discussed above. Reflection
is intriguing because it seems to allow programmers to
make open-ended, localized extensions to the languages and
systems with which they are working.

Reflective systems are f?equently constructed using
metacircular interpreters, This approach provides the
highest possible degree of flexibility at the expense of
performance, We believe that full reflection may not be
necessary to address many of the kinds of problems that
have attracted so much attention to it. For this reason, we
have focused on how a handful of reflective facilities can
efficientlv bring much of the Rower of full reflection to
Smalltalk-80. In particular, this paper discusses redefining
the default method lookup mechanism, and looks at how
lightweight classes can be used to implement metaobjects.

Reflection

A reflective program is one that reasons about itself. A
fully reflective procedural architecture [Smith 19831 is one
in which a process can access and manipulate a full,
explicit, causally connected representation of its own state.
“Causally connected” means that any changes made to a
process’s self-representation are immediately reflected in its
actual state and behavior.

waes 1987a] [Maes 1987b] describes an object-oriented
reflective language called 3XRS. 3-KRS partitions every
object into a domain specific referent and a reflective
m&object. The referent contains information describing
the real-world entity that the object represents. The
metaobject contains information describing its referent as a

October l-6, 1989 OOPSLA ‘89 Proceedings 327

computational entity in itself. Enforcing this separation
encourages the emergence of standard protocols for
communicating between objects and metaobjects. The
distribution of the system’s self-representation among the
system’s metaobjects makes this self-representation easier
to think about and manipulate.

Manipulation of an object’s metaobject can affect the way
in which computation for its referent object is carried out.
For instance, in 3-KRS, an object can have method lookup
redefined by giving it a new metaobject that defined a
“deviating” interpreter. Such changes can be made on a per-
object basis, since each object has its own metaobject.
Specialized metaobjects can be introduced dynamically. The
ability to introduce temporary, localized changes to an
object’s semantics without changing the object itself
accounts for a great deal of reflection’s power.

Maes distinguishes between systems with reflective
facilities and full-fledged reflective architectures.
Reflective facilities allow a program to reflect upon certain
aspects of itself. For example, in Lisp, eval permits
reflecting upon programs given as data, and catch and
throw allow reflecting upon the runtime stack.

Actor Languages

An Actor [Agha] is a process that explicitly decides whether
and how to handle or delegate any messages it receives.
This ability is used to construct futures, monitors, etc.
Actor languages are designed for multiprocessors; the
requirement that each actor be a separate process makes
actors inefficient on single processors. Further, using a
parallel programming language for sequential programming
causes a certain mental overhead.

Smalltalk- [Goldberg 19761 was similar in some respects
to the Actor languages. In Smalltalk-72, an object’s class
was a process that repeatedly examined the object’s message
stream and then dispatched on the message. As the
language evolved, message lookup was subsumed into the
Smalltalk Virtual Machine for efficiency’s sake and because
deviations from case-style method dispatching were rare and
usualIy hard to understand. Smalltalk- permitted more
reflection than Smalltalk- because objects could
manipulate the message stream.

Replacing user-defmed message-handling with standardized
method lookup was a success. It led to efficient Smalltalk
implementations and a large body of reusable software.
However, the power of the Actor language is needed to deal
with parallelism and other aspects of modem applications.
We believe that object-oriented systems should provide
primitive facilities that allow actor-like objects to be
constructed out of more rudimentary components. Thus,
the full power of actors will only be used when appropriate.

Lisp Based Systems

The Common Lisp Object System (CLOS) [Bobrow 19881
[Keene 19891 is a marriage of Common Loops and New
Flavors that provides a very powerful generic function-based
method combination mechanism. The CLOS Metaobject
Protocol provides a metacircular definition of the entire
CLOS system. The MOP is intended to permit open-ended
experimentation with new object-oriented programming
paradigms, and has been used to successfully implement a
number of distinctly un-CLOS-like object-oriented
programming systems. The MOP is designed to permit the
modification of basic language mechanisms such as method
lookup from with CLOS itself.

The mechanisms provided in CLOS’s standard method
combination scheme are quite powerful. CLOS generic
functions can specialize on any of their arguments, not just
the first, and may specialize on instances as well as classes
and types. The :before, :after, and :around method
types modify particular primary methods. Class-wide
before, after and around methods for arbitrary messages
cannot be defmed without making alterations at the meta-
level.

Co&e’s ObjVLisp system [Cointe 19871 permits a
Me&lass hierarchy distinct from the class hierarchy. This
allows arbitrarily deep meta-regress, where appropriate.
This system allows the lookup method used by the
system’s send primitive to be changed by manipulating the
metaclass. Metaclass customization can also be used to
control internal object representations, method caching, and
access to instance variables.

Reflecting on the Smalltalk Virtual
Machine

Most of the existing object-oriented systems that permit
meta-level system manipulation, such as 34X3, CLOS,
ObjVLisp, and ABCL/R Watanabe 19881 have been
constructed using Lisp-based metacimular interpreters.
Reflection is then implemented by modifying the
language’s interpreter. Smalhalk-80, on the other hand,
uses a virtual machine.

Although the Smalltalk-80 virtual machine is a byte code
interpreter that is usually implemented in machine language
or C, the official definition of the virtual machine is written
in Smalltalk[Goldberg 831. Moreover, the SmaIltallc-80
debugger uses a byte-code interpreter written in Smalltalk.
Indeed, debugging and tracing are frequently cited as
applications that are well addressed using reflection. In
general, though, secondary interpeters are probably too
inefficient to serve as a practical mechanism for the
implementation of reflective features. Hence, we have
focused instead on adding certain reflective facilities to the
Smalltalk virtual machine.

328 OOPSLA ‘89 Proceedings October 1-6, 1989

Smalltalk already exhibits many reflective facilities;
programs can examine their run-time stacks and can redefine
their methods. These facilities were exploited by LaLonde
and Van Gulik mnde 19881 to construct a backtracking
facility in Smalltalk. We can add more reflective facilities
by examining each part of Smalltalk and seeing how each
could be overridden.

1) Variable read and write

Variable accesses can be reflected upon in a number of
ways. If variable accesses are implemented using messages,
as in Selflungar 88] , then reflective mechanisms for
messages will also work for variables. Another alternative
is to introduce active variables, as was done in Smalltalk-
by Messick and Beck [Messick 19851. This approach
involved modifying the Smalltalk- compiler to convert
variable accesses into message sends to ActiveVariable
objects, which in turn regulated access to their contents.

2) Sending a message

Messages sent hy an object can be intercepted by modifying
the SmalItalk-80 compiler to wrap code around each send
operation. Mechanisms that allow a specialized interpreter
to preempt the default one can also be used to intercept
message sends. The Smalltalk debugger is implemented
using an interpreter that runs on top of the Smalltalk
virtual machine. Intercepting each message sent by an
object seems useful primarily for applications like tracing
and debugging.

3) Receiving a message

We have concentrated on the mechanism for handling
messages sent & an object. The message send is one of the
fundamental notions upon which object-oriented systems
are based, so redefining its meaning is very powerful.
Later, we will show how to efficiently redefine message
look-up and some of its many uses.

4) Returns

If an object can intercept messages sent to it before
dispatching them, its dispatching routine can inspect results
returned to it before returning them itself. Thus, redefining
returns falls out of redefining message dispatching.

Changing Method-Lookup in
Smalltalk

Pascoe [pascoe 19861 described a clever scheme for
customizing method dispatch in Smalltalk-80. His
approach, rather than relying on compiler and code
modifications, involved the creation of a parallel hierarchy
of classes called Encapsulators. An Encapsulator is an
object that surrounds another (single) object. Pascoe

exploited Smalltalk-80’s doesNotUnderstand:
mechanism to construct these objects,

When a message is sent to a Smalltalk- object, the
method dictionaries associated with that object’s class and
its superclasses are searched at nmtime. If none of these
classes implement a method for a given message, the
Smalltalk virtual machine sends the object the message
doesNotUnderstand:. The original message selector
and message arguments are bundled together in a Message
object and passed as the argument to
doesNotUnderstand:. The default method for this
message is stored in class Object, This method invokes the
Smalltalk &bugger, since sending an object a message it
does not implement is usually a sign of programmer error.
However, objects that override docsNotUnderstand: can
intercept unimplemented message at runtime, and process
them as they see fit.

Encapsulators are ‘wrapped around” the objects they
encapsulate. Unadorned Encapsulators forward every
message sent to them to their client object. However, pre-
and post- actions (EPreAction and EPostAction) as
well as initialization code can be specified by overriding
certain default Encapsulator methods (EPreAction,
EPostAction, and Elnitialize). EPreActions can
include message screening, synchronization, and the like.
EPostActions can gain access to the value returned,
perhaps altering the returned value, if appropriate.

Pascoe’s approach, in effect, uses message forwarding to an
encapsulated component to effect method lookup
customization. This is message forwarding, and not true
delegation, because the self problem [Liebermann 19861 is
not addressed (see below).

Encapsulators are good for building objects like distributed
objects [Bennett 19871 [McCullough 19871, since the
object being forwarded to is in another address space from
the original object receiving the message. However, they
do not work well for atomic objects, since it is possible for
the object being encapsulated to escape from the
encapsulator and allow other objects to send it messages
directly.

Messick and Beck discuss a tool to insert code before and
after a given method without having to recompile the
method. They call such methods advised methods, after a
related feature in Interlisp. They used this facility for
setting conditional breakpoiits, for argument and result
type checking, for coercion, for tracing, and for changing
method interfaces. Advised methods show the value of
being able to wrap a piece of code around an existing
method without changing it.

One interesting aspect of Messick and Beck’s work is that it
illustrates how manipulation of the Smalltalk- system’s
self representation can be undertaken at several different

October 1-6, 1989 OOPSLA ‘89 Proceedings 329

levels of the system. The implementation of active
variables took advantage of the fact that Smalltalk-
allows the Smalltalk compiler itself to be modified by users
of the system. The advised method feature involved the
manipulation of compiled methods. It is instructive to
contrast these approaches with those that use only pre-
existing reflective facilities (such as the backtracking work)
and with those that entail modification (or replacement) of
the virtual machine itself (see below).

Method Lookup in TS

Customized method-lookup routines can be efficiently
implemented. One technique was used by Chris Lanier as
part of TS, an optimizing compiler for Smalltalk that we
are building [Johnson 198881 This technique employs a
class instance variable that refers to a method lookup
routine for that class. It uses a variation of in-line caching,
as originally implemented in PS, ParcPlace Smalltalk
[Deutsch 19831 that allows custom method lookup routines
to be executed with almost no performance penalty.

Note that the vast majority of classes will not need to
override method lookup. A mechanism for allowing
method-lookup to be overridden should impose no overhead
on classes that do not use it.

In-line method caching is a technique for optimizing
method lookup that takes advantage of the dynamic locality
of type usage by caching the method last associated with a
given message send m-line. Deutsch and Schiffman report
that this strategy is effective about 95% of the time.

In-line caching works as follows. A message send with no
cache entry is anunlinked entry. For example, consider
this message send:

push receiver Stack the receiver.. .
push argl,...,argn Stack the args...
call unlinkedDispach ;Lookup and fill in cache
<message selector> Selector to send...
<unused> ;Untinked entries don’t use.

;Send will return here...

When the unlinkedDispatch routine is called it performs a
standard method-lookup, and associates a method with the
given receiver and selector. It then modifies the call in
place as follows before completing the send:

push receiver Stack the receiver...
push argl,...,argn Stack the args. . .
call IinkedDispach ;Try prewicus method first. . .
<last class> ;C/ass of cached method.. .
<method> ;Method to callfirst...

Send will return here...

The modified call is said to be linked. (The changes made
to create the cache entry are shown in italics.) A linked

cache entry contains the class of the method stored in the
cache, together with the address of the method itself. The
linkedDispatch routine must determine whether the class of
the cached entry matches the class of the receiver of the
current message send. If this is the case (as it usually will
be) the method can be dispatched to directly. When there is
a mismatch, the cache entry must be relinked by performing
a full method-lookup. Some implementations of in-line
caching call the method itself directly, instead of using a
dispatching routine. The code to check the validity of the
cache entry must then be prefixed to every compiled
method.

Deutsch and Schiffman note that this sort of dynamic code
modification is generally condemned in modem
programming practice. It is, however, very much in the
spirit of the work on reflection.

Under TS, each class stores its method look-up routine in
one of its instance variables. Since the linkedDispatch and
unlinkedDispatch routines are the method-lookup routines,
redefining method lookup means creating new dispatch
routines. There is a new version of the linkedDispatch
routine for each redefinition of method lookup. The code
that links cache entries must check whether the dispatch
routine has changed, too, and might need to jump to a new
dispatch routine. Classes that use the default method
lookup routine will behave exactly like PS, so method-
lookup will continue to be fast. The overhead associated
with this method lookup scheme was about the same as
that of method caching alone in PS. We plan to eventually
write method-lookup routines in Typed Smalltalk, but at
the moment all of them are written in machine language.

Reflective Facilities in Smalltalk

Under ParcPlace Smalltalk (PS) we implemented our
specialized method lookup routines in Smalltalk- itself.
Whenever an object belonging to a class designated as a
dispatching class (using a bit in the class object’s header) is
sent a message, that object is instead sent
dispatchMessage: aMessage. This feature is
implemented using essentially the same mechanism as
doesNotUnderstand:. The method associated with
dispatchMessage is then free to handle the message as it
sees fit. A mechanism for allowing a dispatching class’s
methods to call other class methods without reinvoking the
dispatching mechanism is provided.

A related class type is the parentless class. These classes
invoke the message dispatching mechanism if the message
sent to them is not found in the method dictionary of the
first class searched. The effect achieved is the same as that
of removing the class’s superclass chain.

These features are augmented with mechanisms for
supporting lightweight anonymous classes and m&objects.
Metaobjects are class objects that refer to a single instance,

330 OOPSLA ‘89 Proceedings October 1-6, 1989

their referent. They are similar in this respect to
Smalltalk’s Metaclass objects, which describe a single class
object. We currently implement lightweight classes and
metaobjects as subclasses of Behavior. We allow these
objects to be introducted and removed from the inheritance
paths of individual objects dynamically. These class
objects are not ma& visible to the parts of the Smalltalk
system that are involved with the management of the
system’s class hierarchy, and have no global names. The
figure below illustrates how a metaobject that specializes a
single instance of class Point fits into the class hierarchy.

Figure 1

The use of a doesNotUnderstand-based dispatching
mechanism limits the efficiency of the code that uses it.
Our TS based implementation of specialized method lookup
routines based on in-line caching can be very efficient. The
only overhead is the extra time needed to link dispatch
routines, which is very small. We believe that a synthesis
of the two approaches discussed above can retain the
flexibility associated with programming reflective code in
Smalltalk-80, as well as the efficiency of the TS-based
lookup customization scheme.

Applications

A classic example of the need for redefining message
dispatching is making an object that only responds to one
message at a time, i.e. an atomic object [Yokote 19861.
An atomic object has a semaphore, and every process that
sends a message to it must first acquire that semaphore.
When the message returns, the semaphore is released. This
is easily implemented by having the message dispatch
routine acquire the semaphore before executing the method

and releasing it afterwards. Our implementations of
monitors and atomic objects bear a fairly strong
resemblance to those given in Pascoe 19861.

A future object differs from an atomic object because the
final methods that are executed belong to the value of the
future, not the future object itself. The future has a
semaphore and a value. The semaphore is originally
locked. Once released, the semaphore is never locked again,
and messages are relayed to the new value of the future
instead of being executed by the future itself.

The Smalltalk- code that follows illustrates a simple
implementation for Future objects. The code below shows
how a future object for the result of a block that calculates
2+2 might be created. The given block is executed in
parallel with the active process. The promising: method
immediately returns a Future object, which can be thought
of as a place holder for the result being computed in
parallel. Messages sent to the future (such as the
printstring message below) while the process computing
the Future’s result is still in progress cause the current
process to be suspended until the Future arrives.

f C- Future promising: (2+2].
f printstring ‘4.0’

Future class methodsfor: ‘instance creation’

The instance creation message below creates an instance of
Future promising the result of the given block. Classes
that implement a dispatchMessage: method (other than
the default one for class Object) use a bit in the class
object’s header to indicate that this method should be
executed any time a message is sent to an instance of that
class. We allow dispatching classes to execute
perform:withArguments: without reinvoking the
dispatchMessage: method. This is how the default
dispatchMessage: method dispatches messages.

promlslng: aBlock
1 aFuture 1
aFuture <- self new.
*aFuture promising: aBlock

The Future instance method below first allocates a
semaphore. It then creates and starts a process that
calculates a result for the given block and signals this
semaphore when this calculation is complete. The Future
object itself is the immediate result of this method.

October 1-6, 1989 OOPSLA ‘89 Proceedings 331

Future methodsfor:
‘initlallzation/dlspatchlng’

promising: aBlock
“Create a semaphore, and fork a block that
will signal it. The result of this block is stored
in result... *’

semaphore <- Semaphore new.
[result c- aBlock value.
semaphore signal] fork.
%ell

The dispatchMessage: method is invoked when the
Future object is sent (nearly) any message whatsoever. In
the example given above, the message sent it is
printstring. This method first tests to see whether the
message sent the Future is a promising: message. If so,
it is dispatched using the inherited message dispatching
method.. Otherwise, the method waits until the Future
arrives. It then tests the result to see if it is a SmallInteger.
Since these do not have unique object pointers, they do not
work with the become: message. In such cases, the value
is converted to a floating point value. Finally, the
become: message is executed to exchange the identities of
the Future and result objects.

The beauty of using become: here is that all subsequent
references to the object pointer originally returned when the
Future object was created will now refer directly to the
result object. Subsequent references to this object will no
longer incur any dispatching overhead. In systems where
become: is slow and dispatching is fast (e.g. TS) it would
be better to omit the become:. The final act of the
method below (and hence of the Future object itself) is to
forward the message that invoked dispatchMessage: (the
printString) to the result object.

dispatchMessage: aMessage

“If rhis is our init message, /et it by... ”
aMessage selector == #promising:

ifTrue: [“super dispatchMessage:
aMessage].

“Wait until our result is available...”
semaphore wait.

“If our result is a Smalllnteger, it has no oop.. ”
(result isKindOf: Smalllnteger)

ifTrue: [result + result asfloat].

Remote objects are like future objects in that they do not
need to perform method look-up, but transform the message
into another form. In the case of remote objects, messages
get translated into network packets and sent to the machine
at which the objects are located. Bennett 19871
[McCullough 1987-J.

Actors can also be implemented easily. Each actor has a
message queue and a process. The process repeatedly reads a
message from the message queue and then dispatches on it.
The message dispatch routine for the actor simply turns the
message into an object and places it onto the queue.

Languages based on delegation and prototypes let each
object have its own specialized methods. We implement
per-object behavior modification using Metaobjects. True
delegation Lieberman 19861 requires that the original self
be maintained somehow when a message is delegated to one
of an object’s components. Efficiently rebinding self in
this fashion at runtime would seem to require modifications
to the Smalltalk virtual machine.

We have investigated two strategies that can be employed at
the Smalltalk level to implement this behavior. One
approach involves passing the “outer self” to an object’s
component as part of a message delegating the original
message to that component. Another approach entails
augmenting an object’s components with a Component
metaobject. This metaobject screens all its messages for
messages sent to self from itself, and forwards these to the
object designated as the component’s container.

There is a very strong similarity between the notions of
delegation to an object’s components and inhertance [Stein
19871. We contend [Johnson 1988a] that inheritance, and
multiple inheritance in particular, are overused in
situations where forwarding or delegating messages to
components would be more appropriate. One reason for
this might be that inheritance is frequently the best
supported code sharing mechanism available. In contrast,
message forwarding must be implemented explicitly on a
method-by-method basis.

Dispatching classes let the Smalltalk programmer
experiment with a number of alternate approaches to the
problem of composing new objects from existing ones.
Among these are:

“Become the result and do the
deferred message.. . ’
result become: self.
“super dispatchMessage: aMessage

332 OOPSLA ‘89 Proceedings October 1-6, 1989

1) Priorttized forwarding to components

It is easy, using dispatching classes, to construct objects
that test their instance (component) variables in some
prioritized order to see whether their contents responds to a
given message, and to forward such messages to these
components.

2) Dynamic fields

Message interception (sometimes in conjunction with
metaobjects) can also be used to construct objects with
dynamic fields. Such objects can respond to the standard
external instance variable access protocol, and convert
references they don’t understand to dictionary accesses.
Alternately, they can permit dictionary-style iteration over
static, record-like objects. One scheme for doing this using
doesNotUnderstand: is given in [Foote 19881.

3) Dynamic protection

Specialized dispatching routines could also perform dynamic
protection functions, based on the class of the sender of the
message. A protected object’s class (or metaobject) might
contain several dictionaries mapping classes or even
individual instances to sets of message selectors. An
object’s membership (or lack thereof) in one of these sets
would determine its elegibility to send the object the given
message. Some sort of wildcard conventions, as well as
default groups, might be allowed.

4) Multiple views

An alternate way to protect objects is to export references
not to the objects themselves, but to objects that forward
restricted sets of the original object’s protocol to the
original objects. Such a scheme could permit different
clients to have different “views” of an object. This
mechanism might resemble operating system capabilities.

5) Protocol matching

Yet another application is the construction of protocol
mapping adapters. These are objects that can be fitted
between sets of existing objects to translate between
differing sets of protocol assumptions. Such capabilities
might prove valuable in constructing open systems [Hewitt
19831.

Customized method dispatching code can also be be used for
the collection of performance data, and dynamic
optimizations such as result caching and coercion. Another
application is the construction of persistent objects.

Conclusions

Computational reflection provides a framework for
organizing object-oriented systems that addresses a number

of programming problems that are awkward to address in
conventional object-oriented systems. In Smalltalk-80, the
addition of facilities for overriding the message dispatch
process on a class wide basis can provide much of the same
power.

An object, during the course of its lifetime, may enter into
a number of different relationships with other objects in its
environment. Some of these relationships will be
permanent, or at least relatively static, and others might be
quite ephemeral. Some of these relationships might be
quite complex. In conventional object-oriented systems,
one such relationship, inheritance, is well supported.
However, the facilities for allowing the programmer to
construct similarly powerful mechanisms of this sort of his
or her own are limited. It remains to be demonstrated that
such facilities will lead to the discovery of mechanisms of
enduring value. The reflective facilities discussed herein
can allow such issues to be explored in Smalltalk-80.

Adding a carefully chosen set of reflective facilities to a
language like Smalltalk- lets it solve many of the same
problems that a fully reflective system can, with much
greater efficiency. These facilities can be implemented so
that they have little impact on code that doesn’t use them.

Smalltalk- is not well suited for parallel programming or
distributed programming, as can be seen by the number of
attempts to extend it for these areas. However, instead of
extending the language repeatedly each time a wetiess is
discovered, it is better to give it enough power to extend
itself. This makes it more likely that an existing system
can be modified to reuse it in future contexts that cannot
now be predicted. By adding the ability to redefine message
dispatching, object-oriented languages like Smalltalk-
will have less need to be extended in the future. Reflective
facilities can also assist complex systems in adapting to
changing requirements as they evolve by permitting a wider
range of mechanisms for fitting existing objects to new
situations.

Acknowledgements

The second author was supported by NSF contract CCR-
8715752. We would like to thank Peter Deutsch and
ParcPlace Systems for providing tools and support for the
PS based portion of this work. We are grateful to Brian
Marick for helpful comments on an earlier draft of this
Paper.

References

[Agha 19861
Gut Agha
ACTORS: A Model of Concurrent Computation
in Distributed Systems
MIT Press. 1986

October l-6, 1989 OOPSLA ‘89 Proceedings 333

[Bennett 19871
John K. Bennett
The Design and implementation of
Distributed Smalltalk
OOPSLA ‘87 Proceedings
Orlando, FL, October 4-8 1977 pages 118-330

[Bobrow 1988a]
D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel,
S. E. Keene, G. Kiczales, and D. A. Moon
Common Lisp Object System Specification X3Jl3
Document 88-002R
SIGPIAN Notices, Volume 23,
Special Issue, September 1988

[Bobrow 1988b]
Daniel 0. Bobrow and Gregor K&ales
The Common Lisp Object System
Metaobject Kernel -- A Status Report
Proceedings of the 1988 Conference on Lisp
and Functional Programming

[Deutsch 19841
L. Peter Deutsch and Allan M. Schiffman
Efficient Implementation of the
Smalltalk- System
Proceedings of the Tenth Annual ACM Symposium
on Principles of Programming Languages,
1983, pages 297-302

[Foote 19881
Brian Foote
Designing to Facilitate Change with
Object-Oriented Frameworks
Masters Thesis, 1988
University of Illinois at Urbana-Champaign

[Goldberg 19761
Adele Goldberg and Alan Kay, editors
with the Learning Research Group
Smalltalk- Instruction Manual
Xerox Palo Alto Research Center

[Goldberg 19831
Adele Goldberg and David Robson
Smalltalk-80: The Language and
its Implementation
Addison-Wesley, Reading, MA, 1983

[Goldberg 19841
Adele Goldberg
Smalltalk-80: The Interactive
Programming Environment
Addison-Wesley, Reading, MA, 1984

[Halstead 19851
R. Halstead
MultiLISP: A language for Concurrent
Symbolic Computation
ACM Transactions on Programming Languages
and Systems
October 1985, pages 501-538

[Hewitt 19831
Carl Hewitt and Peter de Jong
Analyzing the Role of Description and Actions
in Open Systems
AAAI ‘83, pages 162-I 67

[lngalls 19781
Daniel H. H. lngalls
The Smalltalk- Programming System
Design and Implementation
5th ACM Symposium on POPL, pp. 9-15
Tucson, AZ, USA, January 1978

[Johnson 1988a]
Ralph E. Johnson and Brian Foote
Designing Reusable Classes
Journal of Object-Oriented Programming
Volume I, Number 2, June/July 1988
pages 22-35

[Johnson 1988b]
Ralph E. Johnson, Justin 0. Graver, and
Laurance W. Zurawski
TS: An Optimizing Compiler for Smalltalk
OOPSLA ‘88 Proceedings
San Diego, CA, September 25-30, 1988
pages 18-26

[Keene 19891
Sonya E. Keene
Object-Oriented Programming in Common Lisp
A Programmer’s Introduction to CLOS
Addison-Wesley, 1989

[LaLonde 19861
Wilf R. LaLonde, Dave A. Thomas and John R. Pugh
An Exemplar Based Smalltalk
OOPSLA ‘86 Proceedings
Portland, OR, October 4-8 1977 pages 322-330

[LaLonde 19881
Wilf R. LaLonde and Mark Van Gulik
Building a Backtracking Facility in Smalltalk Without
Kernel Support
OOPSLA ‘88 Proceedings
San Diego, CA, September 25-30, 1988
pages 105-I 22

[Lieberman 19861
Henry Lieberman
Using Protypical Objects to implement
Shared Behavior
in Object-Oriented Systems
OOPSLA ‘86 Proceedings
Portland, OR, October 4-8 1977 pages 214-223

[Maes 1987a]
Pattie Maes
Computational Reflection
Artificial Intelligence Laboratory
Vrije Universiteit Brussel
Technical Report 87-2

334 OOPSLA ‘89 Proceedings October l-6, 1989

[Maes 1987b]
Pattie Maes
Concepts and Experiments in
Computational Reflection
OOPSLA ‘87 Proceedings
Orlando, FL, October 4-8 1977 pages 147-155

[McCullough 19871
Paul L. McCullough
Transparent Forwarding: First Steps
OOPSLA ‘87 Proceedings
Orlando, FL, October 4-8 1977 pages 331-341

[Messick 19851
Steven L. Messick and Kent L. Beck
Active Variables in Smalltalk-
Technical Report CR-85-09
Computer Research Lab, Tektronix, Inc., 1985

[Pascoe 19861
Geoffrey A. Pascoe
Encapsulators: A New Software
Paradigm in Smalltalk-
OOPSLA ‘86 Proceedings
Portland, OR, September 29-October 2 1986,
pages 341-346

[Smith 19831
Brian Cantwell Smith
Reflection and Semantics in Lisp
Proceedings of the 1984 ACM
Principles of Programming Languages Conference
pages 23-35

[Smith 19871
Randall 8. Smith
Experiences with the Alternate Reality Kit:
An Example of the Tension Between Liieralism
and Magic.
CHI+GI 1987 Conference Proceedings

[Stefik 1986a]
Mark Stefik and Daniel G. Bobrow
Object-Oriented Programming:
Themes and Variations
Al Magazine 6(4): 40-62, Winter, 1986

[Stef ik 1986bJ
M. Stefik, D. Bobrow and K. Kahn
Integrating Access-Oriented Programming into
a Multiprogramming Environment
IEEE Software, 3, 1 (January 1986) 1 O-18

[Stein 19871
Lynn Andes Stein
Delegation is lnhertance
OOPSLA ‘87 Proceedings
Orlando, FL, October 4-8 1977 pages 138-l 46

[Stroustrup 19861
Bjarne Stroustrup
The C++ Programming Language
Addison-Wesley, Reading, MA, 1986

[Tiemann 19881
Michael D. Tiemann
Solving the RPC problem in GNU C++
1988 USENIX C++ Conference
Denver, CO, October 17-21 1988

[Ungar 19871
David Ungar and Randall B. Smith
Seff: The Power of Simplicity
OOPSLA ‘87 Proceedings
Orlando, FL, October 4-8 1977 pages 227-242

[Yokote 19861
Yasuhiko Yokote and Mario Tokoro
The Design and Implementation of
ConcurrentSmalltalk
OGPSLA ‘86 Proceedings
Portland, OR, September 29-October 2 1986,
pages 331-340

[Watanabe 19881
Takuo Watanabe and Akinori Yonezawa
Reflection in an Object-Oriented Concurrent
Language
OOPSLA ‘88 Proceedings
San Diego, CA, September 25-30, 1988
pages 306-315

October l-6, 1969 OOPSLA ‘69 Proceedings 335

