
Beck Testing Framework http://www.xprogramming.com/testfram.htm

1 von 11 06.05.2005 21:28

Simple Smalltalk Testing:
With Patterns

Kent Beck,
First Class Software, Inc.

KentBeck@compuserve.com

This software and documentation is provided as a service to the programming
community. Distribute it free as you see fit. First Class Software, Inc. provides no
warranty of any kind, express or implied.

(Transcribed to HTML by Ron Jeffries. The software is available for many Smalltalks,
and for C++, on my FTP site.)

Introduction
Smalltalk has suffered because it lacked a testing culture. This column describes a simple
testing strategy and a framework to support it. The testing strategy and framework are not
intended to be complete solutions, but rather a starting point from which industrial
strength tools and procedures can be constructed.

The paper is divided into three sections:

Philosophy - Describes the philosophy of writing and running tests embodied by
the framework. Read this section for general background.
Cookbook - A simple pattern system for writing your own tests.
Framework - A literate program version of the testing framework. Read this for
in-depth knowledge of how the framework operates.
Example - An example of using the testing framework to test part of the methods in
Set.

Philosophy
I don’t like user interface-based tests. In my experience, tests based on user interface
scripts are too brittle to be useful. When I was on a project where we used user interface
testing, it was common to arrive in the morning to a test report with twenty or thirty failed
tests. A quick examination would show that most or all of the failures were actually the
program running as expected. Some cosmetic change in the interface had caused the
actual output to no longer match the expected output. Our testers spent more time keeping
the tests up to date and tracking down false failures and false successes than they did
writing new tests.

My solution is to write the tests and check results in Smalltalk. While this approach has
the disadvantage that your testers need to be able to write simple Smalltalk programs, the
resulting tests are much more stable.

http://www.xprogramming.com/testfram.htm
mailto:KentBeck@compuserve.com

Beck Testing Framework http://www.xprogramming.com/testfram.htm

2 von 11 06.05.2005 21:28

Failures and Errors

The framework distinguishes between failures and errors. A failure is an anticipated
problem. When you write tests, you check for expected results. If you get a different
answer, that is a failure. An error is more catastrophic, a error condition you didn't check
for.

Unit testing

I recommend that developers write their own unit tests, one per class. The framework
supports the writing of suites of tests, which can be attached to a class. I recommend that
all classes respond to the message "testSuite", returning a suite containing the unit tests. I
recommend that developers spend 25-50% of their time developing tests.

Integration testing

I recommend that an independent tester write integration tests. Where should the
integration tests go? The recent movement of user interface frameworks to better
programmatic access provides one answer- drive the user interface, but do it with the
tests. In VisualWorks (the dialect used in the implementation below), you can open an
ApplicationModel and begin stuffing values into its ValueHolders, causing all sorts of
havoc, with very little trouble.

Running tests

One final bit of philosophy. It is tempting to set up a bunch of test data, then run a bunch
of tests, then clean up. In my experience, this always causes more problems that it is
worth. Tests end up interacting with one another, and a failure in one test can prevent
subsequent tests from running. The testing framework makes it easy to set up a common
set of test data, but the data will be created and thrown away for each test. The potential
performance problems with this approach shouldn't be a big deal because suites of tests
can run unobserved.

Cookbook
Here is a simple pattern system for writing tests. The patterns are:

Pattern Purpose

Fixture Create a common test fixture.

Test Case Create the stimulus for a test case.

Check Check the response for a test case.

Test Suite Aggregate TestCases.

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

3 von 11 06.05.2005 21:28

Fixture

How do you start writing tests?

Testing is one of those impossible tasks. You’d like to be absolutely complete, so you can
be sure the software will work. On the other hand, the number of possible states of your
program is so large that you can’t possibly test all combinations.

If you start with a vague idea of what you’ll be testing, you’ll never get started. Far better
to start with a single configuration whose behavior is predictable. As you get more
experience with your software, you will be able to add to the list of configurations.

Such a configuration is called a "fixture". Examples of fixtures are:

Fixture Predictions

1.0 and 2.0 Easy to predict answers to arithmetic problems

Network connection to a
known machine

Responses to network packets

#() and #(1 2 3) Results of sending testing messages

By choosing a fixture you are saying what you will and won’t test for. A complete set of
tests for a community of objects will have many fixtures, each of which will be tested
many ways.

Design a test fixture.

Subclass TestCase
Add an instance variable for each known object in the fixture
Override setUp to initialize the variables

In the example, the test fixture is two Sets, one empty and one with elements. First we
subclass TestCase and add instance variables for the objects we will need to reference
later:

Class: SetTestCase
 superclass: TestCase
 instance variables: empty full

Then we override setUp to create the objects for the fixture:

SetTestCase>>setUp
 empty := Set new.
 full := Set
 with: #abc
 with: 5

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

4 von 11 06.05.2005 21:28

Test Case

You have a Fixture, what do you do next?

How do you represent a single unit of testing?

You can predict the results of sending a message to a fixture. You need to represent such
a predictable situation somehow.

The simplest way to represent this is interactively. You open an Inspector on your fixture
and you start sending it messages. There are two drawbacks to this method. First, you
keep sending messages to the same fixture. If a test happens to mess that object up, all
subsequent tests will fail, even though the code may be correct. More importantly,
though, you can’t easily communicate interactive tests to others. If you give someone else
your objects, the only way they have of testing them is to have you come and inspect
them.

By representing each predictable situation as an object, each with its own fixture, no two
tests will ever interfere. Also, you can easily give tests to others to run.

Represent a predictable reaction of a fixture as a method.

Add a method to TestCase subclass
Stimulate the fixture in the method

The example code shows this. We can predict that adding "5" to an empty Set will result
in "5" being in the set. We add a method to our TestCase subclass. In it we stimulate the
fixture:

SetTestCase>>testAdd
 empty add: 5.
 ...

Once you have stimulated the fixture, you need to add a Check to make sure your
prediction came true.

Check

A Test Case stimulates a Fixture.

How do you test for expected results?

If you’re testing interactively, you check for expected results directly. If you are looking
for a particular return value, you use "print it", and make sure that you got the right object
back. If you are looking for side effects, you use the Inspector.

Since tests are in their own objects, you need a way to programmatically look for
problems. One way to accomplish this is to use the standard error handling mechanism
(Object>>error:) with testing logic to signal errors:

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

5 von 11 06.05.2005 21:28

2 + 3 = 5 ifFalse: [self error: ‘Wrong answer’]

When you’re testing, you’d like to distinguish between errors you are checking for, like
getting six as the sum of two and three, and errors you didn’t anticipate, like subscripts
being out of bounds or messages not being understood.

There’s not a lot you can do about unanticipated errors (if you did something about them,
they wouldn’t be unanticipated any more, would they?) When a catastrophic error occurs,
the framework stops running the test case, records the error, and runs the next test case.
Since each test case has its own fixture, the error in the previous case will not affect the
next.

The testing framework makes checking for expected values simple by providing a
method, "should:", that takes a Block as an argument. If the Block evaluates to true,
everything is fine. Otherwise, the test case stops running, the failure is recorded, and the
next test case runs.

Turn checks into a Block evaluating to a Boolean. Send the Block as the parameter
to "should:".

In the example, after stimulating the fixture by adding "5" to an empty Set, we want to
check and make sure it’s in there:

SetTestCase>>testAdd
 empty add: 5.
 self should: [empty includes: 5]

There is a variant on TestCase>>should:. TestCase>>shouldnt: causes the test case to fail
if the Block argument evaluates to true. It is there so you don’t have to use "(...) not".

Once you have a test case this far, you can run it. Create an instance of your TestCase
subclass, giving it the selector of the testing method. Send "run" to the resulting object:

(SetTestCase selector: #testAdd) run

If it runs to completion, the test worked. If you get a walkback, something went wrong.

Test Suite

You have several Test Cases.

How do you run lots of tests?

As soon as you have two test cases running, you’ll want to run them both one after the
other without having to execute two do it’s. You could just string together a bunch of
expressions to create and run test cases. However, when you then wanted to run "this
bunch of cases and that bunch of cases" you’d be stuck.

The testing framework provides an object to represent "a bunch of tests", TestSuite. A
TestSuite runs a collection of test cases and reports their results all at once. Taking
advantage of polymorphism, TestSuites can also contain other TestSuites, so you can put

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

6 von 11 06.05.2005 21:28

Joe’s tests and Tammy’s tests together by creating a higher level suite.

Combine test cases into a test suite.

(TestSuite named: ‘Money’)
 add: (MoneyTestCase selector: #testAdd);
 add: (MoneyTestCase selector: #testSubtract);
 run

The result of sending "run" to a TestSuite is a TestResult object. It records all the test
cases that caused failures or errors, and the time at which the suite was run.

All of these objects are suitable for storing with the ObjectFiler or BOSS. You can easily
store a suite, then bring it in and run it, comparing results with previous runs.

Framework
This section presents the code of the testing framework in literate program style. It is here
in case you are curious about the implementation of the framework, or you need to
modify it in any way.

When you talk to a tester, the smallest unit of testing they talk about is a test case.
TestCase is a User’s Object, representing a single test case.

Class: TestCase
 superclass: Object

Testers talk about setting up a "test fixture", which is an object structure with predictable
responses, one that is easy to create and to reason about. Many different test cases can be
run against the same fixture.

This distinction is represented in the framework by giving each TestCase a Pluggable
Selector. The variable behavior invoked by the selector is the test code. All instances of
the same class share the same fixture.

Class: TestCase
 superclass: Object
 instance variables: selector
 class variable: FailedCheckSignal

TestCase class>>selector: is a Complete Creation Method.

TestCase class>>selector: aSymbol
 ^self new setSelector: aSymbol

TestCase>>setSelector: is a Creation Parameter Method.

TestCase>>setSelector: aSymbol
 selector := aSymbol

Subclasses of TestCase are expected to create and destroy test fixtures by overriding the
Hook Methods setUp and tearDown, respectively. TestCase itself provides Stub Methods

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

7 von 11 06.05.2005 21:28

for these methods which do nothing.

TestCase>>setUp
 "Run whatever code you need to get ready for the test to run."

TestCase>>tearDown
 "Release whatever resources you used for the test."

The simplest way to run a TestCase is just to send it the message "run". Run invokes the
set up code, performs the selector, the runs the tear down code. Notice that the tear down
code is run regardless of whether there is an error in performing the test. Invoking setUp
and tearDown could be encapsulated in an Execute Around Method, but since they aren’t
part of the public interface they are just open coded here.

TestCase>>run
 self setUp.
 [self performTest] valueNowOrOnUnwindDo: [self tearDown]

PerformTest just performs the selector.

TestCase>>performTest
 self perform: selector

A single TestCase is hardly ever interesting, once you have gotten it running. In
production, you will want to run many TestCases at a time. Testers talk of running test
"suites". TestSuite is a User’s Object. It is a Composite of Test Cases.

Class: TestSuite
 superclass: Object
 instance variables: name testCases

TestSuites are Named Objects. This makes them easy to identify so they can be simply
stored on and retrieved from secondary storage. Here is the Complete Creation Method
and Creation Parameter Method.

TestSuite class>>named: aString
 ^self new setName: aString

TestSuite>>setName: aString
 name := aString.
 testCases := OrderedCollection new

The testCases instance variable is initialized right in TestSuite>>setName: because I
don’t anticipate needing it to be any different kind of collection.

TestSuites have an Accessing Method for their name, in anticipation of user interfaces
which will have to display them.

TestSuite>>name
 ^name

TestSuites have Collection Accessor Methods for adding one or more TestCases.

TestSuite>>addTestCase: aTestCase

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

8 von 11 06.05.2005 21:28

 testCases add: aTestCase

TestSuite>>addTestCases: aCollection
 aCollection do: [:each | self addTestCase: each]

When you run a TestSuite, you'd like all of its TestCases to run. It's not quite that simple,
though. If you have a suite that represents the acceptance test for your application, after it
runs you'd like to know how long the suite ran and which of the cases had problems. This
is information you would like to be able to store away for future reference.

TestResult is a Result Object for a TestSuite. Running a TestSuite returns a TestResult
which records the information described above- the start and stop times of the run, the
name of the suite, and any failures or errors.

Class: TestResult
 superclass: Object
 instance variables: startTime stopTime testName failures errors

When you run a TestSuite, it creates a TestResult which is timestamped before and after
the TestCases are run.

TestSuite>>run
 | result |
 result := self defaultTestResult.
 result start.
 self run: result.
 result stop.
 ^result

TestCase>>run and TestSuite>>run are not polymorphically equivalent. This is a problem
that needs to be addressed in future versions of the framework. One option is to have a
TestCaseResult which measures time in milliseconds to enable performance regression
testing.

The default TestResult is constructed by the TestSuite, using a Default Class.

TestSuite>>defaultTestResult
 ^self defaultTestResultClass test: self

TestSuite>>defaultTestResultClass
 ^TestResult

A TestResult Complete Creation Method takes a TestSuite.

TestResult class>>test: aTest
 ^self new setTest: aTest

TestResult>>setTest: aTest
 testName := aTest name.
 failures := OrderedCollection new.
 errors := OrderedCollection new

TestResults are timestamped by sending them the messages start and stop. Since start and
stop need to be executed in pairs, they could be hidden behind an Execute Around

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

9 von 11 06.05.2005 21:28

Method. This is something else to do later.

TestResult>>start
 startTime := Date dateAndTimeNow

TestResult>>stop
 stopTime := Date dateAndTimeNow

When a TestSuite runs for a given TestResult, it simply runs each of its TestCases with
that TestResult.

TestSuite>>run: aTestResult
 testCases do: [:each | each run: aTestResult]

#run: is the Composite selector in TestSuite and TestCase, so you can construct
TestSuites which contain other TestSuites, instead of or in addition to containing
TestCases.

When a TestCase runs for a given TestResult, it should either silently run correctly, add
an error to the TestResult, or add a failure to the TestResult. Catching errors is simple-use
the system supplied errorSignal. Catching failures must be supported by the TestCase
itself. First, we need a Class Initialization Method to create a Signal.

TestCase class>>initialize
 FailedCheckSignal := self errorSignal newSignal
 notifierString: 'Check failed - ';
 nameClass: self message: #checkSignal

Now we need an Accessing Method.

TestCase>>failedCheckSignal
 ^FailedCheckSignal

Now, when the TestCase runs with a TestResult, it must catch errors and failures and
inform the TestResult, and it must run the tearDown code regardless of whether the test
executed correctly. This results in the ugliest method in the framework, because there are
two nested error handlers and valueNowOrOnUnwindDo: in one method. There is a
missing pattern expressed here and in TestCase>>run about using ensure: to safely run
the second halt of an Execute Around Method.

TestCase>>run: aTestResult
 self setUp.
 [self errorSignal
 handle: [:ex | aTestResult error: ex errorString in: self]
 do:
 [self failedCheckSignal
 handle: [:ex | aTestResult failure: ex errorString in: self]
 do: [self performTest]]] valueNowOrOnUnwindDo: [self tearDown]

When a TestResult is told that an error or failure happened, it records that fact in one of
its two collections. For simplicity, the record is just a two element array, but it probably
should be a first class object with a timestamp and more details of the blowup.

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

10 von 11 06.05.2005 21:28

TestResult>>error: aString in: aTestCase
 errors add: (Array with: aTestCase with: aString)

TestResult>>failure: aString in: aTestCase
 failures add: (Array with: aTestCase with: aString)

The error case gets invoked if there is ever an uncaught error (for example, message not
understood) in the testing method. How do the failures get invoked? TestCase provides
two methods that simplify checking for failure. The first, should: aBlock, signals a failure
if the evaluation of aBlock returns false. The second, shouldnt: aBlock, does just the
opposite.

should: aBlock
 aBlock value ifFalse: [self failedCheckSignal raise]

shouldnt: aBlock
 aBlock value ifTrue: [self failedCheckSignal raise]

Testing methods will run code to stimulate the test fixture, then check the results inside
should: and shouldnt: blocks.

Example
Okay, that's how it works, how do you use it? Here's a short example that tests a few of
the messages supported by Sets. First we subclass TestCase, because we'll always want a
couple of interesting Sets around to play with.

Class: SetTestCase
 superclass: TestCase
 instance variables: empty full

Now we need to initialize these variables, so we subclass setUp.

SetTestCase>>setUp
 empty := Set new.
 full := Set
 with: #abc
 with: 5

Now we need a testing method. Let's test to see if adding an element to a Set really works.

SetTestCase>>testAdd
 empty add: 5.
 self should: [empty includes: 5]

Now we can run a test case by evaluating "(SetTestCase selector: #testAdd) run".

Here's a case that uses shouldnt:. It reads "after removing 5 from full, full should include
#abc and it shouldn't include 5."

SetTestCase>>testRemove
 full remove: 5.
 self should: [full includes: #abc].

http://www.xprogramming.com/testfram.htm

Beck Testing Framework http://www.xprogramming.com/testfram.htm

11 von 11 06.05.2005 21:28

 self shouldnt: [full includes: 5]

Here's one that makes sure an error is signalled if you try to do keyed access.

SetTestCase>>testIllegal
 self should: [self errorSignal handle: [:ex | true] do: [empty at: 5. false]]

Now we can put together a TestSuite.

| suite |
suite := TestSuite named: 'Set Tests'.
suite addTestCase: (SetTestCase selector: #testAdd).
suite addTestCase: (SetTestCase selector: #testRemove).
suite addTestCase: (SetTestCase selector: #testIllegal).
^suite

Here is an Object Explorer picture of the suite and the TestResult we get back when we
run it.

The test methods shown above only cover a fraction of the functionality in Set. Writing
tests for all the public methods in Set is a daunting task. However, as Hal Hildebrand told
me after using an earlier version of this framework, "If the underlying objects don't work,
nothing else matters. You have to write the tests to make sure everything is working."

http://www.xprogramming.com/testfram.htm

