

Una técnica para una

especificac ión inicial en RSL

María Virginia Mauco

Director: MSc. Daniel Riesco

Codirector: Mr. Chris George

Tesis presentada a la Facultad de Informática de la Universidad Nacional de
La Plata como parte de los requisitos para la ob tención del título de Magister
en Ingeniería de Software.

La Plata, Marzo de 2004

Facultad de Informática
Universidad Nacional de La Plata - Argentina

A te
hnique for an initial spe
i�
ation in RSLAbstra
tFormal methods have
ome into use for the
onstru
tion of real systems, as they helpto in
rease software quality and reliability. However, they are usually only a

essible tospe
ialists. This is parti
ularly in
onvenient during the �rst stages of software development,when the parti
ipation of stakeholders, unfamiliar with this kind of des
ription, is
ru
ial.To address this problem, we present in this thesis a te
hnique to derive an initial formalspe
i�
ation written in the RAISE Spe
i�
ation Language from requirements models based onnatural language. In parti
ular, we start from the Language Extended Lexi
on (LEL) and theS
enario Model, two models of the Requirements Baseline, whi
h are
loser to stakeholderslanguage. The derivation of the spe
i�
ation is stru
tured in three steps: Derivation ofTypes, Derivation of Fun
tions, and De�nition of Modules. We provide a set of heuristi
sfor ea
h step whi
h show how to derive types and fun
tions, and how to stru
ture them inmodules by using LEL and s
enarios information, thus
ontributing to fruitfully use the largeamount of information usually available after problem analysis. We also propose to representthe hierar
hy of modules obtained using a layered ar
hite
ture whi
h is the basis to startapplying the steps of the RAISE Method. We show how the initial appli
ative and partiallyabstra
t spe
i�
ation derived
ould be developed into a
on
rete one to automati
ally obtaina qui
k prototype to validate the spe
i�
ation and get a feeling of what it really does.ResumenLos m�etodos formales se est�an usando a
tualmente para la
onstru

i�on de sistemas reales,ya que
ontribuyen a aumentar la
alidad y
on�abilidad del software. Sin embargo, general-mente s�olo son a

esibles a espe
ialistas. Esto resulta in
onveniente sobre todo durante lasprimeras etapas del pro
eso de desarrollo de software
uando la parti
ipa
i�on de los stake-holders, no familiarizados
on estos formalismos, es
ru
ial.Con el objetivo de aportar una solu
i�on a este problema, presentamos en esta tesis unat�e
ni
a para derivar una espe
i�
a
i�on formal ini
ial es
rita en el Lenguaje de Espe
i�
a
i�onRAISE a partir de modelos de requisitos basados en lenguaje natural. En parti
ular, usamosel L�exi
o Extendido del Lenguaje (LEL) y el Modelo de Es
enarios, dos modelos de la Require-ments Baseline que est�an m�as
er
anos al lenguaje de los stakeholders. La deriva
i�on de laespe
i�
a
i�on est�a estru
turada en tres etapas: Deriva
i�on de Tipos, Deriva
i�on de Fun
iones,y De�ni
i�on de M�odulos. Para
ada etapa, proponemos un
onjunto de heur��sti
as que mues-tran
�omo derivar tipos y fun
iones, y
�omo estru
turarlos en m�odulos usando la informa
i�ondel LEL y los es
enarios,
ontribuyendo as�� a aprove
har la gran
antidad de informa
i�ongeneralmente disponible despu�es del an�alisis del problema. Tambi�en proponemos representarla jerarqu��a de m�odulos obtenida usando una arquite
tura por niveles, que es la base para
omenzar a apli
ar las etapas del M�etodo RAISE. Mostramos
�omo llegar a una espe
i�-
a
i�on
on
reta, partiendo de la espe
i�
a
i�on apli
ativa y par
ialmente abstra
ta derivada,para luego obtener autom�ati
amente un primer prototipo para validar la espe
i�
a
i�on.

Contents
1 Introdu
tion 11.1 Motivation . 11.2 Our proposal . 21.2.1 The goal . 21.2.2 General des
ription . 21.3 Publi
ations . 31.4 Thesis organization . 52 The Requirements Baseline 62.1 The Lexi
on Model View . 62.1.1 LEL Constru
tion Pro
ess . 82.2 The S
enario View . 123 RAISE 163.1 The Language . 163.1.1 Basi
 Class Expressions . 163.1.2 Types . 173.1.3 Values . 193.1.4 Axioms . 193.1.5 Test Cases . 203.2 The Method . 203.2.1 Choi
e of spe
i�
ation style . 223.2.2 Writing the initial spe
i�
ation . 233.2.3 Modules . 243.3 The Tools . 254 The three-step pro
ess 274.1 Derivation of Types . 284.1.1 Identi�
ation of Types . 284.1.2 Elaboration of Types . 354.2 De�nition of modules . 434.2.1 Modules
oming from
lass expressions with no typeof interest . 444.2.2 Modules
oming from
lass expressions with a type of interest 464.2.3 The ar
hite
ture of the spe
i�
ation . 494.3 Derivation of fun
tions . 504.3.1 Hierar
hi
al de�nition of fun
tions . 50

CONTENTS iii4.3.2 De�nition of top level fun
tions . 524.3.3 De�nition of lower level fun
tions . 595 The Case Study:A Milk Produ
tion System 655.1 Brief Des
ription . 655.2 The LEL De�nition . 665.3 The S
enario Model Constru
tion . 675.4 The derivation of the RSL spe
i�
ation using our te
hnique 675.4.1 Deriving the types . 675.4.2 De�ning the modules . 765.4.3 Deriving the fun
tions . 815.5 The ar
hite
ture of the Milk Produ
tion System RSL spe
i�
ation 865.6 Con
lusions from the
ase study developed . 865.6.1 Ambiguity . 865.6.2 Completeness . 885.6.3 Maintenan
e . 895.6.4 Domain analysis/Requirements analysis 896 Validating the RSL spe
i�
ation 916.1 Te
hniques to validate a RSL spe
i�
ation . 916.2 Our approa
h to validate the spe
i�
ation . 936.2.1 The SML Translator: a brief des
ription 936.2.2 Validating our spe
i�
ation . 947 Con
lusions 957.1 Main
ontributions . 967.2 Future work . 97Bibliography 98A The Lexi
on View 102B The S
enario View 127C The Spe
i�
ation 138C.1 DAIRY FARM Module . 138C.2 COW GROUPS Module . 151C.3 COW GROUP Module . 160C.4 GH Module . 163C.5 GE Module . 163C.6 GROUP EVENT Module . 163C.7 COWS Module . 165C.8 COW Module . 172C.9 CH Module . 192C.10 CE Module . 192C.11 COW EVENT Module . 192C.12 FIELDS Module . 195

CONTENTS ivC.13 FIELD Module . 196C.14 PLOTS Module . 197C.15 PLOT Module . 198C.16 BULLS Module . 199C.17 BULL Module . 200C.18 DAIRY FARMERS Module . 200C.19 DAIRY FARMER Module . 201C.20 K Module . 202C.21 CONSTANTS Module . 202C.22 GT Module . 204C.23 GENERAL TYPES Module . 204C.24 HISTORY Module . 206C.25 EVENT INFO Module . 208C.26 D Module . 208C.27 DATE Module . 208

A
knowledgementsI want to give my spe
ial thanks to my supervisors Daniel, Chris and Gustavo for their
ontinuous guidan
e and assistan
e in spite of distan
e. To Daniel for his permanent availabil-ity to answer my requests, for his useful ideas and
omments, and his
onstant support. ToChris for his valuable help and patien
e, spe
ially at the beginning of this work. To Gustavofor all the support he gave me.I am thankful to UNU/IIST's sta� and fellows for making my fellowship in Ma
ao awonderful experien
e, and to MS
. Mar
ela Inza from Universidad Na
ional del Centro dela Provin
ia de Buenos Aires, Argentina, and Ing. Agr. Atilio Magnas
o for their work asdomain experts.My gratefulness also to my
olleagues and friends Liliana, Carmen, and Laura for theirpermanent help and support.Finally, I want to thank my family and friends for their love and support in my life, andto God for all the good things he has provided me.

Chapter 1Introdu
tion
1.1 MotivationFormal methods have
ome into use for the
onstru
tion of real systems, as they help toin
rease software quality and reliability, and even though their industrial use is still limited,it has been steadily growing [47℄. When used early in the software development pro
ess,they
an reveal ambiguities, in
ompleteness, in
onsisten
ies, errors or misunderstandings thatotherwise might be only dis
overed during
ostly testing and debugging phases. The RAISEMethod [22℄, for example, is intended for use on real developments, not just toy examples. Thismethod in
ludes a large number of te
hniques and strategies for doing formal developmentand proofs, as well as a formal spe
i�
ation language, the RAISE Spe
i�
ation Language(RSL) [21℄, and a set of tools to help writing,
he
king, printing, storing, transforming, andreasoning about spe
i�
ations [19℄.One tangible produ
t of applying a formal method is a formal spe
i�
ation [50℄. A spe
i�-
ation serves as a
ontra
t, a valuable pie
e of do
umentation, and a means of
ommuni
ationamong stakeholders, spe
i�ers, and implementers. Formal spe
i�
ations may be used alongthe software life
y
le and they may be manipulated by automated tools for a wide variety ofpurposes su
h as model
he
king, dedu
tive veri�
ation, animation, test data generation, for-mal reuse of
omponents, and re�nement from spe
i�
ation to implementation [47℄. However,one of the problems with formal spe
i�
ations is that they are hard to master and inappro-priate as a
ommuni
ation medium, as they are not easily
omprehensible to stakeholders,and even to non-formal spe
i�
ation spe
ialists.On the other hand, during �rst stages of system development the intera
tion with stake-holders is very important. System requirements must be des
ribed well enough so that anagreement
an be rea
hed between the stakeholders and the system developers on what thesystem should and should not do. A major
hallenge with this is that the stakeholders mustbe able to read and understand the results of requirements
apture. To meet this
hallengewe must use the language of the stakeholders to des
ribe these results [15, 24℄.Domains are naturally informal be
ause they reside in the real world. The problem do-main is the home of real users and other stakeholders, people whose needs must be addressedin order to build the right system. Then, it be
omes software engineers' problem to under-stand these people problems, in their
ulture and their language, and to build systems thatmeet their needs [29℄. In addition, we end in the world, validating the spe
i�
ations withthe stakeholders. Therefore spe
i�
ations are never formal at �rst. A good formal approa
h

1.2 Our proposal 2should use both informal and formal te
hniques [5℄. To de�ne properties pre
isely and for-mally, it is ne
essary to determine �rst what these properties are. And this must be done in alanguage all the people involved
an speak and understand. For example, the RequirementsBaseline [31, 32℄, one te
hnique proposed to formalise requirements eli
itation and modelling,in
ludes two natural language models whi
h ease stakeholder's a
tively parti
ipation and fa
il-itates e�e
tive
ommuni
ation of the requirements among di�erent stakeholders and softwareengineers.In spite of the wide variety of formal spe
i�
ation languages and modelling languages,su
h as the Uni�ed Modeling Language (UML) [24℄, natural language is still the method
hosen for des
ribing software system requirements [8, 24, 45, 47℄. However the syntax andsemanti
s of natural language, even with its
exibility and expresiveness power, is not formalenough to be used dire
tly for prototyping, implementation or veri�
ation of a system. Thus,the requirements do
ument written in natural language has to be reinterpreted by softwareengineers into a more formal design on the way to a
omplete implementation.Considering what we have explained above, we think it would be useful to analyse and de-velop an integration between stakeholder-oriented requirements te
hniques and formal meth-ods. In this way we
ould take advantage of both of them in the di�erent steps of the softwaredevelopment pro
ess in order to improve the �nal produ
t. Stakeholder-oriented requirementsengineering te
hniques allow the development of a �rst spe
i�
ation of a system whi
h
an bevalidated with the stakeholders, and used as the basis to de�ne a formal spe
i�
ation. But,as also some re
ent works point out [16, 28, 40, 41, 48℄, it would be ne
essary to look at waysfor mapping the
on
eptually ri
her world of requirements engineering to the formal methodsworld.In parti
ular, our proposal aims at integrating the Requirements Baseline [31, 32℄ withthe RAISE Method [20, 22℄. We have developed a set of heuristi
s to help in the de�nitionof an initial formal spe
i�
ation in RSL of a domain, starting from two natural languagemodels belonging to the Requirements Baseline. In the next se
tion we des
ribe the goal ofour proposal as well as some details of the steps we followed to a
hieve it.1.2 Our proposal1.2.1 The goalThe main goal of our work is to analyse and develop the integration of Requirements Engineer-ing te
hniques with formal spe
i�
ations written in RSL. We propose to develop a te
hniqueto derive an initial formal spe
i�
ation in RSL of a domain from two of the models of theRequirements Baseline, the Lexi
on Model View and the S
enario View.1.2.2 General des
riptionWhen using the RAISE Method, writing the initial RSL spe
i�
ation is the most
riti
al taskbe
ause this spe
i�
ation must
apture the requirements in a formal, pre
ise way [20, 22℄. But,as we have explained in the previous se
tion, at the beginning of the software developmentpro
ess it would be better to use some kind of informal representations to allow stakeholdersto parti
ipate a
tively in the requirements de�nition pro
ess. RSL spe
i�
ations of manydomains [6, 42, 43, 46℄ have been developed by starting from informal des
riptions
ontaining

1.3 Publi
ations 3synopsis (introdu
tory text whi
h informs what is the domain about), narrative (systemati
des
ription of all the phenomena of the domain), and terminology (list of
on
ise and informalde�nitions, alphabeti
ally ordered). Others also in
lude a list of events [11℄. The gap betweenthese kind of des
riptions and the
orresponding RSL formal spe
i�
ation is big, and thus,for example, it is diÆ
ult and not always possible to
he
k whether the informal spe
i�
ationmodels what the informal des
ription does and vi
e versa.As we had some experien
e in using the Requirements Baseline [13℄, and we knew it hadbeen used as the basis to an obje
t
on
eptual model [33℄, we
onsider the possibility of usingit as the �rst des
ription of a domain from whi
h a formal spe
i�
ation in RSL
ould be latterderived.For this reason, our proposal aims at de�ning a te
hnique to derive an initial formal spe
-i�
ation in RSL from the Lexi
on Model View and the S
enario View, two natural languagemodels belonging to the Requirements Baseline. We organise the derivation of the spe
i�
a-tion in three steps, Derivation of Types, Derivation of Fun
tions, and De�nition of Modules,as RSL spe
i�
ations are stru
tured in modules, and ea
h module may
ontain de�nitions oftypes, values (
onstants and fun
tions) and axioms. We de�ne for ea
h step a set of heuristi
swhi
h are guidelines about how to derive types and fun
tions, and how to stru
ture them inmodules, taking into a

ount the stru
tured des
ription of a domain provided by the Lexi
onModel View and the S
enario Model. The Lexi
on Model View
ontains stru
tural features ofthe relevant terms in the domain, thus limiting the de�nition of types to those that
orrespondto signi�
ant terms in the domain, while using the behavioural des
ription represented in theS
enario View, it is possible to identify the main fun
tionality to model in the spe
i�
ation.We also suggest to represent the hierar
hy of RSL modules obtained using a layeredar
hite
ture. Considering the Layers pattern implementation des
ribed in [24℄, the globalar
hite
ture we propose is
omposed of three layers: spe
i�
 layer, general layer and mid-dleware layer. This layered ar
hite
ture is then the basis to start applying the steps of theRAISE Method, en
ouraging separate development and step-wise development. For example,the initial appli
ative and partially abstra
t spe
i�
ation derived
ould be developed into a
on
rete one to make use of the SML translator [19℄ and, thus obtain a qui
k prototype tovalidate the spe
i�
ation and get a feeling of what it really does.In order to validate our proposal, we applied it to a
omplete
ase study, the Milk Pro-du
tion System. We �rst developed the Lexi
on Model View and the S
enario View for thisdomain, by working with two domain spe
ialists (who are, besides, non-
omputer people).These models were then the basis to apply the three steps of the spe
i�
ation derivation pro-
ess. Finally, we developed the initial spe
i�
ation obtained into a
on
rete one, in order touse the SML translator to obtain a prototype of the spe
i�
ation. We also de�ned a set oftest
ases to run the spe
i�
ation, and not only
he
k it against the Lexi
on and the S
enarioModels but also help in �nding poorly understood requirements, missing things, et
.1.3 Publi
ationsA Layered Ar
hite
ture for a Formal Spe
i�
ation in RSLMar��a Virginia Mau
o, Daniel Ries
o, Chris GeorgeInternational Conferen
e on Computer S
ien
e, Software Engineering, Information Te
hnol-ogy, e-Business and Appli
ations (CSITeA'02). Brazil, June 2002.pp 258-263. ISBN 0-9700776-3-7

1.3 Publi
ations 4Using a S
enario Model To Derive the Fun
tions of a Formal Spe
i�
ationMar��a Virginia Mau
o, Daniel Ries
o, Chris George8th Asia-Pa
i�
 Software Engineering Conferen
e (APSEC 2001), IEEE Press, Ma
ao, De-
ember 2001.pp 329-332. ISBN 0-7695-1408-1.Heuristi
s to Stru
ture a Formal Spe
i�
ation in RSL from a Client-oriented Te
hniqueMar��a Virginia Mau
o, Daniel Ries
o, Chris George1st Annual International Conferen
e on Computer and Information S
ien
e (ICIS'01), USA,O
tober 2001.pp 323-330. ISBN 0-9700776-2-9Deriving the Types of a Formal Spe
i�
ation from a Client-Oriented Te
hniqueMar��a Virginia Mau
o, Daniel Ries
o, Chris George2nd International Conferen
e on Software Engineering, Arti�
ial Intelligen
e, Networking,and Parallel/Distributed Computing (SNPD'01), Japan, August 2001.pp 1-8. ISBN 0-9700776-1-0Una t�e
ni
a para una espe
i�
a
ion ini
ial en RSLMar��a Virginia Mau
o, Daniel Ries
oPoster presented in the Software Engineering Area of the Computer S
ien
e Resear
hersWorkshop (WICC 2001). Universidad Na
ional de San Luis, 2001.Also, WICC 2001 Memories. pp 302-304.Using Requirements Engineering to Derive a Formal Spe
i�
ationMar��a Virginia Mau
o, Chris GeorgeUnited Nations University/International Institute for Software Te
hnology (UNU/IIST). Te
h-ni
al Report Number 223. De
ember 2000. Ma
ao.Una Estrategia de An�alisis Orientada a Objetos basada en Es
enarios: Apli
a
i�on en unCaso RealLaura Rivero, Jorge Doorn, Mariana del Fresno, Mar��a Virginia Mau
o, Mar
ela Ridao, Car-men LeonardiWorkshop de Engenharia de Requisitos, XII Simposio Brasileiro de Engenharia de Software,Brasil, O
tober 1998.pp. 79-88Deriva
i�on de Objetos utilizando LEL y Es
enarios en un Caso RealMariana del Fresno, Mar��a Virginia Mau
o, Mar
ela Ridao, Jorge Doorn, Laura RiveroWorkshop de Engenharia de Requisitos, XII Simposio Brasileiro de Engenharia de Software,Brasil, O
tober 1998.pp. 89-97.

1.4 Thesis organization 51.4 Thesis organizationThis work is organised as follows: in Chapter 2 we brie
y des
ribe the Requirements Baseline,making emphasis in the Lexi
on Model View and the S
enario View. Chapter 3 presents theRAISE Method, and a brief des
ription of the RAISE Spe
i�
ation Language. In Chapter4 we present the three-step pro
ess to derive an RSL spe
i�
ation, des
ribing and givingexamples of the heuristi
s we propose for ea
h step. Chapter 5
ontains the appli
ation ofour proposal to a
omplete
ase study, the Milk Produ
tion System, and Chapter 6 des
ribesthe approa
h we follow to validate the RSL spe
i�
ations obtained. Then, Chapter 7 presentssome
on
lusions and
ontributions of our work, as well as possible future works. Finally,Appendix A and B
ontain the Lexi
on Model View and the S
enario View for the MilkProdu
tion System respe
tively, and Appendix C in
ludes the
omplete RSL spe
i�
ation weobtained by developing the spe
i�
ation resulting from the appli
ation of our proposal.

Chapter 2The Requirements BaselineThe Requirements Baseline [30, 32℄ is a me
hanism proposed to formalise requirementseli
itation and modelling. It is a stru
ture whi
h in
orporates des
riptions about a desiredsystem in a given appli
ation domain. These des
riptions are written in natural languagefollowing de�ned patterns. Thus, they provide an attra
tive way of
ommuni
ation andagreement between software engineers and stakeholders. As natural language
an be read andunderstood by the stakeholders, they
an parti
ipate a
tively in the requirements de�nitionpro
ess.The Requirements Baseline is developed during the requirements engineering pro
ess, butit
ontinues to evolve during the software development pro
ess.It is
omposed of �ve
omplementary views:� the Lexi
on Model View, a representation of the signi�
ant terms in the appli
ationdomain language, de�ned as a Language Extended Lexi
on (LEL) des
ription� the S
enario View, a des
ription of behaviour in the appli
ation domain� the Basi
 Model View, whi
h uses the entity relationship framework as a representa-tion language; its basi

omponents are
lients, a
tions, external events, inputs, outputs,restri
tions, and diagnoses� the Hypertext View, whi
h allows one to link de�nitions between the Lexi
on, S
e-nario and Basi
 Model Views� the Con�guration View, a versioning system to maintain the tra
eability of the dif-ferent produ
ts and their revisions.To the best of our knowledge, LEL and s
enarios have been only used so far in
ase studiesinvolving Information Systems.In this work we will only use the Lexi
on Model View and the S
enario View. They areexplained in detail in Se
tion 2.1 and in Se
tion 2.2 respe
tively.2.1 The Lexi
on Model ViewThis view is implemented by the LEL, a meta-model designed to help the eli
itation andrepresentation of the language used in the appli
ation domain. It is a natural language

2.1 The Lexi
on Model View 7LEL: representation of the symbols in the appli
ation domain language.Syntax: fSymbolgN1Symbol: entry in the lexi
on with a spe
ial meaning in the appli
ationdomain.Syntax: fNamegN1 + fNotiongN1 + fBehavioural ResponsegN1Name: identi�
ation of the symbol; more than one represents synonyms.Syntax: Word j PhraseNotion: denotation of the symbol; it must be expressed using referen
esto other symbols and using a minimal vo
abulary.Syntax: Senten
eBehavioural Response:
onnotation of the symbol; it must be ex-pressed using referen
es to other symbols and using a minimal vo
abu-lary.Syntax: Senten
ewhere Senten
e is
omposed only by Symbols and Non-Symbols, and thelast ones belong to the minimal vo
abulary;+ means
omposition, fxg means zero or more o
urren
es of x, and jstands for orTable 2.1: The Language Extended Lexi
on Modelrepresentation that aims at registering symbols (words or phrases) whi
h are signi�
ant inthe appli
ation domain language. The fo
us of the LEL is on the appli
ation domain language,rather than the details of the problem. It minimises the language, limiting it to the symbolsthat are related to the problem domain. In addition, it
learly de�nes these symbols and aimsto eliminate possible in
onsisten
ies, ambiguities and misinterpretations. Although the LELis
onstru
ted before the s
enarios, it evolves during s
enarios de�nition.Ea
h entry in the LEL has a name (and possibly a set of synonyms), and two des
riptions:Notion and Behavioural Response. The Notion, similar to a di
tionary de�nition, des
ribesthe symbol denotation, i.e. what the symbol is. The Behavioural Response, des
ribes thesymbol
onnotation, that is how the symbol a
ts upon the system. Table 2.1, taken from [30℄,presents the LEL Model.When des
ribing symbols in the LEL, two prin
iples must be followed: the prin
iple of
ir
ularity, also
alled prin
iple of
losure, whi
h aims at maximising the use of symbols de-�ned in the LEL when des
ribing other symbols, and the prin
iple of minimal vo
abulary,that intends to minimise the use of symbols external to the lexi
on. As suggested in [30℄,the external symbols should belong to a small subset of words de�ned in a natural languagedi
tionary, su
h as the Longman De�ning Vo
abulary [2℄. The appli
ation of these two prin-
iples allows the de�nition of a self-
ontained set of highly
onne
ted symbols, whi
h
ouldbe represented as a hypertext do
ument.LEL symbols may be
lassi�ed a

ording to its general use in the appli
ation domain.

2.1 The Lexi
on Model View 8Subje
t Notion: who the subje
t isBehavioural response: register a
tions exe
uted by the subje
tObje
t Notion: de�ne the obje
t and identify other obje
ts with whi
hthe obje
t has a relationshipBehavioural response: des
ribe the a
tions that may be appliedto the obje
tVerb Notion: des
ribe who exe
utes the a
tion, when it happens andpro
edures involved in the a
tionBehavioural response: des
ribe the
onstraints on the happeningof the a
tion, and identify the a
tions triggered in the environ-ment and new situations that appear as
onsequen
eState Notion: what it means and the a
tions whi
h may be triggeredby the stateBehavioural response: des
ribe other situations and a
tions re-lated to itTable 2.2: Heuristi
s to de�ne LEL symbolsOne possibility, as proposed in [34℄, is to
lassify ea
h entry in the LEL as an obje
t (passiveentity), a subje
t (a
tive entity, usually a person or organisation that represent relevantbehaviour of the system), a verb phrase or a state. For this
lassi�
ation, some heuristi
swere proposed in [34℄ to suggest what to in
lude in the notion and behavioural response ofa symbol a

ording to what the symbol de�nes. They are shown in Table 2.2.Tables 2.3, 2.4, 2.5, and 2.6 show ea
h an example of a LEL symbol, taken from the LELof the Milk Produ
tion System. Underlined words or phrases
orrespond to other symbolsde�ned in the LEL.2.1.1 LEL Constru
tion Pro
essThe LEL
onstru
tion pro
ess
onsists of six steps [17℄, whi
h are dependent on ea
h otherand sometimes may overlap:� Identi�
ation of the sour
es of information (a)� Identi�
ation of the symbols (b)� Classi�
ation of the symbols (
)� Des
ription of the symbols (d)� Veri�
ation of the LEL (e)� Validation of the LEL with the stakeholders (f)As we have already said, the LEL evolves during the s
enario
onstru
tion pro
ess. Thismeans the LEL produ
ed after the six steps just mentioned may be modi�ed be
ause ofdis
repan
ies, errors or omissions founded while de�ning the s
enarios.The LEL
onstru
tion eli
its the vo
abulary used in the appli
ation domain. As thesour
es of information are inside the appli
ation domain, the �rst step is the de�nition of the

2.1 The Lexi
on Model View 9DAIRY FARMERNotion� Person in
harge of all the a
tivities in a dairy farm.� He has a name.� He has a salary.� He may have one or more employeesBehavioural Response� He milks all the milking
ow.� He dete
ts heat.� He assigns to a group ea
h
ow of the dairy farm.� He de�nes plot.� He de
ides when to dry a
ow for dis
ard.� He feeds groups of
ows.� He
omputes ration for ea
h
ow.� He va

inates ea
h
ow a

ording to its needs.� He weighs
ow.� He de�nes
alf groups.� He deparasites
alves or heifers.� He de
ides when to inseminate dairy
ows or heifers.� He saves birth.� He registers heat.� He sends
alf to the
alf rearing unit.� He
arries out
alves arti�
ial breeding.� He takes
alf out the
alf rearing unit.� He sele
ts a
alf group for ea
h
alf.� He sells
ow.� He handles
ow death.� He
omputes individual produ
tion of a milking
ow, a group or a dairy farm.� He buys bull for the dairy farm.� He dis
ards bull.� He
omputes birth date for ea
h dairy
ow or heifer.� He inseminates arti�
ially dairy
ows or heifers.� He sends to eat pasture ea
h group in the dairy farm.� He dete
ts pregnant
ow.� He de�nes
ow type.Table 2.3: Subje
t LEL symbol

2.1 The Lexi
on Model View 10
DAIRY COWNotion� It is a female
ow whi
h has had at least one
alf.� It is in a plot.� It may be milking
ow, dry
ow, or dis
ard
ow.� It weighs between 550 and 580 kilograms.� Its useful life lasts more or less 4 years.� It has an individual produ
tion.� It belongs to a group of type 1, 2, pre-birth
ow, dry
ow ordis
ard
ow.� It may be pregnant.� It may be on heat every 21 days.Behavioural Response� When on heat, heat is registered.� It is milked for approximately 10 months in ea
h 12 months.� It may be inseminated by arti�
ial insemination ornatural insemination.� It generally gives birth to one
alf per 12 months, and ea
hbirth is saved.� When it is 4 years or more and approximately 580 kilograms weight,it may be driedTable 2.4: Obje
t LEL symbol

2.1 The Lexi
on Model View 11
SAVE BIRTHNotion� A dairy farmer manages all the things related to a re
ent birth ofa dairy
ow or a heifer.Behavioural Response� The
alf is assigned an identi�
ation number and it is added to thedairy farm set of
ows.� If a heifer is involved, de�ne
ow type as dairy
ow.� The new
alf is added to the dairy
ow's list of births.� The date and the identi�
ation number of the
alf and thedairy
ow are registered in the Birth form.� De�ne
ow type as post-birth
ow� The post-birth
ow is assigned to a group of type 1.Table 2.5: Verb LEL symbol
LACTATION PERIOD/LACTATIONNotion� Period after the birth of a
alf in whi
h a dairy
ow produ
es milk.� Dairy
ow should be a milking
ow.Behavioural Response� It lasts approximately seven months.� Dairy
ows
an be milked.Table 2.6: State LEL symbol

2.2 The S
enario View 12
ontext where the requirements engineering pro
ess will take pla
e. Do
uments and peopleinvolved in the appli
ation domain are the most important sour
es of information. However,other sour
es should be also
onsidered su
h as books about related topi
s, and other systemsavailable (a).On
e established the sour
es of information, the next step is the sele
tion of the strategiesto extra
t the symbols from these sour
es. Although the strategies depend heavily on thesour
es of information, stru
tured and unstru
tured interviews are the most
ommon wayto re
ognise the vo
abulary the stakeholders use in their domain. Interviews are usually
ombined with reading of do
uments, su
h as forms and manuals. The result is a list ofsymbols organised by some
riteria, as for example alphabeti
al order (b).The symbols are then
lassi�ed a

ording to the general
lassi�
ation (subje
t / obje
t /verb / state), a re�ned or an alternative one (
).The des
ription of the symbols (d)
onsists in the de�nition of their notions and be-havioural responses
onsidering the type assigned to ea
h symbol during the
lassi�
ationstep.The goal of the veri�
ation step (e) is to do an internal test to
ontrol if the produ
edLEL is
onsistent and homogeneous.At last, by validating the LEL with the stakeholders (f) notions and behavioural responsesof symbols already de�ned are
orre
ted, the de�nitions of the symbols are
on�rmed, andnew symbols and synonyms may be identi�ed. The validation pro
ess generally
onsistsof stru
tured interviews with the stakeholders. As LEL is written in natural language thestakeholders do not have diÆ
ulties in understanding it, and thus they
an parti
ipate a
tivelyin this pro
ess.2.2 The S
enario ViewA s
enario des
ribes a situation in the appli
ation domain, with an emphasis on the behaviourdes
ription [32℄. Although ea
h s
enario des
ribes a parti
ular situation, none of them isentirely independent of the rest [30℄. S
enarios use also a natural language des
ription astheir basi
 representation and they are naturally linked to the LEL. This link is re
e
tedby underlying words or phrases de�ned in the LEL every time they appear in a s
enariodes
ription.Table 2.7 shows the stru
ture proposed in [30, 32℄ to des
ribe s
enarios. A s
enariomust satisfy a goal whi
h is ful�lled by performing the episodes. Episodes represent themain
ourse of a
tion and ea
h of them
orresponds to an a
tion performed by an a
tor,with the parti
ipation of other a
tors, and the use of resour
es. Ea
h episode may be asimple, an optional or a
onditional one. Simple episodes are those ne
essary to
ompletethe s
enario. Conditional episodes depend on a spe
i�ed internal or external
ondition, andoptional episodes are those that may or may not take pla
e a

ording to
onditions that
annotbe expli
itly detailed. Though main and alternative
ourses of a
tion are treated within ones
enario, many times understanding a s
enario turns easier if well-bounded situations aredete
ted and treated as sub-s
enarios. A sub-s
enario is then used when
ommon behaviouris dete
ted in several s
enarios,
omplex
onditional or alternative
ourse of a
tion appearsin a s
enario, or the need to enhan
e a situation with a
on
rete and pre
ise goal is dete
tedinside a s
enario.

2.2 The S
enario View 13The
ontext des
ribes the initial state of the s
enario, by using pre
onditions, and geo-graphi
al and temporal lo
ations.A
tors are entities a
tively involved in the s
enario, generally persons or organisations,and resour
es identify passive entities with whi
h a
tors work.Constraints and Ex
eptions may be added to some of the
omponents of a s
enario. A
onstraint refers to non-fun
tional requirements, and it may be applied to
ontext, resour
esor episodes. An ex
eption, only applied to episodes,
auses serious disruptions in the s
enario,asking for a di�erent set of a
tions. These a
tions may be des
ribed separately as an ex
eptions
enario. The treatment of the ex
eption may or may not satisfy the original goal. Table 2.8
ontains an example of one s
enario taken from the Milk Produ
tion System S
enario Model.Underlined words or phrases are symbols de�ned in the LEL, and phrases written in theepisodes using
apital letters
orrespond to the title of other s
enarios. Episodes may been
losed between # and #, to represent a parallel or arbitrary sequential order.S
enarios
an be derived from the LEL by applying a set of heuristi
s [30℄ or they
anbe
onstru
ted dire
tly from the appli
ation domain. However, these two alternatives
an be
ombined. First, the s
enarios are derived dire
tly from the LEL by applying the heuristi
swhi
h produ
e a set of
andidate s
enarios. These s
enarios are then improved and extended,returning to the appli
ation domain when ne
essary. Also, new s
enarios may be added.

2.2 The S
enario View 14S
enario: des
ription of a situation in the appli
ation domain.Syntax: Title + Goal + Context + fResour
esgN1 + fA
torsgN1 +fEpisodesgN2 + Ex
eptionsTitle: identi�
ation of the s
enario; in
ase of a sub-s
enario the title isthe same as the
orresponding episode senten
e, without the
onstraints.Syntax: Phrase j ([A
torjResour
e℄ + Verb + Predi
ate)Goal: aim to be rea
hed in the appli
ation domain; the s
enario de-s
ribes the a
hievement of the goal.Syntax: ([A
tor jResour
e℄ + Verb + Predi
ate)Context:
omposed by at least one of the following sub-
omponents:geographi
al lo
ation (physi
al set of the s
enario), temporal lo
ation(time spe
i�
ation for the s
enario development), pre
ondition (initialstate of the s
enario).Syntax: Geographi
al lo
ation + Temporal lo
ation + Pre
onditionwhere Geographi
al lo
ation is Phrase + ConstraintTemporal lo
ation is Phrase + ConstraintPre
ondition is [Subje
tjA
torjResour
e℄ + Verb + Predi
ate + Con-straintResour
es: relevant physi
al elements or information that must beavailable in the s
enario.Syntax: Name + ConstraintA
tors: persons, devi
es or organisation stru
tures that have a role inthe s
enario.Syntax: NameEpisodes: set of a
tions that details the s
enario and provides its be-haviour. An episode
an also be des
ribed as a s
enario.Syntax: see [30℄Ex
eptions: usually re
e
t the la
k or malfun
tion of a ne
essary re-sour
e. An ex
eption hinders the a
hievement of the s
enario goal. Thetreatment of the ex
eption may be expressed through another s
enario.Constraint: a s
ope or quality requirement referring to a given entity.It is an attribute of Resour
es, basi
 Episodes or sub-
omponents ofContext.+ means
omposition, fxg means zero or more o
urren
es of x, () is usedfor grouping, [x℄ denotes that x is optional and j stands for orTable 2.7: The S
enario Model

2.2 The S
enario View 15

TITLE: Manage birthGOAL: Manage all things related to a re
ent birth.CONTEXT: Pre: The
ow is a dairy
ow or a heifer whi
h has just givenbirth to a
alf.RESOURCES: Cow Calf Date of birth Birth form Dairy farmset of
owsACTORS: Dairy farmerEPISODES:� The dairy farmer assigns an identi�
ation number to the
alf.� # The dairy farmer adds the new
alf to the dairy farm set of
ows.� The dairy farmer adds the new
alf to the dairy
ow's or heifer's list ofgiven birth to
alves.� The dairy farmer re
ords in the Birth form the date and theidenti�
ation number of the
alf and the
ow.#� ASSIGN A GROUP TO A COW, a group of type 1.� DEFINE COW TYPE as post-birth
ow.Table 2.8: Example of a s
enario

Chapter 3RAISERAISE (Rigorous Approa
h to Industrial Software Engineering), whi
h was originally thename of a CEC funded ESPRIT proje
t, gives now its name to a wide spe
trum spe
i�
ationand design language, the RAISE Spe
i�
ation Language (RSL), an asso
iated method, andan available set of tools. In this
hapter we provide a brief introdu
tion to RSL and to theRAISE Method, as well as a short des
ription of the RAISE tools. Complete des
riptionsof the RAISE Method and RSL
an be found in the
orresponding books [22℄ and [21℄,while the tools are des
ribed in [19℄, and they
an be downloaded from UNU/IIST's web site(www.iist.unu.edu).3.1 The LanguageThe RAISE Spe
i�
ation Language (RSL) is a powerful formal spe
i�
ation and design lan-guage used in the RAISE Method. The language provides a range of spe
i�
ation styles(axiomati
 and model-based; appli
ative and imperative; sequential and
on
urrent), andsupports spe
i�
ations ranging from abstra
t (
lose to requirements) to
on
rete (
lose to im-plementations). RSL allows spe
i�
ations and designs of large systems to be modularised andpermits separate subsystems to be separately developed. It also allows low-level operationaldesigns to be expressed, to a level of detail from whi
h �nal
ode extra
tion is straightfor-ward. This means most of the
onstru
tion of a system, from spe
i�
ation to design, may bedone using one and the same formalism, thus providing pre
ise, mathemati
al arguments for
orre
tness of development steps and of other
riti
al properties.In the following se
tions, we brie
y des
ribe some basi

on
epts of the language empha-sizing those we will need to use in the Three-step Pro
ess we present in Chapter 4. Detailedde�nitions
an be found in [20℄ and [21℄. The examples used to shown RSL
onstru
tionswere taken from the spe
i�
ation of an University Library [42℄.3.1.1 Basi
 Class ExpressionsA spe
i�
ation in RSL is a
olle
tion of modules. A module is basi
ally a named
olle
tion ofde
larations and it
an be a s
heme or an obje
t. However, the kernel module
on
ept is thatof a
lass expression. A basi

lass expression is a
olle
tion of de
larations en
losed by thekeywords
lass and end and it represents a
lass of models. Ea
h de
laration is a keywordfollowed by one or more de�nitions of the appropriate kind (Table 3.1).

3.1 The Language 17De
laration Kind of de�nitionobje
t Embedded modulestype Typesvalue Values:
onstants and fun
tionsvariable Variables that may store values
hannel Channels for input and outputaxiom Axioms: logi
al properties that must always holdtest
ase Test
ases: expressions to be evaluated by a translatoror interpreterTable 3.1: De
larations and their de�nitionsNo de
larations are
ompulsory, and thus, many
lasses only
ontain type and value de
-larations. Though the de
larations may
ome in any order, the order shown in Table 3.1 is a
ommon one to use.3.1.2 TypesRSL is a typed language. This means ea
h o
urren
e of an identi�er representing a value,variable or
hannel must be asso
iated with a unique type. Besides, it must be possible to
he
k ea
h o
urren
e of an identi�er is
onsistent with a
olle
tion of typing rules.A type is a
olle
tion of logi
ally related values, and it may be spe
i�ed by an abstra
t ora
on
rete de�nition. An abstra
t type, also referred to as a sort, has only a name. It is atype we need but whose de�nition we have not de
ided on yet. A
on
rete type
an be de�nedas being equal to some other type, or using a type expression formed from other types. ForexampletypeBook id,Copy id,Book key = Book id � Copy idde�nes Book id and Copy id as abstra
t types, and Book key as a
on
rete one.In order to provide
on
rete de�nitions for types, we need a
olle
tion of types to use. RSLhas seven built-in types (Bool, Int, Nat, Real, Char, Text, and Unit) with their
orrespondingoperators, and a number of ways of
onstru
ting types from other types (type
onstru
tors,re
ord types, variant types, union types, and subtypes).Type
onstru
tors allow the de�nition of
omposite types: produ
ts (�), fun
tions (! fortotal fun
tions, �! for partial ones), sets (-set for �nite sets, -infset for in�nite ones), lists (�for �nite lists, ! for in�nite ones), and maps (!m for �nite maps, �!m for in�nite ones). Sets,lists and maps de�ne
olle
tions of values of the same type. A set is an unordered
olle
tionof distin
t values, while a list is a sequen
e of values, possibly in
luding dupli
ates. A map isa table-like stru
ture that maps values of one type into values of another type.For example, the following de�nition models the
olle
tion of all books of the library byusing a map type.type

3.1 The Language 18Book id,Book,Books = Book id !m BookRe
ords are very mu
h like those
ommon in programming languages. This examplede�nes the type Borrower as a re
ord with three
omponents:typeBorrower detail,Borrower level == a
ademi
 j non a
ademi
 j student,Br
opies,Borrower::borr detail: Borrower detail $
hg borr detaillevel: Borrower level $
hg level
opies: Br
opies $
hg
opiesEa
h
omponent has an identi�er,
alled a destru
tor, and a type expression. Optionally are
ord
omponent
an have a re
onstru
tor. A re
ord type de�nition also provides an impli
it
onstru
tor fun
tion for
reating a re
ord value from its
omponent values. In the previousexample, we have the
onstru
tor mk Borrower, whi
h is formed by putting mk on the frontof the
orresponding identi�er of the type.Destru
tors are total fun
tions from the re
ord type to their
omponents type expression.So, we
an apply, for example, level to a value of type Borrower to get its level, and then fora borrower value br, we write level(br).Re
onstru
tors are total fun
tions that take their
omponents type expression and a re
ordto generate a new re
ord. If we write
hg level(student, br) we get a new borrower value withthe same borr detail and
opies, but with the level
omponent set to student.Variant types allow the de�nition of types with a
hoi
e of values, perhaps with di�erentstru
tures. The type Borrower level shown above is an example of a variant type de�nition.Union type de�nitions allow us to make new types out of existing ones. If B and C aretypes de�ned somewhere, then we
an de�ne the type A as their union:typeA = B j CSubtypes are types that
ontain only some of the values of another type, the ones thatsatisfy a predi
ate. For instan
e, we
an de�ne the type Student as the one
ontaining valuesthat satisfy the predi
ate is student.typeStudent = fj br : Borrower � is student(br) jg

3.1 The Language 193.1.3 ValuesValues are
onstants and fun
tions, and they may be impli
it or expli
itly de�ned. In both
ases, the de�nition must in
lude at least the signature, that is a name, and types for theresult, and for the arguments, in
ase of a fun
tion. A value de
laration
onsists of thekeyword value followed by one or more value de�nitions separated by
ommas.For example, to spe
ify the maximum number of
opies a borrower
an be reading in thereading room, we may provide the following impli
it value de�nition:valuereading limit: Nat � � 3However, if we knew the exa
t value of the
onstant, we
an use an expli
it value de�nition:valuereading limit: Nat = 3A fun
tion is a mapping from values of one type to values of another type, and it
anbe total or partial. It is total when it is de�ned for every value of the arguments, and itis
onsidered partial when it is not known to be total. Fun
tions
an be also
lassi�ed aseither generators, when the type of interest appears dire
tly or indire
tly in the result type,or observers, when it does not. In the following de�nitions:value
an remove item: Book id � Books ! Bool
an remove item(bi, bs) � exist id(bi, bs) ^ B.has
opy(bs(bi)),remove item: Book id � Books �! Booksremove item(bi, bs) � bs n fbigpre
an remove item(bi, bs)remove item is a partial generator fun
tion, while
an remove item is a total observer one.Both de�nitions are expli
it ones.3.1.4 AxiomsAxiom de
larations are introdu
ed by the keyword axiom and
onsist of axiom de�nitionsseparated by
ommas. An axiom de�nition is a predi
ate, optionally pre
eded by an identi�erin square bra
kets. For example, instead of de�ning:valuereading limit: Nat � � 3we
ould write:valuereading limit: Nataxiom[reading
opies limit ℄ reading limit � 3

3.2 The Method 20In fa
t, all value de�nitions,
an be written in this style, a typing plus an axiom. Thoughthis \axiomati
" or \algebrai
" style
an be used within RAISE, RAISE allows the use of thepre-de�ned sets, lists, maps, and produ
ts that are
hara
teristi
 of model-based spe
i�
ationlanguages.3.1.5 Test CasesTest
ases were added to RSL after the publi
ation of the two books on RAISE [21℄ and [22℄.They have no semanti
 meaning: they are like
omments dire
ted at an interpreter or trans-lator meaning \please provide
ode to evaluate these expressions and report the results".Their syntax is similar to the one of axioms, ex
ept that the test
ase expressions
an beof any type. For example, the following test
ase tests a fun
tion to sum a list of integerstest
ase[sum0 ℄ sum(hi)[sum1 ℄ sum(<1,2,2>)giving the results[sum0 ℄ 0[sum1 ℄ 5However, in
luding the expe
ted result in the test
ase may be a more useful style of test
ase. This means to writetest
ase[sum0 ℄ sum(hi) = 0[sum1 ℄ sum(<1,2,2>) = 5so that the output for every test
ase should be true.Test
ases are always evaluated in order of de�nition, and this is useful for imperativespe
i�
ations [20, 21℄ when there are variables storing information. As the information storedas a result of one test
ase is available for the next one, it would be possible for example, to testuse-
ases step-by-step by using a sequen
e of test
ases, outputting intermediate observationsas the result of ea
h.3.2 The MethodThough using the syntax and type rules of RSL you
an des
ribe and develop software in anyway that you
hoose, there are a number of ideas for using RSL that have been found usefuland that are
olle
tivelly des
ribed as the RAISE Method.The RAISE Method is based on a number of prin
iples:� Separate developmentTo develop systems of any size, we must be able to de
ompose their des
ription into
omponents and
ompose the system from the developed
omponents. But, we will need

3.2 The Method 21a
ontra
t between the developers and the users. For the developer a
ontra
t will saywhat he must provide; for the users, what they may assume.A spe
i�
ation of a module, or group of modules,
an a
t as this
ontra
t, as thespe
i�
ation says pre
isely what the essential properties of the thing being spe
i�edare.� Step-wise developmentIt is important to be able to develop software in a sequen
e of steps. Then we
anstart with a suitable abstra
tion, de
ide what are the main design de
isions we needto make, and plan the order in whi
h to do them. Among typi
al design de
isions we
an mention giving
on
rete de�nitions for abstra
t types, providing expli
it de�nitionsfor values previously given only signatures or impli
it de�nitions or axioms, adding newde�nitions or axioms, and so on. Dealing with one or more su
h de
isions means wemake a development step. It is important to be able to make only one, or at least a few,design de
isions in ea
h development step in order to deal with one problem at a time.� Invent and verifyIt is a style that for
es the developer to invent a new design to later verify its
orre
tness.� RigourIt is impra
ti
al to prove everything, given the
urrent state of theorem provers. Then,it
an be ne
essary to sele
t the properties worthy of
loser investigation, and to formallyprove only those we suspe
t. But while investigating some property in part informallywe should also note down the argument, explaining why we think is true, as part ofthe do
umentation. An argument that may be wholly or partly informal is
alled ajusti�
ation. Arguments that
ontain informal steps are termed rigorous. A justi�
ationthat is
ompletely formal is a proof.A method
onsists essentially of pro
edures to be followed and te
hniques that fa
ilitatesthe pro
edures. Most of the RAISE Method
onsists of te
hniques for four major pro
edures,whi
h are detailed des
ribed in [22℄:� spe
i�
ation starts with identi�ed requirements, written mostly in natural language,and produ
es a des
ription in RSL generally stru
tured in modules. The output ofthis pro
edure is often referred to as the initial spe
i�
ation, not be
ause it is the �rstone written but be
ause it is the basis for more detailed spe
i�
ations produ
ed duringdevelopment. This initial spe
i�
ation should de�ne what the system is to do ratherthan how it is to do it.� development starts with the initial spe
i�
ation and produ
es a new, more detailedRSL spe
i�
ation, the �nal spe
i�
ation, that
onforms to the original and that is readyfor translation.� justi�
ation is an argument showing the truth of some
ondition. Su
h an argument
an be totally formal or it
an be
onstru
ted more informally indi
ating how formalproofs
ould have been
onstru
ted. In this last
ase, arguments are
alled rigorous.The typi
al s
enario for doing a justi�
ation is that the developer starts from a given
ondition whose truth should be justi�ed.

3.2 The Method 22� translation begins with the �nal spe
i�
ation in RSL and produ
es a program or
olle
tion of programs in some exe
utable language.3.2.1 Choi
e of spe
i�
ation styleThere are four main alternatives in the styles of writing spe
i�
ations:� appli
ative sequential: a \fun
tional programming" style with no variables or
on-
urren
y� imperative sequential: with variables, assignment, sequen
ing, loops, et
., but withno
on
urren
y� appli
ative
on
urrent: fun
tional programming but with
on
urren
y� imperative
on
urrent: with variables, assignment, sequen
ing, loops, et
. and
on-
urren
y.Appli
ative
on
urrent spe
i�
ations are often inappropriate as the basis for program-ming language implementations, as the main pro
esses are re
ursive in stru
ture. From theremaining three the appli
ative style is the easiest both to formulate and to reason about injusti�
ations. Then, it is easy to start with appli
ative spe
i�
ations and develop them laterinto imperative or
on
urrent ones.We
an also distinguish between abstra
t and
on
rete styles. In abstra
t spe
i�
ationswe leave as many alternative development routes open as possible. The following are theoptions, whi
h by no means are absolute ones as, for example, a module may be abstra
t insome ways and
on
rete in others:� abstra
t appli
ative modules use abstra
t types and signatures and axioms ratherthan expli
it de�nitions for some or even all fun
tions.�
on
rete appli
ative modules use
on
rete types and
ontain more expli
it fun
tionde�nitions.� abstra
t imperative modules do not de�ne variables but use any in their a

essesand use axioms.�
on
rete imperative modules de�ne variables and
ontain more expli
it fun
tion def-initions.� abstra
t
on
urrent modules do not de�ne variables or
hannels but use any in theira

esses and use axioms.�
on
rete
on
urrent modules de�ne variables and
hannels and
ontain more expli
itfun
tion de�nitions.Usually the �rst spe
i�
ation is an abstra
t, appli
ative and sequential one, whi
h is laterdeveloped into a
on
rete spe
i�
ation, initially still appli
ative and then, imperative andsometimes
on
urrent.

3.2 The Method 233.2.2 Writing the initial spe
i�
ationIt is the most
riti
al task in software development, be
ause if it fails to meet the requirements,the following work will be largely wasted.The main problem at the start is understanding the requirements. Generally, requirementsare set in some domain in whi
h we are usually not experts, while the people who wrote themtend to forget to explain what to them is obvious. Besides, as requirements are written innatural language they are likely to be ambiguous. They are also developed by several peopleover a period of time, and thus they are often
ontradi
tory.The aim of the initial spe
i�
ation is to
apture the requirements in a formal, pre
isemanner, to obtain a model of what the system will do. In order to
he
k this model we
reate a

urately models what the writer of the requirements has in mind, we should takeinto a

ount the following suggestions:� Be abstra
t: the spe
i�
ation should leave out as mu
h detail as possible.� Use users'
on
epts: as the spe
i�
ation should des
ribe the problem, and not its solu-tion, the spe
i�
ation should not refer to
on
epts like databases, tables, and re
ords.The
on
epts in the spe
i�
ation should be the same as the users'
on
epts.� Make it readable: as spe
i�
ations are intended to be read by others, we want to makethem as readable as possible. The guidelines are very mu
h like those for program-ming languages: meaningful identi�ers,
omments, simple fun
tions, modules that are
oherent and loosely
oupled, et
.� Look for problems: we should
on
entrate on the things that appear diÆ
ult, strange,or novel, and defer things that are straightforward, so that we
an avoid mistakes, or�nd them qui
kly.� Minimise the state: by state of a system (module) we mean the information that isstored, that persists between intera
tions with it. In order to make state informationminimal, we should try hard not to in
lude in the state dependent information, i.e. in-formation that
an be
al
ulated from other information in the state. For example, ifC
an be
al
ulated from A and B, then we should not model C as part of the state. Ifwe store C, together with A and B, we will need a
onsisten
y
ondition that what isstored for C is the same as would be
al
ulated from stored A and B. There is a generalnotion that the simpler the set of
onsisten
y
onditions needed, the better the state isdesigned. However, in a later stage of development we may de
ide to store C to a
hievesuÆ
ient speed.� Identify
onsisten
y
onditions: though we try to minimise state information, it is stillusually the
ase that we need
onsisten
y
onditions and poli
y
onditions. Consisten
y
onditions are needed if some possible state values
annot
orrespond to reality, forexample, two users of a library borrowing the same
opy of a book simultaneously.Poli
y
onditions are the ones that might perhaps arise in reality, but we intend thatthey should not happen, as for example a user borrowing too many books at one time.Preserving
onsisten
y
onditions is more
riti
al for the healthiness of our system thankeeping within poli
y.

3.2 The Method 24Consisten
y requirements should be identi�ed �rst be
ause sometimes it is possibleto design a state that will redu
e the need for
onsisten
y
onditions. For example,sometimes
onsisten
y may be dealt with by a subtype (we
an re
ord the number ofbooks someone
an borrow as a Nat to prevent it from being negative), while othersit would be better to de�ne a fun
tion expressing it, as when
onsisten
y requirementsinvolve more than one module.Poli
y
onditions are generally separated from
onsisten
y. States that violate poli
yrequirements are possible in the real world, and then if our system is to faithfully modelthe real world, it must also allow them.3.2.3 ModulesAs was stated in Se
tion 3.2 separate development is one of the prin
iples the RAISE methodis based on. When developing systems of any size, we must be able to de
ompose theirdes
ription into
omponents and
ompose the system from the
omponents. Moreover, formost systems it may be ne
essary to have di�erent people working on di�erent
omponentsat the same time.Modules are the means to de
ompose spe
i�
ations into
omprehensible and reusable units.As we de�ned in Se
tion 3.1.1, a module
an be a s
heme or an obje
t. A s
heme is a named
lass expression and an obje
t is a named model
hosen from a
lass of models representedby some
lass expression. Obje
ts may be embedded, i.e. de�ned inside a
lass expression,or global, i.e. not de�ned as a s
heme parameter or within a
lass expression. Embeddedobje
ts are used wherever possible be
ause they make the obje
ts visible only in the
lassexpression within whi
h they are de�ned and, if not hidden, to other users of the s
heme orobje
t de�ned using that
lass expression. S
hemes may be parameterised with obje
ts.A separately developed
omponent module
an be used in other modules in esentially threeways. If the module is a s
heme, it
an be used in a formal parameter or to make an embeddedobje
t. If the module is a global obje
t, its name
an be mentioned in quali�
ations. As aresult, all mentions of the entities de�ned in the module will be quali�ed, by the name of theformal parameter, by the name of the embedded obje
t, or by the name of the global obje
trespe
tively. S
hemes and global obje
ts form a spa
e of names that may potentially be usedin modules. To provide some
ontrol over visibility and hen
e dependen
y, a
ontext
lauseindi
ates those that may a
tually be used. More pre
isely, any name in the transitive
losureof the
ontext and the
ontext's
ontexts may be used.Global obje
ts are de
lared at the top level, in a separate �le. Though in general they arenot advised be
ause they have a too wide s
ope, they are de�ned to
ontain a
olle
tion oftypes that we need to use in many pla
es. Types su
h as dates and periods are
andidatesto be de�ned in global obje
ts as well as types that should be visible to users, i.e. types thato

ur as parameters to user fun
tions or in the results of user fun
tions.Most modules will
ontain a type modelling (a part of) the state, together with fun
tionsto observe and generate values of the state. The type is often
alled the type of interestof the module. Su
h modules are usually de�ned as s
hemes, and typi
ally instantiated asembedded obje
ts within others.For example, to model the
olle
tion of books in a library we de�ne one module (a s
heme)with type of interest Books and another one with type of interest Book, and we use the s
hemeBOOK to make the obje
t B in the s
heme BOOKS. The
ontext
lause of the module BOOKS

3.3 The Tools 25
ontains the s
heme BOOK, used to de�ne the embedded obje
t B.s
heme BOOK =
lasstypeBookend
ontext: BOOKs
heme BOOKS =
lassobje
tB: BOOKtypeBooks = Book id �! B.BookendThe RAISE Method en
ourages the use of embedded obje
ts or global obje
ts for express-ing the dependen
y of a module on others. A dependent module is
alled a
lient and themodules it instantiates within it or mentions are
alled suppliers.Modules are hierar
hi
ally stru
tured in order to make possible to understand a parti
ular
omponent by referen
e only to it and its suppliers, to limit the e�e
ts of
hanges to a moduleto it and its
lients, and to limit the properties of a module to it and its suppliers. To a
hievethese aims ea
h module should have only one type of interest,
lients should only extend theirsuppliers
onservatively, and global obje
ts should only be used with
are. Besides, a moduleA should only mention the entities of a module B if A is a
lient of B, and
lients should onlyrefer to the entities of their immediate suppliers.3.3 The ToolsUNU/IIST has produ
ed a portable type
he
ker, rslt
, for the RAISE Spe
i�
ation Lan-guage. The type
he
ker is portable a
ross Unix and PC platforms and is available free fromUNU/IIST's web site (www.iist.unu.edu).There is also a
olle
tion of related tools all based on the type
he
ker. We brie
y des
ribethem below. A
omplete des
ription of all the tools as well as how to install them on Unix,Linux and Windows platforms
an be found in [19℄.� Type
he
ker: type
he
king is performed on
ontext �les �rst, followed by the inputmodule mentioned in the
ommand. The tool outputs the names of the modules it is
he
king, and if it �nds errors it also outputs the
orresponding messages.� Pretty printer: provided there are no syntax errors, a pretty-printed version of theinput module is output on standard output.� Con�den
e
ondition generator:
on�den
e
onditions are
onditions that shouldgenerally be true if the module is not to be in
onsistent, but that
annot in general be

3.3 The Tools 26determined as true by a tool. The
omplete list of the
onditions that
an be generatedby the tool
an be found in [19℄.� Showing module dependen
ies: they are shown in a simple ASCII representation.� Drawing a module dependen
y graph: if run on a �le X.rsl this generates input forthe Visualisation of Computer Graphs (VCG) tool in a �le X.v
g. S
hemes are drawnas red ellipses, obje
ts as blue re
tangles, theories as yellow diamonds, and developmentrelations as
yan triangles. The graph
an be exported as a graphi
 �le in a variousformats for printing or use in do
uments.� SML translator: it maps a spe
i�
ation in RSL to the fun
tional programming lan-guage Standard ML [1℄, giving as result a �rst prototype of the spe
i�
ation. Only asubset of RSL is a

epted by the translator.� C++ translator: it produ
es an automati
 translation of a RSL spe
i�
ation intoC++. A similar subset of RSL to the SML translator is a

epted.

Chapter 4The three-step pro
essAs we de�ned in Se
tion 3, a spe
i�
ation in RSL is a
olle
tion of modules, where a moduleis basi
ally a named
olle
tion of de
larations. Usually the �rst spe
i�
ation is an abstra
t,appli
ative and sequential one, whi
h is later developed into a
on
rete spe
i�
ation, initiallystill appli
ative and then, imperative and sometimes
on
urrent. A typi
al appli
ative mod-ule
ontains type and value (
onstants and fun
tions) de�nitions, and probably some axiomde�nitions too.When using the RAISE Method, writing the initial RSL spe
i�
ation is the most
riti
altask in software development, be
ause this spe
i�
ation must
apture the requirements in aformal, pre
ise way [20℄. But, domains are naturally informal as they reside in the real world.Then, at the beginning of the software development pro
ess it would be better to use somekind of informal representations, su
h as natural language, to allow stakeholders to parti
ipatea
tively in the requirements de�nition pro
ess [44℄.To bridge the gap between these two worlds, we propose a te
hnique to derive an initialformal spe
i�
ation in RSL from requirements models, su
h as LEL and s
enarios whi
h are
loser to stakeholders language. The derivation of the spe
i�
ation is stru
tured in threesteps whi
h show how to derive RSL types and fun
tions, and how to stru
ture them inmodules using the information provided by the LEL and the S
enario Model. We
all thesteps Derivation of Types, Derivation of Fun
tions, and De�nition of Modules. They arenot stri
tly sequential; they
an overlap or be
arried out in
y
les. For example, fun
tionde�nitions
an indi
ate whi
h type stru
tures are preferable.The Derivation of Types step produ
es a set of abstra
t as well as
on
rete types, whi
hmodel the relevant terms in the domain. During this step, the LEL is the main sour
e ofinformation. We perform the derivation of the types in two steps. First we identify thetypes, and then we de
ide how to model them. Most of the types derived in the Identi�
ationstep will be abstra
t types, and many of them will be repla
ed by more
on
rete ones in theElaboration step. This way of de�ning types follows one of the key notions of the RAISEMethod: the step-wise development (Se
tion 3.2).The Derivation of Fun
tions step gives as result a set of fun
tions that model the fun
tion-ality in the appli
ation domain. The heuristi
s we propose help to identify and to model thefun
tions, by showing how to derive arguments and result types of fun
tions, how to
lassifyfun
tions as partial or total, and how to de�ne fun
tion bodies by analysing des
riptions ofs
enarios. As s
enarios are natural language des
riptions of the fun
tionality in the domain,the S
enario Model plays a signi�
ant role in this step.The De�nition of Modules step helps to organise types and fun
tions in RSL modules, as

4.1 Derivation of Types 28modules are the means to de
ompose spe
i�
ations into
omprehensible and reusable units.As we des
ribed in Se
tion 3.2.3, the RAISE Method proposes to stru
ture modules hierar-
hi
ally in order to make possible to understand a parti
ular
omponent by referen
e onlyto it and its suppliers, to limit the e�e
ts of
hanges to a module to it and its
lients, andto limit the properties of a module to it and its suppliers. The de
omposition into modulesis parti
ularly useful when designing
omplex systems, be
ause it fa
ilitates and en
ouragesseparate development, one of the prin
iples the RAISE Method is based on.In the following se
tions of this
hapter, we des
ribe in detail ea
h of the three stepsmentioned above. As we have applied this three-step pro
ess to a
omplete
ase study, theMilk Produ
tion Systems domain, most of the examples we will use to show the appli
ationof the heuristi
s in ea
h step will
ome from this domain. However, we will in
lude examplesfrom other
ase studies [13, 42℄ when the domain we sele
ted does not provide appropriateexamples.4.1 Derivation of TypesA type is a
olle
tion of logi
ally related values, and it may be spe
i�ed by an abstra
t ora
on
rete de�nition, as we de�ned in Se
tion 3.1.2. An abstra
t type, also referred to as asort, has only a name while a
on
rete one
an be de�ned as being equal to some other type,or using a type expression formed from other types.There is a standard pie
e of advi
e in spe
i�
ation that you do not
hoose a design untilyou have to [20℄. Abstra
t types are the me
hanism to de�ne a type we need but whosede�nition we have not de
ided on yet. As we explained in Se
tion 3.1.2, they are typi
allyused in two situations: when de�ning simple types, su
h as identi�ers for people, books ina library, and
ows in a farm that we expe
t to implement easily in the �nal program, andwhen working with
ompli
ated types whose designs are not known yet. In the last situation,using an abstra
t type provides a way to delay the design until it is
lear enough.Following this pie
e of advi
e, we de�ne a set of heuristi
s to derive the types of aninitial RSL spe
i�
ation of a given domain, starting from the LEL and the S
enario Model.We perform the derivation of the types in two steps. First we identify the types, and thenwe de
ide how to model them. Most of the types derived in the Identi�
ation step will beabstra
t types, and many of them will be repla
ed by more
on
rete ones in the Elaborationstep. This way of de�ning types follows one of the key notions of the RAISE Method: thestepwise development. The repla
ement of an abstra
t type by a more
on
rete one follows theimplementation relation. Implementation is very important be
ause if an initial spe
i�
ationmeets the requirements and all its developments follow the implementation relation, then theyall meet the requirements.Se
tions 4.1.1 and 4.1.2 present the heuristi
s to identify the types of the RSL spe
i�
ationand to model them respe
tively.4.1.1 Identi�
ation of TypesThe main goal of this step is to determine an initial set of types that are ne
essary to modelthe di�erent entities present in the analysed domain. This initial set will be
ompleted, oreven modi�ed, during the remaining steps of the spe
i�
ation derivation. For example, duringthe De�nition of Modules step may be ne
essary to de�ne a type to re
e
t the domain state.

4.1 Derivation of Types 29Also, when de�ning fun
tions may be useful to de�ne some new types to be used as resulttypes of fun
tions.The LEL is the sour
e of information during this step as LEL subje
ts and some obje
tsrepresent the main
omponents or entities of the analysed domain. In general, LEL subje
tsand obje
ts will
orrespond to types in the RSL spe
i�
ation. In some
ases, LEL verbs mayalso give rise to the de�nition of more types, as when they represent an a
tivity whi
h hasits own data to save. In order to de�ne just the relevant types, we suggest some heuristi
swhi
h are summarised in Table 4.1, and explained later in detail. The pre�x HIT, used todistinguish ea
h heuristi
, means Heuristi
s for the Identi�
ation of Types.HIT1: Types
oming from subje
ts/obje
ts whose nameis a singular nounA subje
t/obje
t whose name is a singular noun may
orrespond to one of two di�erentkinds of domain
omponents: those with only one instan
e or those whi
h are elements of a
olle
tion, i.e they have more than one instan
e. In any
ase, we model the subje
t/obje
t asan abstra
t type and then, we must only provide its name.typeSymbol namewhere Symbol name
omes from the name assigned to the subje
t/obje
t in the
orre-sponding LEL entry.It is frequent that subje
ts representing an organisation are
andidates to have only oneinstan
e. For example, the subje
t Administrator, whi
h stands for an enterprise in theSaving Plan for Automobile A
quisition System [14℄, has one instan
e. Obje
ts des
ribingpla
es, su
h as the obje
t Library in a Library System [12℄ or the obje
t Dairy farm in theMilk Produ
tion System, are also
andidates to have only one instan
e. However, whensubje
ts/obje
ts may have more than one instan
e they represent ea
h element in the
orre-sponding
olle
tion. This happens, for example, with obje
ts su
h as Cow and Field.Then, for the Milk Produ
tion System we may de�netypeDairy farm,Cow,Fieldas abstra
t types whi
h may be developed later.This �rst de�nition of types
ould be even re�ned a bit more in somes
ases, as we showin the following heuristi
s.HIT1.1: Types
oming from obje
ts de�ning
omputable propertiesLEL symbols
lassi�ed as obje
ts may also represent some property of another obje
t orsubje
t in the LEL,
omputable from some other properties of the obje
t or subje
t. In some
ases, the LEL
ontains a verb symbol in whi
h the way to
ompute this property is de�ned.Moreover, this verb symbol may have a
orresponding s
enario where more details are given.

4.1 Derivation of Types 30
HITid LEL symbol RSL type RSL spe
i�
ationHIT1 Subje
t/obje
t name Abstra
t type Symbol nameis a singular nounHIT1.1 Obje
t representing a Abstra
t type Property name
omputable propertyHIT1.2 Subje
t/obje
t name is anoun, also a symbol inthe LEL, modi�ed by aphrase:HIT1.2.1 If it represents a
ategory, Subtype expression Main type, =� already de�ned �=state or situation (though not always) Subtype = fj s: Main type �is subtype(s) jgHIT1.2.2 If it represents a di�erent Abstra
t type Symbol namesubje
t/obje
tHIT2 StateHIT2.1 If name referen
es a Subtype expression Main type, =� already de�ned �=symbol in the LEL (though not always) Subtype = fj s: Main type �is subtype(s) jgHIT2.2 If name does not Abstra
t type State namereferen
e a symbol inthe LELHIT3 Verb represents an a
tion Abstra
t type Verb namewith data to saveHIT4 Symbol name is a pluralnoun or symbol is anelement of a
olle
tion:HIT4.1 If instan
es have an Map type expression Sym id,attribute or set of Sym name, =� already de�ned �=attributes for Map = Sym id !m Sym nameidenti�
ationHIT4.2 If instan
es need an List type expression Sym name, =� already de�ned �=ordering List = Sym name�HIT4.3 Otherwise Set type expression Sym name, =� already de�ned �=Set = Sym name-setTable 4.1: Heuristi
s to identify RSL types

4.1 Derivation of Types 31If the verb symbol does not exist, the behavioural response or the notion of the LEL symbolde�ning the property indi
ates how to
al
ulate it.The RAISE Method re
ommends to minimise state information, as we have already ex-plained in Se
tion 3.2.2. This means that we should try to avoid in
luding in the statedependent information, that is information that
an be
al
ulated from other information inthe state. Then, following this re
ommendation, we de
ide to model su
h dedu
ible propertieswith a fun
tion. However, we suggest to de�ne a type to be used as the fun
tion result type.We
ontinue this dis
ussion in Se
tion 4.1.2.typeProperty nameFor example, the obje
t Individual Produ
tion is a property of the obje
ts Milking
ow,Group and Dairy farm whi
h
an be
omputed as established in the verb symbol ComputeIndividual produ
tion and in the s
enarios Compute milking
ow individual produ
tion, Com-pute group individual produ
tion, and Compute Dairy farm individual produ
tion. Anotherexample is the obje
t He
tare loading, a property of a �eld whi
h
an be
omputed dividingthe number of
ows in a �eld by the size of the �eld in he
tares. Although we will de�nefun
tions to model ea
h dedu
ible property, as suggested by the heuristi
, we de�ne one typefor ea
h of them to be used as the
orresponding fun
tion result type.typeIndiv prod,He
tare loadingHIT1.2: Types
oming from subje
ts/obje
ts whose name is a noun,also a symbol in the LEL, modi�ed by a phraseWhen the name of the subje
t/obje
t is
omposed of a noun, whi
h is a subje
t/obje
t in theLEL, modi�ed by some phrase, for example an adje
tive, it may
orrespond to a
ategory ofthe symbol referred to by the noun, a state or situation in whi
h the subje
t/obje
t
ould be,or even a di�erent subje
t/obje
t. In the �rst two
ases, we propose to
onsider the de�nitionof a subtype (HIT1.2.1). However, in the last
ase it is ne
essary to de�ne a new type tore
e
t that the subje
t/obje
t is a di�erent one (HIT1.2.2).Subtypes may be useful to
apture a parti
ular
on
ept, and also to de�ne as total fun
tionsthat would be partial on any larger subtype. Then, if the de
ision is to de�ne a subtype thespe
i�
ation will look like:typeMain type,Subtype = fj s: Main type � is subtype(s) jgwhere is subtype(s) is a predi
ate (boolean fun
tion) de�ned to
onstrain the main type.For example, the obje
t term Pregnant Cow represents a possible state for a dairy
ow or aheifer, and then it
ould be modelled as a subtype if ne
essary.

4.1 Derivation of Types 32typeDairy
ow,Pregnant dairy
ow = fj dairy
ow: Dairy
ow � is pregnant(dairy
ow) jgAnother example, taken from the Library System [12℄, is the obje
t symbol Book with redlabel whi
h is
omposed of the noun Book, an obje
t in the LEL, modi�ed by a phrase. Bookwith red label is a
ategory of Book. Then, following the heuristi
s we have just proposed, we
ould model the obje
t Book with a type, and the obje
t Book with red label as a subtypeof Book. Overdue book is a possible state for a book, and thus, it
ould also be modelled asa subtype if ne
essary.typeBook,Book red label = fj b: Book � has red label(b) jg,Overdue book = fj b: Book � is overdue(b) jgBut a di�erent
ase is, for example, the one appearing in the Meeting S
heduler System [34℄with the symbol Possible Meeting. Even though Meeting is a symbol in the LEL modi�ed byan adje
tive, Possible Meeting has a di�erent semanti
s, making ne
essary the de�nition of adi�erent type, independent of the type de�ned for Meeting.typeMeeting,Possible MeetingHIT2: Types
oming from state symbolsThis heuristi
 is
losely related with the previous one, as generally a symbol
lassi�ed as astate may de�ne a situation or state in whi
h a subje
t/obje
t in the LEL
ould be. Moreover,the symbol name may be
omposed of a LEL subje
t/obje
t name modi�ed by a phrase. Ifthis is the
ase, we
onsider the de�nition of a subtype and we pro
eed as explained inheuristi
 HIT1.2.1. But, if the symbol name has no referen
e to any other symbol in theLEL, we simply de�ne an abstra
t type (HIT2.2) whi
h might be developed later during theElaboration of Types Step.typeState nameFor example, for the LEL symbol Pregnant we de�ne the following abstra
t typetypePregnant

4.1 Derivation of Types 33HIT3: Types
oming from verb symbolsSymbols
lassi�ed as verbs should also be analysed. It is frequent that a verb represents ana
tion or a
tivity whi
h has its own data to save. We spe
ify verb symbols of this kind usingtypes, where the type models the data to be saved.typeVerb namewhere Verb name
omes from the name assigned to the verb symbol in the
orrespondingLEL entry. This abstra
t type will be later repla
ed by a
on
rete one whi
h models the
hara
teristi
 data of ea
h a
tivity or a
tion.For example, the verb term Va

inate
ow/Va

ination has its own attributes like thedate and the va

ine given to the
ow. The verb Milk a
ow/Milking implies saving the dateand the quantity of litres of milk extra
ted from a milking
ow. Both verb symbols representa
tions performed on
ows. Then, we
ould de�netypeMilking,Va

inationHIT4: Types
oming from symbols de�ning ea
h element of a
olle
tion or whose name is a plural nounSymbols whose name is a plural noun generally de�ne a
olle
tion of some
omponent of theanalysed domain. However, as we have pointed out, a LEL symbol identi�ed with a name insingular may represent ea
h element of a
olle
tion. It is
ommon pra
ti
e not to in
lude inthe LEL symbols de�ning a
olle
tion of another LEL symbol when the a
tions that
ouldbe applied to the
olle
tion are the
lassi
al ones su
h as adding, removing or re
overingelements. This means that when we
onsider a subje
t, obje
t or verb modelling an a
tivitywith its own data to save we should �nd out if it may have more than one instan
e in orderto model the
orresponding
olle
tion.Colle
tions
an be de�ned in RSL using map, list or set type expressions (Se
tion 3.1.2).In many
ases it is possible to �nd or
reate one attribute or set of attributes that identifyunambiguously ea
h instan
e of a subje
t/obje
t. Then, one good alternative is to spe
ify the
olle
tion as a map, involving the de�nition of three types: one for the map domain, one forthe values in the range of the map, and another one for the map itself (HIT4.1). In addition,many
ommon operations applied to
olle
tions like adding, removing or re
overing elements,
orrespond
losely to map operators thus, redu
ing the number of fun
tions to be de�ned tomanipulate the
olle
tion.typeSymbol id, =� map domain �=Symbol name, =� values in the range of the map �=Map name = Symbol id !m Symbol name =� the map �=

4.1 Derivation of Types 34The �rst two types, de�ned as abstra
t ones, may be repla
ed by a
on
rete de�nition laterin the Elaboration of Types step (Se
tion 4.1.2). The type Symbol name might be alreadyde�ned if the heuristi
 HIT1 had been applied before.When there is some order to be maintained among the elements of the
olle
tion, we
hoose a list expression, involving the de�nition of two types, one to represent ea
h elementin the list and another one for the list itself (HIT4.2).typeSymbol name, =� element of the list �=List name = Symbol name� =� the list �=Finally, if the symbol instan
es do not have an attribute or a set of attributes to identifythem, and there is no need of an ordering among the instan
es, we sele
t a set expression.Working with set expressions implies the de�nition of two types, one to represent ea
h memberof the set and another one for the set itself (HIT4.3).typeSymbol name, =� member of the set �=Set name = Symbol name-set =� the set �=When spe
ifying the
olle
tion as a list or a set, the type Symbol name is an abstra
tde�nition for ea
h element in the list or ea
h member of the set respe
tively that might bealready de�ned if the heuristi
 HIT1 had been applied before. These abstra
t types may bedeveloped later in the Elaboration of Types step (Se
tion 4.1.2).For example, the subje
t Dairy farmer may have more than one instan
e, so we need tomodel the
olle
tion of dairy farmers. Besides, it is possible to determine an attribute thatidenti�es ea
h instan
e of a dairy farmer. Thus, we spe
ify the
olle
tion of dairy farmersusing a map expression. Three types are de�ned, one for the map domain, one to
ontain theinformation relevant to ea
h dairy farmer, and another one for the
olle
tion of dairy farmers.typeDairy farmer id,Dairy farmer,Dairy farmers = Dairy farmer id !m Dairy farmerIn the same way, the obje
ts Field and Cow may have more than one instan
e in thedomain and it is possible to de�ne an attribute that distinguishes ea
h of their instan
es. So,we model ea
h of them with a map involving three types.typeField id,Field,Fields = Field id !m Field,Cow id,Cow,Cows = Cow id !m Cow

4.1 Derivation of Types 35The types Dairy farmer id, Dairy farmer, Field id, Field, Cow id, and Cow, as yet de�nedas abstra
t types by applying the heuristi
 HIT1, may be repla
ed later by more
on
reteones as we show in Se
tion 4.1.2.We made a similar analysis to dis
over that the obje
ts Bull, Group and Plot may alsohave more than one instan
e in the domain and thus, they
an also be modelled using maps,involving the de�nition of three types ea
h.For va

inations and milkings, whi
h
ome from verb symbols, ordering by date is natural.Then, for ea
h of these verb symbols we de�ne two types:typeVa

ination,Va

inations = Va

ination�,Milking,Milkings = Milking�The types Va

ination and Milking, as yet de�ned as abstra
t types, will
ontain the
hara
teristi
 data of ea
h a
tivity.4.1.2 Elaboration of TypesThe result of the previous step is a preliminary list of types, many of them abstra
t, whi
hspe
ify subje
ts, obje
ts and a
tivities taken from the appli
ation domain. In order to removeunder-spe
i�
ation [22℄, we propose to return to the information
ontained in the LEL andthe S
enario Model. In parti
ular, the analysis of the notion, and sometimes the behaviouralresponse, of ea
h symbol that motivated the de�nition of an abstra
t type,
an help to de
ideif the type
ould be developed into a more
on
rete type. As we have already mentioned, allthe developments we present satisfy the implementation relation. Table 4.2 summarises theheuristi
s we propose, whi
h are then explained in detail. The pre�x HDT, used to distinguishea
h heuristi
, means Heuristi
s for the Development of Types.We want to remark that during this step, it might be ne
essary to introdu
e some typede�nitions that do not
orrespond to any entry in the LEL. They appear, in general, whenmodelling
omponents of some other type. Symbols without an entry in the LEL may rep-resent an omission or a symbol
onsidered outside the appli
ation domain language. Whenan omission is dete
ted, it is ne
essary to return to the LEL to add the new de�nition, andupdate the S
enario Model to maintain the
onsisten
y between its vo
abulary and the LELitself. We return to this issue in Se
tion 5.6.HDT1: Development of types
oming from subje
t/obje
t symbolsTo give more
on
rete de�nitions for the abstra
t types identi�ed applying heuristi
s HIT1 andHIT2, we propose to analyse subje
t/obje
t notions as well as obje
ts behavioural responses.� HDT1.1: The notion
ontains one or more properties of the symbolNotions written as \It/he/she has ..." suggest a property of the symbol that may bemodelled as an attribute. Then, we de�ne a re
ord type
ontaining as many
omponentsas properties identi�ed.

4.1 Derivation of Types 36

HDTid Type
omes from RSL type RSL spe
i�
ationHDT1 Subje
t/obje
t symbol:HDT1.1 Notion
ontains one or more Short re
ord Sym name::properties of the symbol de�nition prop 1: Prop type 1:::prop n: Prop type n=� n >0 �=HDT1.2 Notion
ontains a dedu
ible Simple type Prop name = Type expressionproperty of the symbol =� Remove the property fromthe re
ord �=HDT1.3 Notion represents symbol Variant type Categ ==
at 1 j ::: j
at nstate or
ategory =� (n >0) �=HDT1.4 Categories or states share Variant type Categ ==
at 1 j ::: j
at n,some attributes Short re
ord Main type::de�nition
ommon attr 1: Attr type 1Subtypes :::(if ne
essary)
ommon attr m: Attr type mdistinguishing attr: Categ,St Cat 1 = fj mt : Main type �has
at 1(mt) jg,:::St Cat n = fj mt: Main type �has
at n(mt) jg=� (n, m > 0) �=HDT1.5 Obje
t behavioural response =� In general, model thesuggests a property of the property as part of the obje
t�=symbolHDT2 Verb des
ribing an a
tion =� In general, model theapplied to an obje
t a
tion as part of the obje
t�=Table 4.2: Heuristi
s to develop identi�ed types

4.1 Derivation of Types 37typeProperty type 1,:::Property type n,Symbol name ::property 1 : Property type 1:::property n : Property type nfor n > 0.We also want to remark that Property 1, ..., Property n might have been already de�nedif any of them
ame from a symbol in the LEL, and if so they had to be
onsideredwhen applying the heuristi
s for the Identi�
ation of Types.In
ase only one property
ould be identi�ed from the notion, a re
ord with only one�eld may have no sense. As the formal spe
i�
ation derived with our te
hnique is aninitial one it will be re�ned and modi�ed later. Then, we would
hoose to de�ne there
ord anyway, leaving to the software engineer the de
ision of removing it later. But, ifwe are quite sure the notion de�nes the subje
t/obje
t with only one property, we
aneither set the spe
i�
ation of the abstra
t type
oming from the subje
t/obje
t equalsto the type whi
h
orresponds to the property, or even leave it as an abstra
t type.For example, from the obje
t Identi�
ation number we
an identify only one property,more pre
isely the one that de�nes an identi�
ation number. So we
an give a
on
retede�nition for an identi�
ation number, or we
an defer it for a future re�nement.If the
olle
tion for the symbol also exists and it has been spe
i�ed with a map type ex-pression, the properties that
orrespond to the attributes used to de�ne the map domainare not in
luded as
omponentes of the re
ord. However, if the
olle
tion was modelledwith a list or set expression all the properties identi�ed are in
luded as
omponents ofthe re
ord.For example, a �rst development for the abstra
t type Field
oming from the LEL obje
tField and identi�ed following the heuristi
 HIT1 from Se
tion 4.1.1,
ould betypeLo
ation,Size,Pasture,He
tare loading,Plots,Field::lo
ation: Lo
ationsize: Sizepasture: Pasturehe
tare loading: He
tare loadingplots: Plotspast plots: Plots

4.1 Derivation of Types 38It is worth remarking that as the
olle
tion of �elds was de�ned using a map expression(Se
tion 4.1.1), the property Field id used to de�ne the map domain, is not in
luded asa re
ord
omponent.� HDT1.2: The notion
ontains a dedu
ible property of the symbolAs we have already explained in Se
tion 4.1.1 a property that
an be dedu
ed is de�nedas a fun
tion, following the general prin
iple of ex
luding from the spe
i�
ation what
an be
omputed. Storage of what
an be
omputed implies redundan
y, and hen
e
onsisten
y
onditions. Then, we remove any
omponent of a re
ord representing a
omputable property. However, any of them may be added later as a re�nement ifne
essary for eÆ
ien
y.In the previous example, it is not ne
essary to in
lude he
tare loading as a
omponentof the type Field, be
ause it
an be
omputed from the number of
ows in the �eld andthe size of the �eld, as explained in the notion of the LEL symbol He
tare loading, andso we will model it with a fun
tion. Then, we remove the
omponent he
tare loadingfrom the re
ord Field be
ause it will be
omputed any time it is needed. The newde�nition for the type Field is as followstypeLo
ation,Size = Real,Pasture,He
tare loading = Real,Plots,Field::lo
ation: Lo
ationsize: Sizepasture: Pasture $
hg pastureplots: Plots $
hg plotspast plots: Plots $
hg past plotswhere we have repla
ed abstra
t de�nitions for the types Size and He
tare loadingby
on
rete ones, and we have added the re
onstru
tors
hg pasture,
hg plots, and
hg past plots, to indi
ate these
omponents of the re
ord Field may be modi�ed.Another example is the property individual produ
tion whi
h
an also be
omputed, aswe have already explained when de�ning the heuristi
 HIT1.1. We have suggested thede�nition of three fun
tions, one to
ompute a dairy
ow individual produ
tion, anotherfor a group individual produ
tion, and another one for the dairy farm. So, this propertyis not in
luded as a
omponent of the types Cow, Cow group and Dairy farm, at leastin this step of the spe
i�
ation. But, the previous abstra
t de�nition is repla
ed by thefollowing
on
rete one:typeIndiv prod = Real

4.1 Derivation of Types 39� HDT1.3 and HDT1.4: The notion represents a state or
ategory of thesymbolAn entry in the notion
ontaining the verb \may be" suggests the possibility of di�erentstates or
ategories for the subje
t/obje
t. In su
h
ases, we de�ne a variant type tomodel the property (HDT1.3).typeCategory == Categ 1 j ::: j Categ nfor n > 0.To in
lude all the alternatives in this variant type de�nition, sometimes may be ne
essaryto analyse the rest of the entries in the notion be
ause they may be expressed separately.In addition, it is frequent that states and, more
ommonly
ategories, share some at-tributes while di�er in others. In this kind of situation, we use a variant type to des
ribethe distinguishing attribute (the state or
ategory), and a re
ord type to in
lude the
ommon attributes plus the distinguishing one. When it is useful, subtypes
an also bede�ned to represent ea
h alternative appearing in the variant type de�nition (HDT1.4).typeAttr type 1,:::Attr type m,Category == Categ 1 j ::: j Categ n,Main type ::
ommon attr 1: Attr type 1:::
ommon attrib m: Attr type mdistinguishing attr: Category,St Categ 1 = fj mt : Main type � has
ateg 1(mt) jg,:::St Categ n = fj mt: Main type � has
ateg n(mt) jgfor n, m > 0.In
ase any of the di�erent alternatives spe
i�ed for the variant type has parti
ularattributes, these attributes
ould be modelled as
omponents of the variant type.For example, the notion of the obje
t Calf says a
alf may be either male or female.Neither male nor female are de�ned as entries in the LEL. We de�ne a new variant typeCalf gender to re
e
t this two possibilities. We add the
omponent photo to registerthat a female
alf has a pi
ture, as indi
ated in the notion of the obje
t Calf.typePhoto,Calf gender == male j female(photo: Photo)

4.1 Derivation of Types 40Similarly, the notion of the LEL symbol Cow says that a
ow may be a
alf, a heiferor a dairy
ow. But this example is a bit di�erent from the previous one be
ause
alf, heifer and dairy
ow have an entry in the LEL. Moreover, these de�nitions showthat, even though
alves, heifers and dairy
ows share some attributes be
ause theyare de�ned as
ows, ea
h of them has some spe
ial features. The
ategory of the
owis the distinguishing attribute. We model it with a variant type, and we in
lude theparti
ular attributes of ea
h alternative as
omponents of the variant type. We de�nethe type Cow as a re
ord whose �elds are the
ommon attributes, like date of birth,and the distinguishing attribute. Then, we introdu
e the following de�nitions to modela
ow and its three di�erent
ategories, ea
h of them with its parti
ular information.The de�nition of the type Cow is still not �nished.typeCalf info,Heifer info,Dairy info,Cow
lassif ==
alf(info: Calf info) jheifer(info: Heifer info) jdairy(info: Dairy info),Date,Cow::birthday: Date
ow
lassif: Cow
lassifSometimes only the fa
t that a subje
t/obje
t
an be in a state is indi
ated, but the
omplementary one is impli
it. This
ase is also spe
i�ed with a variant type
ontainingthe expli
it alternative as well as the impli
it one.For example, the notion of the obje
t Dry
ow says that a dry
ow may be a pre-birth
ow, leaving impli
it that if not, it will be a non pre-birth
ow. Then, we model thisproperty of dry
ows as followstypeDry
lassif == pre birth j non pre birth� HDT1.5: An obje
t behavioural response suggests a property of the symbolIn the
ase of LEL obje
ts, the behavioural response should also be analysed sin
eattributes
an appear as a result of operations applied to the obje
t. The behaviouralresponse of an obje
t
ontains the a
tions that may be applied to the obje
t. Sometimes,ea
h of these a
tions is des
ribed with a verb phrase whi
h is an entry in the LEL. If not,the behavioural response itself might
ontain a des
ription of the a
tion. Frequently,it is ne
essary to re
ord some results of applying the a
tions to obje
ts, and so weshould de�ne the information we want to save and where to store it. For example, thebehavioural response of the obje
t Cow establishes that a
ow is va

inated. The verbsymbol Va

inated is an entry in the LEL, where it is written that some information

4.1 Derivation of Types 41about ea
h va

ination is registered, as the date and the va

ine inje
ted. One possibilitywould be to add an attribute to the type de�ning
ows to
ontain all the va

inations.In the same way, ea
h of the di�erent operations applied to
ows
ould be modelled.In general, when modelling a
tions applied to obje
ts, there are two possibilities for sav-ing the
orresponding information: one is to save it as part of the
orresponding obje
t,and the other one is to put together the results
orresponding to the appli
ation of thea
tion to all the obje
ts. In the next se
tion, we analyse advantages and disadvantagesof ea
h alternative, and we propose some heuristi
s to follow.HDT2: Development of types
oming from verb symbolsTo determine how to model types
oming from a
tions, we analyse the
orresponding verbsymbol in order to �nd the data to be re
orded, and to de
ide where to store the information.These verb symbols des
ribe a
tions applied to LEL obje
ts, and then one possibility is tomodel the result of the a
tion as part of the type de�ning the obje
t in the spe
i�
ation. Theother possibility is to store together the results of an a
tion applied to all the o

uren
es ofthe LEL obje
t under
onsideration. As we show in the following example, the types used tomodel the obje
t and the a
tions applied to the obje
t should be
arefully analysed in orderto �nd a solution that minimises the number of
onsisten
y
onditions to be de�ned.To
ontinue with the example introdu
ed in Se
tion 4.1.1, we de�ne the following typesto represent all the va

inations belonging to a
ow as part of the de�nition of the
ow.typeDate,Va

ine,Va

ination::date: Dateva

ine: Va

ine,Va

inations = Va

ination�,Cow:::::va

inations: Va

inations:::Another possibility would be to store together the va

inations belonging to all the
owsin the dairy farm. If this were the
ase, ea
h va

ination should also
ontain a referen
e tothe
orresponding
ow, and so the Cow id
omponent should be added to the Va

ination
omponent. Then, the types would be de�ned as followstypeCow id,Date,Va

ine,Va

ination::
ow id: Cow iddate: Dateva

ine: Va

ine,Va

inations = Va

ination�

4.1 Derivation of Types 42However, it is important to remark that this last alternative is not as good as the previousone for two main reasons. As we de�ned in Se
tion 4.1.1, the type Cow id represents thedomain of the map Cows, and thus it is a key to a

ess ea
h
ow in the map. A key insidea list suggests that a map having the key as domain and the rest of the attributes as rangewould be better, i.e.typeCow id,Date,Va

ine,Va

ination::date: Dateva

ine: Va

ine,Va

inations = Cow id !m Va

ination�The se
ond reason is that if there are two maps with the same key type, there is typi
allya
onsisten
y
ondition that they have the same domain.In this
ase we have the map type Va

inations and we also have a map des
ribing
owsfrom Cow id to Cow. If we merge these two maps the
onsisten
y
ondition will be guaranteed\by
onstru
tion".Therefore, we
hose the �rst alternative, and we model all the a
tions involving
ows aspart of the Cow type. The new de�nition for the type Cow is thentypeCalf info,Heifer info,Dairy info,Cow
lassif ==
alf(info: Calf info) j heifer(info: Heifer info) j dairy(info: Dairy info),Date,Va

ine,Va

ination::date: Dateva

ine: Va

ine,Cow::birthday: Date
ow
lassif: Cow
lassifva

inations: Va

ination�:::The ellipsis ... represent the remaining a
tions applied to
ows su
h as milkings, depara-sitations, and inseminations.So in general, when developing types
oming from verb symbols we suggest modelling theinformation ne
essary to be saved as part of the
orresponding obje
t.

4.2 De�nition of modules 43More heuristi
s for the development of typesAnother thing to
onsider when de�ning attributes to give a more
on
rete de�nition of atype, is the existen
e of one to n relationships. Usually, these kind of relationships are
ross-referen
ed between symbols in the LEL. For example, the notion of the symbol Group de�nesa group as a set of
alves, heifers or dairy
ows. On the other hand, the notion of the symbolsCalf, Heifer and Dairy
ow say that ea
h of them belongs to only one group at any moment.A �rst, and still in
omplete, de�nition of the type Group
ould betypeCow group::
ows: Cow id-setThus, if this de�nition is adopted we will need a
onsisten
y predi
ate to ensure that a
ow
an be in only one group at any moment. In addition, it is ne
essary to
he
k that ea
h
ow identi�
ation appearing in the set belongs to a
ow of the dairy farm. However, if insteadof storing the
ows in a group, the group is de�ned as a
omponent of the type Cow, the�rst
onsisten
y predi
ate
an be avoided. But in this
ase, we need to ensure that the groupidenti�
ation
orresponding to ea
h
ow is a valid one in the dairy farm. A similar analysisshould be made with one to one relationships, whi
h also
ontain
ross-referen
es. In general,it is possible to store the relation on either of its sides de�ning the appropriate
onsisten
ypredi
ates. But sometimes one side would be better than the other. We will show someexamples in Se
tion 5.4.1.4.2 De�nition of modulesModules are the means to de
ompose spe
i�
ations into
omprehensible and reusable units.This de
omposition into modules is parti
ularly useful when designing
omplex systems, as iteases and en
ourages separate development, one of the prin
iples the RAISE Method is basedon.As we have already explained in Se
tion 3.2.3, there are some prin
iples to follow whende�ning a
olle
tion of modules to model a system:� Ea
h module should have only one type of interest, de�ning the appropriate fun
tionsto
reate, modify, and observe values of the type.� The
olle
tion of modules should be, as far as possible, hierar
hi
ally stru
tured. Thismeans that ea
h module below the top should be instantiated in only one another, itsparent, as an embedded obje
t, and its fun
tions should only be
alled from its parent.In this se
tion we present a set of heuristi
s whi
h help to organise in modules all the typesprodu
ed by the Derivation of Types step in order to obtain a more legible and maintainablespe
i�
ation. These modules would be latter
ompleted with the de�nition of fun
tions in thenext step, and probably they will be
ompleted with more type de�nitions. In de�ning theseheuristi
s, we followed
losely the two prin
iples mentioned above as well as the other featuresRSL modules should have a

ording to Se
tion 3.2.3. So, we �rst identify
lass expressions tode�ne s
hemes, and then we assemble these s
hemes de�ning obje
ts to express dependen
ies

4.2 De�nition of modules 44between them. In Table 4.3 we present a summary of the heuristi
s we propose. The pre�xHDM, used to distinguish ea
h heuristi
, means Heuristi
s for the De�nition of Modules.The modules obtained by applying the heuristi
s we propose
an be hierar
hi
ally organ-ised to show the system module stru
ture. In addition, this hierar
hy of modules
an berepresented using a layered ar
hite
ture, as we will show in Se
tion 4.2.3.4.2.1 Modules
oming from
lass expressions with no typeof interestClass expressions with no type of interest are
ommonly used to de�ne types that we needin many pla
es. They provide a simple me
hanism for sharing them and for
hanging themif ne
essary. Class expressions of this
ategory are usually s
hemes, and they are alwaysinstantiated as global obje
ts. So, any time we refer to a type or a fun
tion de�ned in anyof these s
hemes we pre�x the type or fun
tion name with the name of the
orrespondingobje
t. Global obje
ts
an always be avoided, by the use of parameterisation. However, weuse them for
ommonly o
urring types be
ause it is tedious to have to parameterise all theother modules with them.In general, all the types used a
ross a spe
i�
ation that must be visible to users are de�nedin this
ategory of
lass expression. These are the types used as parameter or result types oftop level fun
tions, and they are the basis to de�ne the domain
omponents. Besides, it is
ommon to in
lude types used in at least two modules, as for example the types that de�nemap domains. So, to gather all these de�nitions of types we de�ne a s
hemes
heme GLOBAL TYPES =
lasstypeGlobal type 1,:::Global type nendfor n > 0, and then, we instantiate it as a global obje
t so that all the types
ould be a

esiblefrom any module in the spe
i�
ation.
ontext: GLOBAL TYPESobje
t GT:GLOBAL TYPESThen, for the Milk Produ
tion System we de�ne the s
heme GENERAL TYPES, whi
his instantiated as the global obje
t GT. In this s
heme, we put the de�nition of types used asargument or result types of the top level fun
tions, su
h as the types Cow
lassif, and Va

ine.We also in
lude the types that de�ne map domains su
h as Cow id, Group id, Field id andPlot id.s
heme GENERAL TYPES =
lasstypeCow id,

4.2 De�nition of modules 45
HDMid Type RSL module RSL de�nitionHDM1 For all the types that Two modules: s
heme GLOBAL TYPES =must be visible to a s
heme and a
lassusers or used in at global obje
t whi
h typeleast two modules is an instantiation Global type 1,of the s
heme :::Global type nend =� n > 0 �=
ontext: GLOBAL TYPESobje
t GT:GLOBAL TYPESHDM2 Models an element of S
heme s
heme COLL ELEM =a
olle
tion
lasstypeColl elemendHDM3 Models a
olle
tion S
heme, where the
ontext: COLL ELEMs
heme modelling s
heme THE COLLECTION =ea
h element in the
lass
olle
tion is de�ned obje
t CE: COLL ELEMas an embedded typeobje
t =� if
olle
tion spe
i�ed with a map �=The Colle
tion =GT.Coll id !m CE.Coll elem=� if
olle
tion spe
i�ed with a list �=The Colle
tion = CE.Coll elem�=� if
olle
tion spe
i�ed with a set �=The Colle
tion = CE.Coll elem-setendHDM4 For all the types One top level module
ontext: DOM COMP 1, :::,modelling domain de�ned as a s
heme, DOM COMP n
omponents with ea
h s
heme s
heme DOM STATE =de�ning a domain
lass
omponent obje
tinstantiated as DC 1: DOM COMP 1,an embedded obje
t :::,DC n: DOM COMP ntypeDom state::dom
omp 1: DC 1.Dom Comp 1:::dom
omp n: DC n.Dom Comp n=� n > 0 �=endTable 4.3: Heuristi
s to de�ne modules

4.2 De�nition of modules 46Group id,Field id,Plot id,:::end
ontext: GENERAL TYPESobje
t GT: GENERAL TYPESWhen the spe
i�
ation is large and if there is a natural division into smaller obje
ts, morethan one of this kind of module
an be de�ned.4.2.2 Modules
oming from
lass expressions with a type of interestClass expressions with a type of interest are used to spe
ify the main hierar
hy of modules.Usually ea
h module is de�ned as a s
heme and instantiated as an obje
t in some moduleabove it. We use this kind of
lass expression to spe
ify appli
ation domain
omponents.During the derivation of types, we de�ned a number of maps whi
h represent
olle
tions ofappli
ation domain
omponents, su
h as
ows, �elds and dairy farmers. Ea
h of these maps
ame from a LEL subje
t or obje
t with more than one instan
e in the appli
ation domain.For example, as the LEL obje
t Cow
an have more than one instan
e, the
orresponding
olle
tion should also be modelled.Then, for ea
h
olle
tion spe
i�ed during the derivation of types, we de�ne two s
hememodules, one having the type modelling the
olle
tion as its type of interest, and the otherhaving the type of the elements in the
olle
tion as its type of interest. We use the last oneto make an obje
t in the s
heme
ontaining the
olle
tion.S
hemes and also global obje
ts form a spa
e of names that may potentially be used inmodules. To provide some
ontrol over visibility and hen
e dependen
y, a
ontext
lauseindi
ates those that may a
tually be used. More pre
isely, any name in the transitive
losureof the
ontext and the
ontext's
ontexts may be used.s
heme COLL ELEM =
lasstypeColl elemend
ontext: COLL ELEMs
heme THE COLLECTION =
lassobje
t CE: COLL ELEMtype=� if
olle
tion spe
i�ed with a map �=The Colle
tion = GT.Coll id !m CE.Coll elem=� if
olle
tion spe
i�ed with a list �=

4.2 De�nition of modules 47The Colle
tion = CE.Coll elem�=� if
olle
tion spe
i�ed with a set �=The Colle
tion = CE.Coll elem-setendIn the spe
i�
ation of the map, the pre�x GT refers to the global obje
t where the typeof the map domain is de�ned, a

ording to the heuristi
 HDM1 explained in the previousse
tion. The s
heme COLL ELEM must be always de�ned in the
ontext
lause of the s
hemeTHE COLLECTION. However, it is possible that later, depending on the �nal hierar
hy ofmodules, this
ontext
lause may have to be modi�ed or
ompleted with the name of others
hemes. Moreover, the s
heme COLL ELEM may also need to in
lude a
ontext
lause.For example, we de�ne one module with type of interest Cows and another one with typeof interest Cow, and we use the s
heme COW to make the obje
t C in the s
heme COWS. The
ontext
lause of the module COWS
ontains the s
heme COW, used to de�ne the embeddedobje
t C. Then, a �rst, and still in
omplete, spe
i�
ation of the modules COWS and COWis as followss
heme COW =
lasstypeCowend
ontext: COWs
heme COWS =
lassobje
t C: COWtypeCows = GT.Cow id !m C.CowendLikewise, ea
h of the remaining maps su
h as Fields, Plots, Bulls, Cow groups, andDairy farmers motivates the de�nition of two s
hemes, one of them instantiated as an ob-je
t in the s
heme
ontaining the map type.Sometimes a s
heme needs to be shared between two or more s
hemes above it, andin this
ase it is made a parameter of those s
hemes. For example, COWS is shared byCOW GROUPS and DAIRY FARM; then as we will show later in Se
tion 5, we made it aparameter of the s
heme COW GROUPS.Finally, it is also ne
essary to de�ne a top level module having as type of interest thetype whi
h is the state of the system or appli
ation domain spe
i�ed. In some
ases, theLEL
ontains the de�nition of a symbol that
on
entrates information about the appli
ationdomain being modelled, listing the main
omponents of the domain. When it exists, thissymbol
an help in the de�nition of the type of interest of the top level module. For example,in the LEL for the Milk Produ
tion System, the symbol Dairy farm, whi
h is shown inAppendix A,
ontains in its notion an enumeration of the main
omponents of the domain.Anyway, to identify the appli
ation domain
omponents we propose to
onsider LEL sub-je
ts and obje
ts. Usually, subje
ts are relevant
omponents of the appli
ation domain, so

4.2 De�nition of modules 48they will be part of the type of interest. However, an obje
t may represent a main domain
omponent or it may de�ne a
omponent of other obje
ts or subje
ts. The notion of the
orresponding symbol in the LEL
an help to de
ide whether an obje
t should be in
ludedin the system module type of interest or not. Another thing that may help is
onsideringmaps, sets or lists de�ning LEL obje
ts and not used in the de�nition of any other type. Inour
ase study, for example, the maps Cows, Fields, Bulls, and Cow groups are types whi
hare not used in the de�nition of any other type. So, ea
h of them represents potentially oneof the main
omponents in the domain. On the other hand, the map Plots is not
onsideredbe
ause it is used to de�ne one of the
omponents of the type Field.On
e the main appli
ation domain
omponents are identi�ed, we de�ne an embeddedobje
t for ea
h
omponent. Ea
h obje
t is an instantiation of the s
heme de�ning the
orre-sponding
omponent. Then, we gather all these obje
ts into a re
ord type de�nition whi
hwill represent the domain state. Ea
h �eld in this re
ord
orresponds to one of the
omponentsof the domain, and it is modelled as an instan
e of the s
heme de�ning the
orresponding
omponent.
ontext: DOM COMP 1, :::, DOM COMP ns
heme DOM STATE =
lassobje
tDC 1: DOM COMP 1,:::,DC n: DOM COMP ntypeDom state::dom
omp 1: DC 1.Dom Comp 1:::dom
omp n: DC n.Dom Comp nendfor n > 0, where the s
hemes DOM COMP 1, ... DOM COMP n listed in the
ontext
lauseare the s
hemes de�ning the di�erent appli
ation domain
omponents.For example, in the Milk Produ
tion System maps were de�ned to represent
ows, bulls,
ow groups, dairy farmers and �elds in a dairy farm. Ea
h map is de�ned in a s
heme moduleand
orresponds to one
omponent of the dairy farm. So, to re
e
t the system state, wede�ne the re
ord type Dairy farm in the top level module, whi
h is
alled DAIRY FARM. Allthe modules used to de�ne embedded obje
ts in the module DAIRY FARM are listed in themodule
ontext.
ontext: FIELDS, COW GROUPS, BULLS,DAIRY FARMERSs
heme DAIRY FARM =
lassobje
tCS: COWS,BS: BULLS,FS: FIELDS,CGS: COW GROUPS(CS),

4.2 De�nition of modules 49DFS: DAIRY FARMERStypeDairy farm::
ows: CS.Cowsbulls: BS.Bulls�elds: FS.Fieldsgroups: CGS.Cow groupsdairy farmers: DFS.Dairy farmerspast
ows: CS.Cowsend4.2.3 The ar
hite
ture of the spe
i�
ationThe modules de�ned by applying the heuristi
s we proposed in Se
tions 4.2.1 and 4.2.2
anbe hierar
hi
ally organised to show the system module stru
ture. The root of this hierar
hyis the system module, the se
ond level
ontains the modules that de�ne ea
h one of thedomain
omponents and the remaining levels
orrespond to the modules that help to de�nethe upper ones, as for example the general types module, a module de�ning the date type,et
. This hierar
hy
an be shown graphi
ally in a diagram. Su
h diagrams
an be generatedautomati
ally by the RAISE tools (Se
tion 3.3), as we will show in Se
tion 5.In Se
tion 3.2.3, we explained many guidelines the RAISE Method provides to hierar-
hi
ally stru
ture a spe
i�
ation, aiming at en
ouraging separate development and step-wisedevelopment. These guidelines allow one to obtain a hierar
hy of modules that
ould bespe
i�ed using the Layers pattern [10℄. The heuristi
s applied during the three-step pro
esswe proposed were de�ned following
losely all these guidelines. As a
onsequen
e the RSLspe
i�
ation derived
an be stru
tured in layers. Considering the Layers Pattern implemen-tation de�ned in [24℄, the global ar
hite
ture we propose is
omposed of three layers: spe
i�
layer, general layer and middleware layer.A layer is a set of RSL modules that share the same degree of generality. Lower layersare general to several domain spe
i�
ations, while higher ones are more spe
i�
 to a
on
retedomain. The spe
i�
 layer
ontains appli
ation-spe
i�
 modules not shared by other parts.The general layer in
ludes modules that are not spe
i�
 to a single appli
ation and thenthey
an be reused for many di�erent appli
ations within the same domain or business. Themiddleware layer has modules that are so general that
an be used in any domain. Examplesof middleware layer modules are standard spe
i�
ations su
h as bags, sta
ks, queues, et
. indi�erent levels of abstra
tion.A spe
i�
 module, whi
h is lo
ated in the spe
i�
 layer,
an use modules of the generallayer or the middleware layer. Modules lo
ated in the general layer
an use modules in themiddleware layer. This way of de�ning use relationships between layers is similar to the oneproposed in [24℄ but more
exible than the one des
ribed in [10℄.A module in RSL
an be a s
heme or an obje
t. S
hemes and global obje
ts form a spa
eof names that may potentially be used in modules. To provide some
ontrol over visibilityand hen
e dependen
y, every RSL module must in
lude a
ontext
lause indi
ating those thatare a
tually used. The use of
ontext
lauses allows a layer to be partially opaque, this meansthat some of its modules are only visible to the next higher layer, while others are visible

4.3 Derivation of fun
tions 50to all higher layers. This is parti
ularly helpful when having global obje
ts be
ause thoughglobal they must be in
luded in the
ontext
lause of any module that needs them.In general, the development of a spe
i�
ation into another one has no impa
t on the layeredar
hite
ture of the spe
i�
ation. Development in RAISE typi
ally involves repla
ing moreabstra
t with more
on
rete modules, and sometimes it also involves introdu
ing new
hildmodules. A
hild appears when the development of a module introdu
es a new
omponent or
on
ept worthy of its own module. A developed module will be in the same layer as its moreabstra
t
ounterpart, while the new
hild may be in the same layer or in a lower one.Our proposal of using the Layers Pattern to stru
ture the hierar
hy of modules of a spe
-i�
ation in RSL assumes all the modules have the same spe
i�
ation style, as for exampleappli
ative sequential as in our
ase study. When developing the modules into a di�erentstyle, su
h as imperative sequential, the ar
hite
ture
ould be respe
ted as long as the imple-mentation relation holds between the modules of the di�erent layers of both spe
i�
ations.In Se
tion 5 we will explain how we
ould de�ne the layered ar
hite
ture for the MilkProdu
tion System RSL spe
i�
ation.4.3 Derivation of fun
tionsA fun
tion is esentially a mapping from values of one type to values of another type. As weshowed in Se
tion 3.1.3, fun
tions
an be total or partial, and they may be de�ned in a varietyof styles, ranging from abstra
t property-oriented styles on one side to
on
rete algorithm-oriented styles at the other. Fun
tions are essential to the spe
i�
ation of a system, asa
tivities within a system may be modelled as fun
tions [21℄.In this se
tion we present a set of heuristi
s that help to identify and to model the fun
tionsof the RSL spe
i�
ation. We explain how to derive arguments and result types of fun
tions,how to
lassify fun
tions as partial or total, and, when possible, how to de�ne fun
tion bodiesby analysing des
riptions of s
enarios. The S
enario Model des
ribes domain situations, withan emphasis on the behaviour des
ription. So, s
enarios are the main sour
e of informationwhen de�ning fun
tions. In addition to fun
tions that are spe
i�
 to the
onsidered appli
ationdomain, we show how to de�ne the appropriate fun
tions to
reate, modify and observe thetype of interest of ea
h module de�ned in the De�nition of Modules step (Se
tion 4.2).We perform the derivation of fun
tions in two steps: De�nition of top level fun
tions(Se
tion 4.3.2) and De�nition of lower level fun
tions (Se
tion 4.3.3). Before proposing the
orresponding heuristi
s, we present a brief dis
ussion to support our de
ision of modellingfun
tions in a hierar
hi
al way.4.3.1 Hierar
hi
al de�nition of fun
tionsAs we have already mentioned, s
enarios play a signi�
ant role when deriving fun
tions. As
enario
an produ
e a
hange in the domain by modifying any of the
omponents of thedomain. In addition, s
enarios that produ
e a
hange in the domain usually
ontain anepisode saying that some information is stored, re
orded, registered or saved. From now on,we will
all this kind of s
enario a modifying s
enario. In the same way we will use the termobserving s
enario to refer to a s
enario that only a

esses information in the domain withoutperforming any
hange. The s
enario goal
an help in
lassifying ea
h s
enario as modifyingor observing, and in most
ases this should be enough as, by de�nition, the goal
ontains the

4.3 Derivation of fun
tions 51aim to be rea
hed in the domain by performing the episodes in the s
enario. For example,the s
enarios Assign a group to a
ow and De�ne
ow type are modifying s
enarios while thes
enarios Che
k ration distribution and Control weight of a
ow are observing s
enarios.A �rst
on
lusion might be that modifying s
enarios will always
orrespond to generatorfun
tions while observing s
enarios will
orrespond to observer ones. However, this is notalways true. For example, a s
enario like Compute group individual produ
tion
an be �rst
lassi�ed as modifying be
ause it
ontains an episode stating that the individual produ
tion
omputed is stored. But, as we will show later, it is modelled with an observer fun
tion. Thereason for this de
ision is that the individual produ
tion is a
omponent of a group that
anbe
al
ulated from some other
omponents of the group and, as we have already explained inSe
tion 4.1.2, we do not store what
an be
omputed. So, any time the individual produ
tionof a group is required we
ompute it. The same reasoning
an be applied to s
enarios su
h asCompute next birth date, Compute dairy
ow individual produ
tion, and Compute pastureeaten to �nd that they are modelled with observer fun
tions, although they apparently storeinformation.The hierar
hy of modules produ
ed by the De�nition of Modules step (Se
tion 4.2), hasa great in
uen
e in the way fun
tions should be spe
i�ed. To respe
t this hierar
hy, anyfun
tion in a module should only be
alled from its parent. Then, fun
tions at one levelin the hierar
hy of modules frequently have
ounterparts at lower levels, but with di�erentparameters.For example, the fun
tion milk
ow that
omes from the s
enario Re
ord milking is mod-elled by de�ning three fun
tions in di�erent levels:� In the DAIRY FARM modulevalue
an milk
ow: GT.Cow id � D.Date � Dairy farm ! Bool
an milk
ow(
i, d, df) � CS.
an milk
ow(
i, d,
ows(df)),milk
ow: GT.Cow id � D.Date � GT.Litres � Dairy farm �! Dairy farmmilk
ow(
i, d, lts, df) �
hg
ows(CS.milk
ow(
i, d, lts,
ows(df)), df)pre
an milk
ow(
i, d, df)� In the COWS module (instantiated as the obje
t CS in DAIRY FARM)value
an milk
ow : GT.Cow id � D.Date � Cows ! Bool
an milk
ow(
i, d,
s) �
i 2
s ^ C.
an milk
ow(d,
s(
i)),milk
ow: GT.Cow id � D.Date � GT.Litres � Cows �! Cowsmilk
ow(
i, d, lts,
s) �
s y [
i 7! C.milk
ow(d, lts,
s(
i)) ℄pre
an milk
ow(
i, d,
s)� In the COW module (instantiated as the obje
t C in COWS)

4.3 Derivation of fun
tions 52value
an milk
ow : D.Date � Cow ! Bool
an milk
ow(d,
) � is milking
ow(
) ^ �milked(d,
),milk
ow: D.Date � GT.Litres � Cow �! Cowmilk
ow(d, lts,
) �
hg history(CH.add event(d, CE.milkings(lts), history(
)),
)pre
an milk
ow(d,
)The de�nitions of the fun
tions is milking
ow and milked in COW
an be found in Ap-pendix C, page 172.There are some things worth explaining about these de�nitions: there is an appropriatetype of interest at ea
h level, ea
h fun
tion is only
alled from its parent module, and theidentifying parameter
hanges while the other parameters are typi
ally the same.This may appear to require many unne
essary fun
tions, but if we try to use only onefun
tion at the top level module we
ould get something likevaluemilk
ow: GT.Cow id � D.Date � GT.Litres � Dairy farm �! Dairy farmmilk
ow(
i, d, lts, df) �let
 =
ows(df)(
i),new
 = CS.C.
hg history(CH.add event(d, CE.milking(lts), CS.C.history(
)),
)in
hg
ows(
ows(df) y [
i 7! new
 ℄, df)endpre
i 2
ows(df) ^ CS.C.is milking
ow(
ows(df)(
i))^ �CS.C.milked(d,
ows(df)(
i))This last de�nition is hard to write and also to read. It is not mu
h shorter than theothers, and, in addition, it is harder to
hange if, for example, a type at some level needs tobe modi�ed.Therefore, we suggest following the �rst approa
h we explained above and thus, model forea
h fun
tion in the top level module the ne
essary fun
tions in lower level modules, in orderto simplify the legibility and maintainability of the spe
i�
ation.4.3.2 De�nition of top level fun
tionsFun
tions are usually identi�ed at the top level be
ause s
enarios help to generate them there.Top level fun
tions represent the main fun
tionality in the system and they are de�ned in thesystem module.Behavioural responses of LEL subje
ts in
lude the main fun
tionality in the domain, andea
h of them is usually des
ribed with more details in a s
enario. So, in general, ea
h s
enariowill motivate the de�nition of a top level fun
tion. However, a s
enario may be a sub-s
enariolisted in the episodes of another s
enario. A sub-s
enario does not ne
essarily represent adomain situation. We explained in Se
tion 2.2, sub-s
enarios are mainly introdu
ed to group
ommon behaviour dete
ted in several s
enarios, when
omplex
onditional or alternative
ourses appear in a s
enario, or when the need to enhan
e a situation with a
on
rete and

4.3 Derivation of fun
tions 53HTFid S
enario Model RSLHTF1 S
enario des
ribes a LEL subje
tbehavioural response Top level fun
tionHTF2 S
enario type Fun
tion typeHTF2.1 Modifying Generator (though not always)HTF2.2 Observing ObserverHTF3 S
enario
omponents Fun
tion signatureHTF3.1 Modifying s
enarioHTF3.1.1 Resour
es to modify and Argumentsresour
es with data to modifyHTF3.1.2 A
tors Probably argumentsHTF3.1.3 Resour
es and/or a
tors modi�ed ResultHTF3.2 Observing s
enarioHTF3.2.1 Resour
es to a

ess information ArgumentsHTF3.2.2 A
tors Probably argumentsHTF3.2.3 Information returned ResultHTF4 Context Total or partial fun
tionTable 4.4: Heuristi
s to model top level fun
tionspre
ise goal is dete
ted inside a s
enario. It is not possible to determine from the LEL andthe S
enario Model if a s
enario should only be a sub-s
enario or if it is also a s
enario thatde�nes a relevant fun
tionality in the domain. For example, the s
enario Compute pastureeaten is used as a sub-s
enario when it appears as an episode of the s
enario Feed a group. Butwith the information available, we
annot ensure that it does not represent some independentfun
tionality. In summary, subje
ts' behavioural responses and their s
enarios are only asour
e of
andidate top level fun
tions.Table 4.4 summarises the heuristi
s we propose to spe
ify top level fun
tions (HTF standsfor Heuristi
s for Top Level Fun
tions). After determining whi
h fun
tions to de�ne in the toplevel module (HTF1), the next steps are the formulation of their signatures (HTF2, HTF3,HTF4) and the de�nition of their bodies. The de�nition of the signature of a fun
tion involvesdetermining its arguments and result type as well as
lassifying it as partial or total.� De�nition of the signatureTo determine the fun
tion arguments and result, we analyse a
tors and resour
es in thes
enarios. Resour
es in general will be arguments be
ause they represent informationthat should be available in the s
enario, and thus in the fun
tion. However, this is notalways the
ase for a
tors as sometimes they only represent the ones who exe
ute thea
tion in the appli
ation domain. So, they will be arguments only if the goal of thes
enario is either to a

ess or modify the information they
ontain.To �nd out the fun
tion result we analyse if the fun
tion is a generator or an observer.In
ase of a generator fun
tion, the result is determined by the subje
t(s)/obje
t(s)that are modi�ed in the s
enario. In
ase of an observer fun
tion, the subje
ts/obje
ts
ontaining the information returned by the s
enario represent the fun
tion result.For example, the modifying s
enario Feed a group (Appendix B) motivates the de�nition

4.3 Derivation of fun
tions 54of a generator fun
tion feed group. The resour
es of the s
enario suggest that the group,the date, the quantities of
on
entrated food, hay and
orn silage, and the feeding formshould be the arguments of the fun
tion. The a
tor dairy farmer should not be anargument be
ause its only responsibility is the exe
ution of the a
tion des
ribed by thes
enario. The resour
e Feeding form is the pla
e where the
hange performed by thes
enario is stored, so it will represent the fun
tion result. An informal de�nition for thisfun
tion would befeed group: group � date � quantity of
orn silage � quantity of hay� quantity of
on
entrated food � feeding form ! feeding formWe use this kind of informal de�nition to help in the identi�
ation of fun
tion argumentsand results. When deriving a generator fun
tion, the arguments may be divided into twogroups: the ones to identify the
omponent to be modi�ed, and the ones that
ontain theinformation with whi
h to modify the
omponent. The fun
tion result is the
omponentto be modi�ed. In
ase of an observer fun
tion, the arguments are only those ne
essaryto a

ess the information to be returned by the fun
tion, while the result is pre
iselythis information to be returned.These informal arguments and result are repla
ed by the types previously de�ned torepresent ea
h a
tor and resour
e that was proposed as argument or result. We showedin Se
tion 4.1 that, in general, ea
h a
tor and resour
e has its
orresponding typede�nition. However, as we will explain later in this se
tion, there may be some ex
eptionsthat need a slightly di�erent treatment.For a generator fun
tion, the result type is always the re
ord type representing thesystem state. This re
ord type is also in
luded as an argument type be
ause it
ontainsthe de�nition of all the domain
omponents. The rest of the argument types
orrespondto the types used to de�ne the data required to identify the
omponents to modifyas well as the information with whi
h to modify them. Then, when the type
omesfrom a subje
t or an obje
t whose
olle
tion was modelled with a map, the type of the
orresponding identi�
ation argument will de�ned by the types used to model the setof attributes de�ned as the map domain.The signature of a top level generator fun
tion may be spe
i�ed as follows:valuegen fun
tion name: Identifying attr � Modifying attr � Sys state! Sys statewhere Identifying attr and Modifying attr may be
omposed of more than one type,and Sys state is the re
ord type spe
ifying the system state.For the fun
tion feed group, informally de�ned above, the signature is the following:valuefeed group: GT.Group id � D.Date � GT.Corn sil � GT.Hay� GT.Con
 � Dairy farm ! Dairy farm

4.3 Derivation of fun
tions 55We use Group id as argument be
ause the LEL obje
t Group is an argument whose
ol-le
tion was represented with the map Groups. Feeding form is apparently not in
ludedas argument. But, when deriving the types we de
ided to model all the events applied togroups of
ows as part of the type Group. This signature is still not de�nitive, be
auseit is ne
essary to
lassify ea
h fun
tion as partial or total, as we show below.For an observer fun
tion, the result type is obtained from the types
orresponding to theinformation returned by the s
enario. The re
ord type representing the system state isalways an argument for the same reasons we explained above for a generator fun
tion.The rest of the arguments are the types
orresponding to subje
ts or obje
ts that arene
essary to a

ess the information that should be returned by the fun
tion, plus someadditional arguments like the date, not always present as a resour
e in the s
enario.As we pointed out above, when arguments are obje
ts or subje
ts whose
olle
tion wasmodelled with a map, the type of the
orresponding arguments will be de�ned by thetypes used to model the set of attributes de�ned as the map domain.Then, the signature of an observer top level fun
tion may be spe
i�ed as follows:valueobs fun
tion name: Identifying attr � Sys state ! Info returned typewhere Identifying attr as well as Info returned type may be
omposed by more than onetype, and Sys state is the re
ord type de�ning the system state.For example, the s
enario Compute next birth date is modelled with the top levelfun
tion next birth date, whi
h
an be �rst informally de�ned as followsnext birth date:
ow � date � insemination form ! dateThe signature for this fun
tion is:valuenext birth date: GT.Cow id � D.Date � Dairy farm ! D.DateCow id is the argument type for the
ow as the
olle
tion of
ows was modelled withthe map Cows. The argument Insemination form is in
luded in the de�nition of thetype Dairy farm be
ause inseminations were modelled as part of the type Cow, and the
olle
tion of
ows is a
omponent of the dairy farm.The signatures just presented are still not de�nitive, be
ause it is ne
essary to
lassifyea
h fun
tion as partial or total, as we show below.To
lassify ea
h fun
tion as partial or total, we analyse the
ontext
omponent of the
orresponding s
enario. The
ontext des
ribes the s
enario's geographi
al and temporallo
ation as well as the s
enario's initial state. A

ording to some general heuristi
sto des
ribe s
enarios, at least one of the
omponents of the
ontext should be �lledin, i.e. the
ontext should not be empty. So if a fun
tion
annot be total be
ause itneeds some pre
onditions to be satis�ed, most of these pre
onditions will appear in

4.3 Derivation of fun
tions 56the s
enario
ontext. In general, we found that a
ontext des
ription whi
h
ontainsa temporal lo
ation or an initial state motivates the de�nition of a partial fun
tion.Pre
onditions are better expressed as
alls of fun
tions [22℄, so additional fun
tions willhave to be de�ned. Pre
onditions of top level fun
tions will
ommonly
all fun
tionsde�ned in the top level module itself, whi
h in turn will typi
ally
all fun
tions de�nedin the se
ond level modules.For example, as we have stated the fun
tion next birth date
omes from the s
enarioCompute next birth date. The
ontext of this s
enario
ontains a pre
ondition, whi
hestablishes that next birth date
an be
al
ulated only for pregnant dairy
ows or heifers.The fun
tion must be then de�ned as partial with the pre
ondition formulated as a
allof a fun
tion de�ned in the top level module.value
an give birth: GT.Cow id � D.Date � Dairy farm ! Bool
an give birth(
i, d, df) � CS.
an give birth(
i, d,
ows(df)),next birth date: GT.Cow id � D.Date � Dairy farm �! D.Datenext birth date(
i, d, df) � :::pre
an give birth(
i, d, df)In the same way, the already introdu
ed fun
tion feed group is �nally
lassi�ed aspartial, as the
ontext of the s
enario Feed a group establishes that only non emptygroups should be fed on
e a day:valuefeed group: GT.Group id � D.Date � GT.Corn sil � GT.Hay� GT.Con
 � Dairy farm �! Dairy farmThe pre
ondition is formulated as a
all to a fun
tion de�ned in the top level module,as we will show later.A di�erent situation o

urs with the fun
tion de�ne
ow
lassif whi
h
omes from thes
enario De�ne
ow type. Although the
ontext of the s
enario appears to be empty,we de�ne the fun
tion as partial be
ause it is ne
essary to
he
k that the
ow belongsto the Cows map.valuede�ne
ow
lassif: GT.Cow id � D.Date � Dairy farm �! Dairy farmde�ne
ow
lassif(
i, d, df) � :::pre
i 2
ows(df)A fun
tion a

essing a map with a key will almost always be partial, independently ofwhat is des
ribed in the
ontext of its
orresponding s
enario. Che
king whether thekey belongs to the domain is likely to be in the pre
ondition of all su
h fun
tions.

4.3 Derivation of fun
tions 57Another situation worth mentioning here, is the one that appears when any of the
om-ponents in the informal de�nition of the fun
tion has not a
orresponding type de�nitionbe
ause it was modelled with a variant type. When we use a variant type to model a
omponent, the fun
tions involving this
omponent will typi
ally have an additional pre-
ondition to
he
k the fun
tion is only applied to the appropriate
omponent. We willmodel this kind of additional pre
onditions as separate fun
tions, in order to simplifyfuture
hanges in
ase the de�nition of the
omponent type is modi�ed.To show an example, in the informal de�nition of the fun
tion milk
ow, whi
h
omesfrom the s
enario Re
ord milkingmilk
ow: milking
ow � date � litres � milking form ! milking formappears the
omponent milking
ow, whi
h a
tually has no asso
iated type de�nition,be
ause we modelled the di�erent
ategories of
ows with a variant type. To managethis, we add a pre
ondition to the fun
tion to ensure that it is only applied to milking
ows. So, a �rst formal de�nition
ould bevalueis milking
ow: GT.Cow id � Dairy farm ! Boolis milking
ow(
i, df) � CS.is milking
ow(
i,
ows(df)),
an milk
ow: GT.Cow id � D.Date � Dairy farm ! Bool
an milk
ow(
i, d, df) � CS.
an milk
ow(
i, d,
ows(df)),milk
ow: GT.Cow id � D.Date � GT.Litres � Dairy farm �! Dairy farmmilk
ow(
i, d, lts, df) �:::pre is milking
ow(
i, df) ^
an milk
ow(
i, d, df)The fun
tion
an milk
ow
ontains all the ne
essary
onditions established in the s
e-nario
ontext, while is milking
ow veri�es the fun
tion milk
ow is only applied to theappropriate
ategory of
ows, i.e milking
ows.� De�nition of the body of the fun
tionThe hierar
hy of modules de�ned in Se
tion 4.2, has a great in
uen
e on the spe
i�
ationof fun
tions. Most of the top level fun
tions will
all fun
tions in the se
ond level, whi
hin turn will
all fun
tions in the levels below, thus motivating the de�nition of morefun
tions in lower level modules.In general, the body of ea
h top level fun
tion will
ontain a
all to one or more fun
tionsde�ned in modules in the se
ond level. In the
ase of a generator fun
tion, the bodywill
ontain at least one
all to a
hg
omponent fun
tion whi
h in turn will
all to thefun
tion or fun
tions that perform the modi�
ation of the
orresponding
omponent(s).Thus, ea
h
hg
omponent fun
tion will have as its �rst argument a
all to a se
ondlevel fun
tion in
harge of doing the
hange, and as its se
ond argument the systemstate. The RSL spe
i�
ation below provides a general guide to follow when de�ningthese fun
tions:

4.3 Derivation of fun
tions 58valuepre
ond name: Identifying attr � Modifying attr � Sys state ! Boolpre
ond name(ia, ma, ss) � SL.pre
ond name(ia, ma,
omp i(ss)),gen fun
tion name: Identifying attr � Modifying attr � Sys state�! Sys stategen fun
tion name(ia, ma, ss) �
hg
omp i(SL.gen fun
tion name(ia, ma,
omp i(ss)), ss)pre pre
ond name(ia, ma, ss)As before, Identifying attr and Modifying attr may be
omposed of more than onetype, and Sys state stands for the re
ord type modelling the system state. The fun
tion
hg
omp i is the re
onstru
tor that
orresponds to the ith
omponent of the systemstate. The �rst argument of
hg
omp i, the
all to a se
ond level fun
tion, is pre�xedwith SL, the obje
t whi
h is an instan
e of the s
heme that de�nes the ith
omponent.Finally, pre
ond name is a fun
tion de�ned in the same top level module whi
h
ontainsthe ne
essary pre
onditions for the fun
tion. It is worth noting that, depending on thepre
onditions to be de�ned, it may not be ne
essary to in
lude all the arguments shownin the pattern above.For the generator fun
tion feed group, its informal de�nitionfeed group: group � date � quantity of
orn silage � quantity of hay� quantity of
on
entrated food � feeding form ! feeding formshows that the
orresponding fun
tion will need to a

ess the data of a group andwill also return a group as result, as we de
ided to model all the events applied togroups of
ows as part of the type Group. We modelled the
olle
tion of groups of
ows with the map Cow Groups, and we de�ned this map in a separate module
alledCOW GROUPS. Besides, as groups of
ows are one of the
omponents of the domain,the re
ord type Dairy farm
ontains the
omponent groups de�ned as CGS.Cow Groups.For this reason, we write in the body of this fun
tion a
all to the fun
tion
hg groups,with �rst parameter CGS.feed group.The
omplete de�nition for the fun
tion feed group isvalue
an feed group: GT.Group id � D.Date � Dairy farm ! Bool
an feed group(gt, d, df) �CGS.
an feed group(gt, d, groups(df),
ows(df)),feed group : GT.Group id � D.Date � GT.Quantity � GT.Quantity� GT.Con
entrate � Dairy farm �! Dairy farmfeed group(gt, d,
orn, hay,
on
, df) �
hg groups(CGS.feed group(gt, d,
orn, hay,
on
, groups(df),
ows(df)), df)pre
an feed group(gt, d, df)

4.3 Derivation of fun
tions 59In the
ase of an observer fun
tion, the body will
ontain one or more
alls to theappropriate se
ond level fun
tions. These fun
tions will be de�ned in the module whi
h
ontains the
omponent that has the information to be retrieved. The following RSLspe
i�
ation provides a pattern to help in the de�nition of these fun
tions:valuepre
ond name: Identifying attr � Sys state ! Boolpre
ond name(ia, ss) � SL.pre
ond name(ia,
omp i(ss)),obs fun
tion name: Identifying attr � Sys state �! Info returned typeobs fun
tion name(ia, ss) � SL.obs fun
tion name(ia,
omp i(ss))pre pre
ond name(ia, ss)As before, Identifying attr and Info returned type may be
omposed of more than onetype, and Sys state stands for the re
ord type modelling the system state. The fun
tionSL.obs fun
tion name is a se
ond level fun
tion pla
ed in the s
heme where the
ompo-nent whi
h has the information to be retrieved is de�ned, and SL is the obje
t whi
h isan instan
e of the s
heme that de�nes this
omponent. Finally, pre
ond name is a fun
-tion de�ned in the same top level module whi
h
ontains the ne
essary pre
onditionsfor the fun
tion. As we pointed out before, the in
lusion of all the arguments shown inthe pattern above may not be ne
essary.Following these guidelines, we de�ne the fun
tion next birth date as followsvalue
an give birth: GT.Cow id � D.Date � Dairy farm ! Bool
an give birth(
i, d, df) � CS.
an give birth(
i, d,
ows(df)),next birth date: GT.Cow id � D.Date � Dairy farm �! D.Datenext birth date(
i, d, df) � CS.next birth date(
i, d,
ows(df))pre
an give birth(
i, d, df)In any
ase, to determine the appropriate se
ond level fun
tion to
all, whi
h we will haveto de�ne later, we analyse the informal de�nition we have previously proposed for toplevel fun
tions. This informal de�nition always shows whi
h
omponents are modi�edor whi
h is the information the fun
tion will need to a

ess. From these
omponents,the types de�ned applying the heuristi
s from Se
tion 4.1, and the module stru
tureobtained with the heuristi
s from Se
tion 4.2, we
an identify the arguments and resulttype of the se
ond level fun
tion, and the se
ond level module in whi
h it should bede�ned.4.3.3 De�nition of lower level fun
tionsAs we showed in the previous se
tion, top level fun
tions and their pre
onditions are modelledin terms of fun
tions in the se
ond level modules. For ea
h fun
tion that is
alled in the bodyor the pre
ondition of a top level fun
tion, and whose name has as pre�x an obje
t name,

4.3 Derivation of fun
tions 60we analyse the obje
t name to determine in whi
h se
ond level module we should de�ne thefun
tion. From the de�nition of the obje
t in the top level module we
an �nd out in whi
hmodule the fun
tion has to be de�ned. For example, the fun
tion CGS.feed group(gt, d,
orn,hay,
on
, groups(df),
ows(df)) should be de�ned in the module COW GROUPS be
auseCGS is an instan
e of the s
heme COW GROUPS. From the
all in the top level moduleand the informal de�niton obtained from the
orresponding s
enario, we
an also �nd outthe signature of the se
ond level fun
tion, i.e. fun
tion arguments and result type and its
lassi�
ation as partial or total fun
tion.In what follows we provide some guidelines to de�ne the signature as well as the body ofse
ond level fun
tions.� De�nition of the signatureThe fun
tion informal de�nition we used to determine arguments and result type fortop level fun
tions,
ould be of help to de�ne the signature of se
ond level fun
tions.As we explained in Se
tion 4.3.1, we de
ided to model fun
tions in a top-down style,following the hierar
hy of modules. We also showed that the de�nitions of the fun
tionsa
ross the di�erent levels only
hange the identifying parameters while the others aretypi
ally the same. Then, the only thing we will have to do to de�ne the signatureof these fun
tions, is to determine the identifying parameters taking into a

ount the
omponent to be modi�ed/a

essed and the se
ond level module whi
h
ontains thetype to model the
omponent.When the type of interest of the se
ond level module is a map, and the fun
tion is agenerator one, a general de�nition for the signature isvaluegen fun
tion name: Map id � Attrib � Map �! Mapwhere Map id represents the type expression for the map domain, Attrib the informationne
essary to modify the map (perhaps
omposed of more than one type), and Map standsfor the map type. The fun
tion is always partial be
ause it is ne
essary to ensure thatthe map is only applied to values that belong to the domain of the map. A

ording tothis, the signature for the fun
tion feed group is as followsvaluefeed group : GT.Group id � D.Date � GT.Quantity � GT.Quantity� GT.Con
entrate � Cow Groups � CS.Cows �! Cow GroupsWhen the fun
tion is an observer, a general de�nition for the signature isvalueobs fun
tion name: Map id � Attrib � Map �! GO.ResultMap id and Map are the same as above. Attrib may be empty or not, depending on someadditional information the fun
tion may need to
ompute the result, as for example a

4.3 Derivation of fun
tions 61period of time. Result represents the type of the value returned by the fun
tion, andit is pre�xed with the name of the obje
t that instantiates the module of global types.It is only ne
essary when the type of Result is not a built-in type. For the observerfun
tion next birth date, we have already introdu
ed, the signature isvaluenext birth date: GT.Cow id � D.Date � Cows �! D.Date� De�nition of the bodyCon
erning the bodies of this se
ond level fun
tions, they may
ontain in general a
allto one or more fun
tions de�ned in a lower level module.When the type of interest of the se
ond level module is a map, the
all will be to afun
tion that manipulates ea
h individual value in the map range. If the fun
tion is agenerator, this
all appears as an argument of the map override operator. In generalvaluepre
ond name: Map id � Attrib � Map ! Boolpre
ond name (id, attrib, map) � id 2 map ^ :::,gen fun
tion name: Map id � Attrib � Map �! Mapgen fun
tion name(id, attrib, map) �map y [id 7! O.lower fun
tion(attrib, map(id)) ℄pre pre
ond name(id, attrib, map)where lower fun
tion stands for a fun
tion lo
ated in a module one level below thatmanipulates individual values in the map range, and O is the name of the obje
t whi
his an instan
e of the s
heme that has as type of interest the type of the values in the maprange. The fun
tion pre
ond name spe
i�es the
onditions that have to be satis�ed toapply the fun
tion gen fun
tion name. It will always
ontain the test to ensure that idbelongs to the map domain, and it may also
ontain other ne
essary tests or even
alls tofun
tions in lower level modules in
harge of
he
king
onditions
on
erning the valuesin the map range. It is worth noting that the de�nition of a fun
tion to spe
ify thepre
ondition
an be avoided by writing dire
tly after the keyword pre all the
onditions
onne
ted by the operator and. However, we modelled most pre
onditions in the toplevel module as a
onjun
tion of
alls to fun
tions in se
ond level modules. So as ea
hof these fun
tions must be written in a se
ond level module, we
an also use them toexpress the pre
onditions of the se
ond level fun
tions. The general form for a fun
tionmodelling a pre
ondition in a se
ond level module ispre f: Map id � Attrib � Map ! Boolpre f(id, attrib, map(id)) � id 2 map ^ Condition 1 ^ :::^ Condition n ^O.f0(attrib, map(id))

4.3 Derivation of fun
tions 62The
all of the fun
tion f0 is present whenever is also ne
essary to
he
k the valuerepresented by map(id) satis�es
ertain
onditions. Condition 1, ..., Condition n standsfor any other additional
he
ks ne
essary to do.But, if the only
ondition to be
he
ked is that the map key that appears as argumentbelongs to the map domain, we
an avoid the de�nition of a fun
tion for the pre
ondition.For example, the
omplete formal de�nition for the fun
tion feed group isvalue
an feed group: GT.Group id � D.Date � Cow Groups � CS.Cows! Bool
an feed group(gt, d,
gs,
s) � gt 2
gs ^�empty(gt,
gs,
s) ^ CG.
an feed group(d,
gs(gt)),feed group : GT.Group id � D.Date � GT.Quantity � GT.Quantity� GT.Con
entrate � Cow groups � CS.Cows �! Cow groupsfeed group(gt, d,
orn, hay,
on
,
gs,
s) �letration = GT.mk Ration(0.0,
orn, hay,
on
),new r = GT.
hg pasture(
ompute pasture eaten(gt, ration,
gs,
s), ration)in
gs y [gt 7! CG.feed group(new r, d,
gs(gt)) ℄endpre
an feed group(gt, d,
gs,
s)However, when the fun
tion is an observer one the body will only
ontain a
all to theappropriate next lower level fun
tion.valuepre
ond name: Map id � Attrib � Map ! Boolpre
ond name (id, attrib, map) � id 2 map ^ :::,obs fun
tion name: Map id � Attrib � Map �! GO.Resultobs fun
tion name(id, attrib, map) �::: O.lower fun
tion(attrib, map(id)) :::pre pre
ond name(id, attrib, map)where lower fun
tion and O have the same meaning de�ned above for generator fun
-tions. Result represents the type of the information returned by the fun
tion, and thepre�x GO is the name of an obje
t that instantiates the module of global types. Thesame
omments we made with respe
t to pre
onditions for generator fun
tions also holdfor observer ones.For the observer fun
tion next birth date the �nal de�nition is

4.3 Derivation of fun
tions 63value
an give birth: GT.Cow id � D.Date � Cows ! Bool
an give birth(
i, d,
s) �
i 2
s(
i) ^ C.
an give birth(d,
s(
i)),next birth date: GT.Cow id � D.Date � Cows �! D.Datenext birth date(
i, d,
s) � C.next birth date(d,
s(
i))pre
an give birth(
i, d,
s)We de�ne the fun
tion
an give birth to
ontain the
onjun
tion of the
onditions thathave to be satis�ed to apply the fun
tion, in
luding the test to ensure that the map isonly applied to values in its domain. This fun
tion has to
he
k also, if the
orresponding
ow is pregnant and, as this information is stored in the Cow type, this
he
k must bedone
alling a fun
tion in the module COW.We showed that, in general, when the type of interest of a se
ond level module is a
olle
tion, fun
tions in this level will probably
ontain at least one
all to a fun
tion pla
edin a module one level below, the one
ontaining the de�nition of the type of interest of ea
helement in the
olle
tion.If the
olle
tion is modelled in a se
ond level module with a map, then a third levelmodule de�nes the values in the map range. As we have already explained, the top-downstyle we
hose to model fun
tions makes that identifying parameters
hange a
ross di�erentlevels in the hierar
hy while the rest of the parameters are basi
ally the same. So, to de�nethe signature of these fun
tions, we only have to �nd out the identifying parameters takinginto a

ount the element of the
olle
tion to be modi�ed/a

essed and the third level modulewhi
h
ontains the type to model the element. The following general forms may be used tode�ne a generator fun
tion or an observer one:valuepre f: Attrib � Map range value ! Boolpre f(attrib, map range value) � ::: ,f: Attrib � Map range value �! Map range valuef(attrib, map range value) � :::pre pre f(attrib, map range value)pre f: Attrib � Map range value ! Boolpre f(attrib, map range value) � ::: ,f: Attrib � Map range value �! GO.Resultf(attrib, map range value) � :::pre pre f(attrib, map range value)In both
ases, Attrib represents any kind of information ne
essary to a

ess or modify theadequate map value, Map range value is one of the types de�ned in Se
tion 4.1 to representindividual domain
omponents, and GO.Result stands for the type of the value returned bythe fun
tion. The pre�x GO is the name of the obje
t whi
h is an instan
e of the module of

4.3 Derivation of fun
tions 64global types where the type Result is de�ned. It is only ne
essary when the type of Result isnot a built-in type. Fun
tions
an be total or partial. They will be partial when
oming froma s
enario whose
ontext has a temporal lo
ation or an initial state for the s
enario.For example, the following are the signatures for fun
tions
alled from the module COWS,de�ned in the se
ond level of the hierar
hy.value
an milk
ow: D.Date � Cow ! Bool
an milk
ow(d,
) � ::: ,milk
ow: D.Date � GT.Litres � Cow �! Cowmilk
ow(d, lts,
) � :::pre
an milk
ow(d,
)
an give birth: D.Date � Cow ! Bool
an give birth(d,
) � ::: ,next birth date: D.Date � Cow �! D.Datenext birth date(d,
) � :::pre
an give birth(d,
)Most of these lower level fun
tions do the real work, be
ause they a

ess or modify theinformation stored in ea
h individual
omponent of the domain. The episodes in a s
enario
ontain a set of a
tions des
ribing the s
enario behaviour and thus they are a good sour
eof information when trying to de�ne the body of su
h fun
tions. However, it is not easy toprovide guidelines for this de�nition pro
ess be
ause the de
isions taken to determine how torepresent the
omponents in the domain using types, fun
tions, and a module stru
ture, havea great in
uen
e on the way fun
tion bodies will have to be de�ned.

Chapter 5The Case Study:A Milk Produ
tion SystemIn order to validate our proposal, we present in this
hapter a
omplete
ase study. Webrie
y des
ribe the Milk Produ
tion System, the domain sele
ted, and we explain the stepswe followed to de�ne its LEL and S
enario Model. The
onstru
tion of the LEL and theS
enario Model for the Milk Produ
tion System helped us to have a better understanding ofthis domain. Moreover, we de�ned both models with a
onsiderable level of detail be
ausethe domain was not a
onventional one. We also show the appli
ation of the te
hnique weproposed in Chapter 4 to derive a RSL formal spe
i�
ation of the domain sele
ted, and wepresent some experien
es gained with the development of this real and quite
omplete
asestudy.5.1 Brief Des
riptionA dairy farm breeds
ows with the goal of produ
ing good quality milk and obtaining a goodin
ome. All the ne
essary a
tivities to a
hieve this goal are performed by one or more dairyfarmers, sometimes with the help of one or more employees.Cows are divided into groups a

ording to their features. Ea
h group re
eives a dailyration whi
h may be
omposed of
orn silage, hay, and
on
entrated food. Besides, ea
hgroup is sent out to pasture in a �eld. Fields are divided into plots to ensure a good use ofthe pasture.Cows are deparasited and va

inated against di�erent diseases, su
h as bru
ellosis anddiarrhoea. The date as well as some information about the deparasitation or va

ination areregistered.After birth,
alves are with their mother until they are more or less 5 days old, and thenthey are sent to the
alf rearing unit. In the
alf rearing unit, they re
eive milk or milkrepla
ement and balan
ed food. When they
an eat at least one kilogram of balan
ed food,they are sent out to pasture and they do not re
eive any more milk or milk repla
ement. Ingeneral, male
alves are sold upon birth.Female
alves of twelve months old are
onsidered heifers. Heifers
an be inseminatedwhen they rea
h 15 months age and their weight is nearly 350 kilograms. After giving birthto the �rst
alf, a heifer is
onsidered a dairy
ow.Dairy
ows and heifers are on heat every 21 days approximately. When this is dete
ted,

5.2 The LEL De�nition 66they
an be inseminated in the next twelve hours. Insemination
an be natural or arti�
ial.In any
ase, the date is re
orded, plus some additional information relative to the pro
edurefollowed, su
h as the identi�
ation of the bull in
ase of natural insemination. Two monthsafter the insemination, it is possible to dete
t if the dairy
ow or the heifer be
ame pregnantor not. After birth, dairy
ows are milked for approximately seven months. In this perioddairy
ows are
alled milking
ows, and they are milked twi
e a day, on
e in the morning andon
e in the evening. The quantity of litres and the date of ea
h milking are registered. Inthe se
ond menstrual
y
le after the birth, dairy
ows are again inseminated in order to makeea
h dairy
ow give birth to one
alf per 12 months. A pregnant milking
ow is dried, i.e. itis no longer milked, in the seventh month of pregnan
y, and kept in a separate group whereit re
eives a spe
ial ration.A dairy
ow
an be dis
arded for many reasons, as for example an illness or when it
annotbe
ome pregnant for a long time. A dis
arded
ow is kept eating only pasture until it rea
hesthe appropriate weight to be sold.The history of a
ow, that is all the relevant events that happened sin
e its birth, is veryimportant as a basis for taking de
isions about what to do with ea
h
ow.5.2 The LEL De�nitionTo
onstru
t the LEL for the Milk Produ
tion System domain, we followed the LEL Constru
-tion Pro
ess des
ribed in Se
tion 2.1.1. Two di�erent domain experts were our main sour
esof information, as well as some do
uments and books about Milk Produ
tion Systems. Then,to identify the symbols used in the sele
ted domain, we initially
arried out two unstru
turedinterviews, ea
h one with a di�erent domain expert, and we also read some books and do
-uments related to Milk Produ
tion Systems. With all the information gathered, we wrote apreliminary list of the symbols
hara
teristi
 of the domain. Ea
h symbol of the list was then
lassi�ed as subje
t, obje
t, verb or situation/state, and its notions and behavioural responseswere des
ribed, following the guidelines des
ribed in Table 2.2. Although these guidelines es-tablish what to write in the notion and behavioural response of ea
h symbol, usually thesame meaning may be expressed with many di�erent natural language senten
es. As in some
ases it is possible to de�ne a standard form, without restri
ting the power of expression ofnatural language, when writing this LEL, we tried to use the same natural language stru
tureto des
ribe similar semanti
s in di�erent symbols. For example, when de�ning the notion ofa symbol x
lassi�ed as a subje
t or an obje
t, we use a
onsistent natural language stru
tureto express a
omponent of the symbol: \An x has a y" or \It/he/she has a y". Table 2.3shows, for instan
e, how this form was used to express a dairy farmer has a name, a salaryand one or more employees.On
e we had de�ned the notion and behavioural response of ea
h symbol in the list, we
arried out a veri�
ation pro
ess to
he
k, for instan
e, the syntax and
lassi�
ation of ea
hsymbol in the list. By using this list as a guide, we developed some stru
tured interviewsin order to validate the de�nition of the symbols with the domain experts. Though theywere not software engineers and they had no previous knowledge about LEL and s
enarios,they found no problems reading and understanding them. They
ould make some
orre
tionsand suggestions, and following them we deleted some symbols, we dete
ted some synonyms,and we found ne
essary to add some new symbols. Besides, we
orre
ted and/or
ompletednotions and behavioural responses of some symbols.

5.3 The S
enario Model Constru
tion 67The �nal LEL has 68 symbols, from whi
h one was
lassi�ed as subje
t, 32 as obje
ts, 32as verbs, and three as states. As the domain we sele
ted is not a
onventional one, this LEL
ontains all the information available in a quite detailed way. Tables 5.1 and 5.2 show the
omplete list and the
lassi�
ation for ea
h symbol. The
omplete de�nition for ea
h symbol
an be found in Appendix A.5.3 The S
enario Model Constru
tionTo de�ne the S
enario Model we
hose the
ombined strategy explained in Se
tion 2.2. We�rst derived from the LEL a list of
andidate s
enarios by applying the heuristi
s. Then, we
ompleted and improved this list to obtain the �nal one whi
h a
tually
ontains 32 s
enarios(Table 5.3) and whi
h was validated with the stakeholders. Ea
h s
enario was de�ned followingthe stru
ture shown in Table 2.7. Table 5.3 shows how we
lassify ea
h s
enario as observingor modifying,
onsidering if the s
enario produ
es a
hange in the domain or not.The
omplete des
ription of ea
h s
enario
an be found in Appendix B. The stru
tureused to de�ne s
enarios allows the des
ription of any situation in the appli
ation domain withthe required level of detail. For example, it would be possible to write a s
enario
alled Milka milking
ow, enumerating in the episodes all the a
tivities performed by a dairy farmer,su
h as taking the milk from the milking
ow, putting the milk in a
ontainer, measuringthe litres extra
ted, and re
ording this information. But the system to be developed will nota
tually milk
ows, move them to pasture or give va

inations, be
ause we de
ided to modelan information system instead of a
ontrol one.Then, although s
enarios were derived from the LEL, we �ltered some information
om-ing from the LEL in order to in
lude only those situations that
ould be modelled in thespe
i�
ation of an information system. We return to this issue in Se
tion 5.6.5.4 The derivation of the RSL spe
i�
ation using ourte
hniqueIn Chapter 4 we presented the three steps of the te
hnique we proposed to derive an initialRSL spe
i�
ation from natural language models, su
h as LEL and s
enarios. We mentionedthere that those steps were not stri
tly sequential; they
ould overlap or
arried out in
y
les.However, as modules are de�ned to isolate a type of interest, and fun
tions are de�ned togenerate, modify, and observe values of a type, we should start identifying at least a prelim-inary set of types. For this reason, we begin the derivation of the initial RSL spe
i�
ationwith the Derivation of types step.5.4.1 Deriving the typesThe LEL of the Milk Produ
tion System (Appendix A) and the
orresponding
lassi�
ationof the symbols (Tables 5.1 and 5.2)
ontain the ne
essary information to derive, applying theheuristi
s we proposed in Se
tion 4.1, an initial set of types whi
h model the main
omponentsof our
ase study.As set in our proposal, the �rst step
onsists in identifying a preliminary list of types byapplying the heuristi
s HIT1, HIT2, HIT3, and HIT4 des
ribed in Se
tion 4.1.1. Tables 5.4

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 68LEL SYMBOL CLASSIFICATIONARTIFICIAL BREEDING/BREED ARTIFICIALLY VERBARTIFICIAL INSEMINATION/INSEMINATES ARTIFICIALLY VERBASSIGNS TO A GROUP/ASSIGNED TO A GROUP VERBBALANCED FOOD/BALANCED OBJECTBE ON HEAT/ON HEAT/HEAT STATEBIRTH/CALVING/GIVE BIRTH VERBBRAND OBJECTBULL OBJECTBUYS BULLS VERBCALF OBJECTCALF REARING UNIT OBJECTCOMPUTES BIRTH DATE VERBCOMPUTES INDIVIDUAL PRODUCTION VERBCOMPUTES PASTURE EATEN VERBCOMPUTES RATION VERBCONCENTRATED FOOD/CONCENTRATED OBJECTCONTROLS WEIGHT VERBCORN SILAGE OBJECTCOW OBJECTDAIRY COW OBJECTDAIRY FARM OBJECTDAIRY FARMER SUBJECTDEFINES CALF GROUP VERBDEFINES COW TYPE/DEFINE COW TYPE VERBDEFINES PLOT VERBDEPARASITES/DEPARASITATION VERBDETECT PREGNANT COW VERBDISCARD COW OBJECTDISCARDS BULL VERBDRIED FEEDSTUFFS/DRY MATERIAL OBJECTDRY A COW FOR DISCARD/DRIED VERBDRY COW OBJECTEARLY PREGNANT COW OBJECTEMPTY COW OBJECTFEEDS GROUP/FEED A GROUP/FED/FEEDING VERBFIELD OBJECTGROUP/COW GROUP OBJECTHANDLES COWS DEATH/HANDLE COW DEATH VERBHAY OBJECTHEAT DETECTION VERBHEAT IS REGISTERED/REGISTERS HEAT VERBHECTARE LOADING OBJECTHEIFER OBJECTIDENTIFICATION NUMBER OBJECTINDIVIDUAL PRODUCTION/ OBJECTMILK INDIVIDUAL PRODUCTIONINSEMINATION/INSEMINATE/INSEMINATES VERBLACTATION/LACTATION PERIOD STATEMAXIMUM LACTATION/PEAK LACTATION OBJECTTable 5.1: Classi�
ation of the symbols in the LEL

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 69LEL SYMBOL CLASSIFICATIONMILK OBJECTMILKING/TO MILK/MILKED/MILKS VERBMILKING COW OBJECTMILK REPLACEMENT/MILK SUBSTITUTE OBJECTNATURAL INSEMINATION/INSEMINATE NATURALLY VERBPASTURE OBJECTPLOT/PLOT AREA OBJECTPOST-BIRTH COW OBJECTPRE-BIRTH COW OBJECTPREGNANT/PREGNANCY STATERATION OBJECTSAVE BIRTH/SAVES BIRTHS/BIRTH IS SAVED VERBSELECTS A CALF GROUP VERBSELLS COW/SOLD VERBSENDS CALF TO THE CALF REARING UNIT VERBSENDS TO EAT PASTURE/SENT TO EAT PASTURE VERBTAKES CALF OUT THE CALF REARING UNIT VERBVACCINATES COW/VACCINATES/VACCINATION VERBVACCINE OBJECTWEIGHS COW/WEIGH COW/WEIGHED VERBTable 5.2: Classi�
ation of the symbols in the LELand 5.5 summarise the types identi�ed from the LEL symbols and the heuristi
/s applied tode�ne ea
h one.Heuristi
 HIT1 makes us de�ne a �rst set of 33 abstra
t types, as the LEL
ontains onesubje
t and 32 obje
ts whose names are singular nouns. The remaining abstra
t types
omefrom heuristi
 HIT3 and
orrespond to verb symbols representing a
tions with data to save.From this preliminary list of types, we
onsider the abstra
t types to apply the heuristi
swe proposed in Se
tion 4.1.2 in order to develop them into more
on
rete ones when possi-ble. Table 5.6
ontains some of the types developed, the heuristi
/s applied, and the RSL
onstru
tions used in the de�nition. The
omplete spe
i�
ation for ea
h type
an be foundin Appendix C. However, we in
lude below some
omplete examples in order to
larify theway we applied the heuristi
s.For example, the abstra
t type Dairy farmer, whi
h
omes from a subje
t LEL symbola

ording to heuristi
 HIT1, may be developed into a more
on
rete one by spe
ifying it witha short re
ord de�nition with two
omponents, as two properties (the salary and the set ofemployees)
an be identi�ed from its notion (HDT1.1). We
onsider the dairy farmer's nameas the attribute to identify ea
h dairy farmer, and as it will be used to de�ne the map domain,it is not in
luded in the short re
ord de�nition. Then, the RSL de�nition for the type istypeSalary = Real,Employee,Dairy farmer ::salary : Salary $
hg salaryemployees : Employee-set $
hg employeewhere we in
lude the re
onstru
tors
hg salary and
hg employee to indi
ate the
ompo-nents salary and employees may be modi�ed.

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 70
SCENARIO TITLE CLASSIFICATIONAssign a group to a
ow ModifyingBreed arti�
ially ModifyingBuy a bull ModifyingChe
k ration distribution ObservingCompute next birth date ModifyingCompute dairy farm individual produ
tion ModifyingCompute milking
ow individual produ
tion ModifyingCompute group individual produ
tion ModifyingCompute pasture eaten ModifyingCompute ration ObservingDe�ne
alf group ModifyingDe�ne
ow type ModifyingDe�ne plot ModifyingDis
ard a bull ModifyingDry dairy
ow ModifyingFeed a group ModifyingHandle
ow death ModifyingInseminate arti�
ially ModifyingInseminate naturally ModifyingManage birth ModifyingRe
ord
ow deparasitation ModifyingRe
ord milking ModifyingRegister
ow weight ModifyingRegister
ows on heat dete
tion ModifyingRegister heat ModifyingRegister pregnan
y test ModifyingSele
t a
alf group ModifyingSell
ow ModifyingSend
alf to the
alf rearing unit ModifyingSend out to pasture ModifyingTake
alf out the
alf rearing unit ModifyingVa

inate
ow ModifyingTable 5.3: List of s
enarios and their
lassi�
ation

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 71LEL Symbol HITid RSL type Type idARTIFICIAL BREEDING/ HIT3 Abstra
t type Artif breedingBREED ARTIFICIALLY HIT4.2 List type expression Artif breedingsARTIFICIAL INSEMINATION/ HIT3 Abstra
t type Artif insemINSEMINATES ARTIFICIALLY HIT4.2 List type expression Artif insemsASSIGNS TO A GROUP/ HIT3 Abstra
t type Cow to groupASSIGNED TO A GROUP HIT4.2 List type expression Cows to groupBALANCED FOOD/BALANCED HIT1 Abstra
t type Balan
edBE ON HEAT/ON HEAT/HEAT HIT2.2 Abstra
t type On heatBIRTH/CALVING/ HIT3 Abstra
t type CalvingGIVE BIRTH HIT4.2 List type expression CalvingsBRAND HIT1 Abstra
t type BrandBULL HIT1 Abstra
t type BullHIT4.1 Map type expression BullsBUYS BULLS HIT3 Abstra
t type Bought bullHIT4.2 List type expression Bought bullsCALF HIT1 Abstra
t type CalfHIT4.1 Map type expression CalvesCALF REARING UNIT HIT1 Abstra
t type CruCONCENTRATEDFOOD/CONCENTRATED HIT1 Abstra
t type Con
CONTROLS WEIGHT HIT3 Abstra
t type WeighHIT4.2 List type expression WeighsCORN SILAGE HIT1 Abstra
t type Corn silCOW HIT1 Abstra
t type CowHIT4.1 Map type expression CowsDAIRY COW HIT1.3 Subtype expression Dairy
owHIT4.1 Map type expression Dairy
owsDAIRY FARM HIT1 Abstra
t type Dairy farmDAIRY FARMER HIT1 Abstra
t type Dairy farmerHIT4.1 Map type expression Dairy farmersDEPARASITES/ HIT3 Abstra
t type DeparasitationDEPARASITATION HIT4.2 List type expression DeparasitationsDISCARD COW HIT1.3 Subtype expression Dis
ard
owHIT4.1 Map type expression Dis
ard
owsDRIED FEEDSTUFFS/ HIT1 Abstra
t type Dry matDRY MATERIALDRY A COW FOR HIT3 Abstra
t type Cow driedDISCARD/DRIED HIT4.2 List type expression Cows driedDRY COW HIT1.3 Subtype expression Dry
owHIT4.1 Map type expression Dry
owsEARLY PREGNANT COW HIT1.3 Subtype expression Early preg
owHIT4.1 Map type expression Early preg
owsEMPTY COW HIT1.3 Subtype expression Empty
owHIT4.1 Map type expression Empty
owsFEEDS GROUP/FEED A HIT3 Abstra
t type FeedingGROUP/FED/FEEDING HIT4.2 List type expression FeedingsFIELD HIT1 Abstra
t type FieldHIT4.1 Map type expression FieldsGROUP/COW GROUP HIT1 Abstra
t type Cow groupHIT4.1 Map type expression Cow groupsHANDLES COWS DEATH/ HIT3 Abstra
t type DeathHANDLE COW DEATH HIT4.2 List type expression DeathsHAY HIT1 Abstra
t type HayTable 5.4: Identi�
ation of types

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 72LEL Symbol HITid RSL type Type idHEAT DETECTION HIT3 Abstra
t type Heat dete
tionHIT4.2 List type expression Heat dete
tionsHEAT IS REGISTERED/ HIT3 Abstra
t type HeatREGISTERS HEAT HIT4.2 List type expression HeatsHECTARE LOADING HIT1.1 Abstra
t type He
t loadingHEIFER HIT1 Abstra
t type HeiferHIT4.1 Map type expression HeifersIDENTIFICATION NUMBER HIT1 Abstra
t type Cow idINDIVIDUAL PRODUCTION/MILK HIT1.1 Abstra
t type Indiv prodINDIVIDUAL PRODUCTIONINSEMINATION/ HIT3 Abstra
t type InseminationINSEMINATE/INSEMINATES HIT4.2 List type expression InseminationsLACTATION/ HIT2.2 Abstra
t type La
t periodLACTATION PERIODMAXIMUM LACTATION/ HIT1 Abstra
t type Max la
tationPEAK LACTATIONMILK HIT1 Abstra
t type MilkMILKING/TO MILK/ HIT3 Abstra
t type MilkingMILKED/MILKS HIT4.2 List type expression MilkingsMILKING COW HIT1.3 Subtype expression Milking
owHIT4.1 Map type expression Milking
owsMILK REPLACEMENT/ HIT1 Abstra
t type Milk replMILK SUBSTITUTENATURAL INSEMINATION/ HIT3 Abstra
t type Nat insemINSEMINATE NATURALLY HIT4.2 List type expression Nat insemsPASTURE HIT1 Abstra
t type PasturePLOT/PLOT AREA HIT1 Abstra
t type PlotHIT4.1 Map type expression PlotsPOST-BIRTH COW HIT1.3 Subtype expression Post birth
owHIT4.1 Map type expression Post birth
owsPRE-BIRTH COW HIT1.3 Subtype expression Pre birth
owHIT4.1 Map type expression Pre birth
owsPREGNANT/PREGNANCY HIT2.2 Abstra
t type PregnantRATION HIT1 Abstra
t type RationSAVE BIRTH/SAVES BIRTHS/ HIT3 Abstra
t type BirthBIRTH IS SAVED HIT4.2 List type expression BirthsSELLS COW/SOLD HIT3 Abstra
t type Cow saleHIT4.2 List type expression Cow salesSENDS CALF TO THE HIT3 Abstra
t type Calf to
ruCALF REARING UNIT HIT4.2 List type expression Calves to
ruSENDS TO EAT PASTURE/ HIT3 Abstra
t type Group to plotSENT TO EAT PASTURE HIT4.2 List type expression Groups to plotTAKES CALF OUT THE HIT3 Abstra
t type Calf out
ruCALF REARING UNIT HIT4.2 List type expression Calves out
ruVACCINATES COW/ HIT3 Abstra
t type Va

inationVACCINATES/VACCINATION HIT4.2 List type expression Va

inationsVACCINE HIT1 Abstra
t type Va

ineWEIGHS COW/ HIT3 Abstra
t type Cow weighWEIGH COW/WEIGHED HIT4.2 List type expression Cows weighTable 5.5: Identi�
ation of types

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 73
Type id HDTid RSL typeArtif breeding HDT2 Short re
ord de�nitionArtif insem HDT2 Short re
ord de�nitionCow to group HDT2 Short re
ord de�nitionBalan
ed HDT1.1 Simple typeBrand HDT1.1 Simple typeBull HDT1.1 Short re
ord de�nitionCon
 HDT1.1 Short re
ord de�nitionCorn sil HDT1.1 Simple typeCow HDT1.1 Short re
ord de�nitionHDT1.4 Variant typeHDT1.5 List expressionDairy farm HDT1.1 Short re
ord de�nitionDairy farmer HDT1.1 Short re
ord de�nitionDeparasitation HDT2 Short re
ord de�nitionDry mat HDT1.1 Simple typeCow dried HDT2 Short re
ord de�nitionFeeding HDT2 Short re
ord de�nitionField HDT1.1 Short re
ord de�nitionHDT1.2Cow group HDT1.1 Short re
ord de�nitionHDT1.5 List expressionDeath HDT2 Short re
ord de�nitionHay HDT1.1 Simple typeHeat dete
tion HDT2 Short re
ord de�nitionHeat HDT2 Short re
ord de�nitionHe
t loading HDT1.1 Simple typeCow id HDT1.1 Simple typeIndiv prod HDT1.1 Simple typeInsemination HDT2 Short re
ord de�nitionLa
t period HDT1.1 Simple typeMilking HDT2 Short re
ord de�nitionNat insem HDT2 Short re
ord de�nitionPasture HDT1.1 Simple typePlot HDT1.1 Short re
ord de�nitionRation HDT1.1 Short re
ord de�nitionBirth HDT2 Short re
ord de�nitionCow sale HDT2 Short re
ord de�nitionCalf to
ru HDT2 Short re
ord de�nitionGroup to plot HDT2 Short re
ord de�nitionCalf out
ru HDT2 Short re
ord de�nitionVa

ination HDT2 Short re
ord de�nitionVa

ine HDT1.1 Short re
ord de�nitionCow weigh HDT2 Short re
ord de�nitionTable 5.6: Elaboration of types

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 74The abstra
t type Plot,
oming from an obje
t LEL symbol as set by heuristi
 HIT1, maybe spe
i�ed with a short re
ord de�nition with four
omponents (HDT1.1), representing theproperties identi�ed from the notion of the symbol (lo
ation, size, starting date and durationof the plot). The RSL de�nition for the type Plot istypeLo
ation,Size = Real,Date,Plot ::plot lo
ation : Lo
ationsize : Sizestarting : Datedays : Nat $
hg daysThe
omponents plot lo
ation, size, and starting do not have re
onstru
tors as on
e settheir values they
annot be modi�ed. Besides, we have not in
luded the plot identi�
ationas a
omponent, be
ause it will be used as the map domain when de�ning the
olle
tion ofplots.We want to remark that we
ould have in
luded one more
omponent in the re
ord to savethe group eating in a plot. But, analysing the LEL we dis
overed a one to one relationshipbetween a plot and a group of
ows, meaning that a plot
an
ontain only one group at anytime and a group
an be eating pasture in only one plot at any time. Plots are only de�nedwhen it is ne
essary to send a group to a �eld, and ea
h plot
an
ontain at most one groupat any time. If the plot is saved with the group, besides
he
king the existen
e of the plot, itwould be ne
essary to de�ne a
onsisten
y predi
ate to ensure that the group is unique in theplot. If the group is stored with the plot it is guaranteed that the group is the only one in theplot, but it should be
he
ked that ea
h plot has always one group assigned. We
hose the�rst alternative, maintaining the plot with the group, and thus we deleted from the re
ordPlot the
omponent to store the group.As another example, we show below the development of the abstra
t type Cow,
omingfrom the obje
t symbol Cow (HIT1). From the LEL symbol, we
an identify some propertieswhi
h, as suggested by heuristi
s HDT1.1,
ould be modelled with a short re
ord de�nition.But, before determining the number of
omponents the re
ord will have, it is ne
essary toanalyse some things more.One of the notions of the symbol Cow says that a
ow may be a
alf, a heifer or a dairy
ow. The words
alf, heifer and dairy
ow are symbols in the LEL
lassi�ed as obje
ts. LELsubje
ts and obje
ts may appear in the notions of other subje
ts/obje
ts in ways that indi
atedi�erent states or alternatives. As we have just mentioned, the symbols Dairy
ow, Calf andHeifer, whi
h are obje
ts whose name is a noun, appear in the notion of the obje
t Cow asdi�erent
ategories of
ow animals. In addition, in the notion of ea
h one of these symbols it isexpli
itly written that they are
ows with some spe
ial or additional features. This means thatdairy
ows,
alves, and heifers share some attributes, but also have some spe
ial attributesdepending on their
ategory. Following heuristi
 HDT1.4, we model this notion with a varianttype (Cow
lassif), leaving the parti
ular attributes of ea
h
ategory as
omponents of thevariant type. However, we de
ide not to model subtypes for ea
h
ategory of
ows be
ause

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 75a
tually, for ea
h
ow,
ategories are temporary as the
ow will be
ontinuously
hanging fromone
ategory to another depending on spe
i�
 events in its life.Another thing to
onsider is that, as we have shown in Se
tion 4.1.2, we suggested to modela
tions applied to
ows as part of the type Cow (HDT1.5 and HDT2), and we proposedmodelling ea
h of the a
tions applied to a
ow as a list: Milkings list, Va

inations list,Inseminations list, Births list, Deparasitations list, et
. (Tables 5.4 and 5.5). By analysingthese lists, we observe that they are all ordered by date and basi
ally the same operationsare applied to ea
h of them, like adding a new element (
he
king it had not been previouslyadded), returning the elements whose date was in a given period, and so on. Besides, thede�nitions for the elements in ea
h list are quite similar; all of them in
lude the date plus somespe
ial information
on
erning the spe
i�
 a
tion, and thus ea
h of them
an be modelledwith a short re
ord de�nition (Table 5.6). Then, to give a more general solution we propose tode�ne the type History as a list of events ordered by date. Ea
h event in the list will representone of the a
tions that
ould be applied to
ows. We return to this issue in Se
tion 5.4.2.As a
onsequen
e of this de
ision, we delete the types representing list expressions mod-elling ea
h
olle
tion of a
tions that
ould be applied to a
ow. Then, though not �nished,the new de�nition for the type Cow is as follows:typeDate,Event info,Event ::date : Dateevent inf : Event info,History = fj h : Event� � is ordered(h) jg,Calf info,Heifer info,Dairy info,Cow
lassif ==
alf(info : Calf info) j heifer(info : Heifer info) j dairy(info : Dairy info),Cow ::birthday: Date
ow
lassif: Cow
lassif $
hg
lassifhistory: History $
hg historyThe type History is a subtype of the type of �nite lists of events: only lists in date order areallowed. The
omplete spe
i�
ations for the types Date, Calf info, Heifer info, and Dairy info
an be found in Appendix C, page 208 for the �rst one and page 204 for the remaining ones.Following a similar analysis, we dis
overed that lists of a
tions applied to a group of
ows, su
h as feedings list and heat dete
tions list, are also ordered by date. Besides, thesame operations are applied to them, and ea
h element in ea
h list
an be modelled with ashort re
ord de�nition whose
omponents are the date and spe
i�
 information
on
erningthe
orresponding a
tion. So, as we will explain in more detail in Se
tion 5.4.2, we will usethe type History we have just de�ned above to model a
tions applied to a group of
ows.Finally, during this elaboration of types, it was ne
essary to in
lude some type de�nitionsthat do not
orrespond to any entry in the LEL. They appear when modelling
omponentsof some other type. For some of them we
ould give a
on
rete de�nition, while for others

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 76we provided a �rst abstra
t one to be developed later. For example, in the de�nition of thetype Dairy farmer we in
luded the abstra
t types Salary and Employee whi
h were not LELentries. Similarly, when spe
ifying the type Plot, we de�ned the abstra
t types Lo
ation andDate, and the
on
rete type Size, though they have no entry in the LEL. We return to thisissue in Se
tion 5.6.5.4.2 De�ning the modulesThe set of types obtained in the previous se
tion are the main sour
e to de�ne a �rst hierar
hyof modules of the RSL spe
i�
ation. This hierar
hy may be modi�ed later when deriving thefun
tions.As suggested by heuristi
 HDM1, we de�ne a s
heme
alled GENERAL TYPES to
ontainthose types we are sure will be used in at least two modules, as the types de�ning map domains.This module in
ludes then the types Bull id, Cow id, Dairy farmer id, Field id, Group id, andPlot id. Besides, it is instantiated as the global obje
t GT. The following is a �rst, and stillin
omplete de�nition for these two modules, as the Derivation of Fun
tions step may showthe need to in
lude in the GENERAL TYPES module many other types used in at least twomodules.s
heme GENERAL TYPES =
lasstypeBull id,Cow id,Dairy farmer,Group id,Field id,Plot id,:::end
ontext: GENERAL TYPESobje
t GT: GENERAL TYPESThe type Date is another one that will be used in more than one module, and so it shouldbe in
luded in the s
heme GENERAL TYPES. However, as the date is an important elementin our domain, and there are many fun
tions to manipulate dates, we propose the de�nitionof a s
heme DATE in a separate module in order to isolate the types Date and Period, withtheir asso
iated fun
tions. We instantiate this module as the global obje
t D and in
lude itin the
ontext of the s
heme GENERAL TYPES. The RSL spe
i�
ation of these two newmodules iss
heme DATE =
lasstypeDate,Periodend

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 77
ontext: DATEobje
t D: DATEAs another example of types used in at least two modules, we
an mention
onstantvalues. When analysing LEL symbols to de�ne types, we found many
onstat values that willbe used throughout the spe
i�
ation of the Milk Produ
tion System, su
h as la
tation period,pregnan
y period, and dis
ard age. We suggest putting them in a separate module, namedCONSTANTS and instantiated as the global obje
t K. Both spe
i�
ations are in Appendix C,page 202.A

ording to heuristi
 HDM2, ea
h type that models an element of a
olle
tion moti-vates the de�nition of a s
heme. For this reason we de�ne six s
hemes to
ontain the typesBull, Cow, Dairy farmer, Field, Cow group, and Plot respe
tively. In addition, as the typesBulls, Cows, Dairy farmers, Fields, Cow groups, and Plots model ea
h a
olle
tion we de-�ne one s
heme for ea
h. Besides, ea
h of these s
hemes in
ludes the s
heme modelling the
orresponding element of the
olle
tion as an embedded obje
t (HDM3).To
ontinue with one of the examples introdu
ed in the previous se
tion, we show the stillin
omplete spe
i�
ations for the two s
heme modules PLOT and PLOTS respe
tively. Wede�ne one module with type of interest Plots and another one with type of interest Plot, andwe use the s
heme PLOT to make the embedded obje
t P in the s
heme PLOTS. Completespe
i�
ations for both modules
an be found in Appendix C, page 197. Pre�xes GT and Drefers to the global obje
ts where the
orresponding types are de�ned.
ontext: GTs
heme PLOT =
lasstypePlot ::plot lo
ation : GT.Lo
ationsize : GT.Sizestarting : D.Datedays : Nat $
hg daysend
ontext: PLOTs
heme PLOTS =
lassobje
t P : PLOTtypePlots = GT.Plot id !m P.PlotendIn the previous se
tion, we proposed a solution to model a
tions applied to a
ow and to agroup of
ows, and we introdu
ed the de�nition of the type History as an ordered list of a
tionsof type Event. On the way to
ompleting the spe
i�
ation, we have to de
ide in whi
h modulewe should pla
e the types History and Event. In order to model any kind of events, we suggest

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 78the de�nition of a parameterised module HISTORY, with History as its type of interest andparameterised over the types Event info and Event kind de�ned in the s
heme EVENT INFO.The
ontext
lause of the module HISTORY
ontains the s
heme EVENT INFO and theglobal obje
t GT, whi
h is an instantiation of the s
heme GENERAL TYPES. Although notlisted in the
ontext
lause, the global obje
t D may be mentioned in quali�
ations be
ausewe have in
luded it in the
ontext
lause of the module GENERAL TYPES.s
heme EVENT INFO =
lasstypeEvent kind,Event infovaluekind of: Event info ! Event kindend
ontext: GT, EVENT INFOs
heme HISTORY(E: EVENT INFO) =
lasstypeEvent::date: D.Dateevent inf: E.Event info,History = fj h : Event� � is ordered(h) jgendThere is still one thing to do and it is to de�ne the two modules with whi
h EVENT INFOwill be later instantiated: one to model a
tions applied to a
ow and the other one to modela
tions applied to a group of
ows. Thus, we de�ne the s
heme COW EVENT, instantiatedas the global obje
t CE, to
ontain appropriate type de�nitions for ea
h a
tion that
ouldbe applied to an individual
ow, and the s
heme GROUP EVENT, instantiated as the globalobje
t GE, to in
lude appropriate type de�nitions for ea
h a
tion that
ould be applied to agroup of
ows. Complete spe
i�
ations for these new modules are in Appendix C, pages 192and 163.With the introdu
tion of these new modules, the �nal type de�nitions for the s
hemesCOW and COWS are as follows, where CH is a global obje
t de�ned as the instantiationHISTORY(CE), and K, GT, and D are the global obje
ts previously de�ned. GT and D maybe mentioned in the s
heme COW be
ause we in
luded them in the
ontext
lause of themodule CONSTANTS.
ontext: K, CHs
heme COW =
lasstypeCow::birthday: D.Date
ow
lassif: GT.Cow
lassif

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 79history: CH.Historyend
ontext: COWs
heme COWS =
lassobje
t C : COWtypeCows = GT.Cow id !m C.CowendFinally, to de�ne the top level module that will model the system state, we have to
onsider LEL subje
ts and obje
ts to see whi
h of them model a main domain
omponent.The LEL obje
t Dairy farm may be of help here as it enumerates the main
omponents ofour domain (dairy farmers,
ows, bulls, groups of
ows, and �elds). Besides, dairy farmer is asubje
t and usually subje
ts are relevant
omponents of the domain. Con
erning the obje
ts
ow, bull, �eld, and
ow group, as their
olle
tions were spe
i�ed using map expressions andthese expressions are not used in the de�nition of any other type, they are potentially maindomain
omponents. However, we do not
onsider the LEL obje
t Plot be
ause the mapmodelling its
olle
tion is used to de�ne a
omponent of the type Field. Then, followingthe heuristi
 HDM4 we de�ne the top level module, whi
h is
alled DAIRY FARM, with there
ord type Dairy farm as its type of interest. The s
hemes Cows, Cow groups, Bulls, Fieldsand Dairy farmers are instantiated as embedded obje
ts, and the
orresponding modules arelisted in the module
ontext. As the s
heme COWS needs to be shared between the s
hemesCOW GROUPS and DAIRY FARM, we make it a parameter of the s
heme COW GROUPS.
ontext: FIELDS, COW GROUPS, BULLS,DAIRY FARMERSs
heme DAIRY FARM =
lassobje
tCS: COWS,BS: BULLS,FS: FIELDS,CGS: COW GROUPS(CS),DFS: DAIRY FARMERStypeDairy farm::
ows: CS.Cowsbulls: BS.Bulls�elds: FS.Fieldsgroups: CGS.Cow groupsdairy farmers: DFS.Dairy farmerspast
ows: CS.CowsendAll the modules we have just de�ned
an be hierar
hi
ally organised to show the spe
i�-
ation module stru
ture. Figure 5.1 displays the diagram automati
ally generated using the

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 80

 DAIRY_FARM

 COW_GROUPS DAIRY_FARMERS

COW_GROUP COWS

COW

DAIRY_FARMER

GH

GE

CE

CH

COW_EVENT

GROUP_EVENT

BULLS FIELDS

BULL FIELD

PLOTS

PLOT

HISTORY

EVENT_INFO

K

CONSTANTS GT

GENERAL_TYPES

D

DATE Figure 5.1: Module Stru
ture of the Milk Produ
tion System RSL Spe
i�
ation

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 81Type id HDMid ModuleBull id HDM1 GENERAL TYPESBull HDM2 BULLBulls HDM3 BULLSCow id HDM1 GENERAL TYPESCow HDM2 COWCows HDM3 COWSGroup id HDM1 GENERAL TYPESCow group HDM2 COW GROUPCow groups HDM3 COW GROUPSDairy farmer id HDM1 GENERAL TYPESDairy farmer HDM2 DAIRY FARMERDairy farmers HDM3 DAIRY FARMERSDairy farm HDM4 DAIRY FARMField id HDM1 GENERAL TYPESField HDM2 FIELDFields HDM3 FIELDSPlot id HDM1 GENERAL TYPESPlot HDM2 PLOTPlots HDM3 PLOTSDate HDM1 GENERAL TYPESTable 5.7: Some types and the modules that
ontain themRAISE tools (Se
tion 3.3). Shadowed boxes
orrespond to obje
ts, while the others represents
hemes. The root of the Milk Produ
tion System hierar
hy of modules is the DAIRY FARMmodule, the top level one, the se
ond level
ontains the modules that de�ne ea
h one of the do-main
omponents, as for example COW GROUPS, FIELDS, BULLS, et
., and the remaininglevels in
lude the modules used to de�ne the upper ones, su
h as HISTORY, CONSTANTS,and DATE.The de�nition of this hierar
hy allowed us to pla
e many of the types originated in theprevious se
tion, in the di�erent modules of the hierar
hy. Moreover, many of the modulesexist to isolate a type of interest. Table 5.7 shows some of the types we are quite sure willremain in the modules indi
ated. However, there are many types we are still not sure inwhi
h module to store. As they will be used as arguments or results of fun
tions, it would bene
essary to model �rst the fun
tions in order to de
ide where to pla
e them.5.4.3 Deriving the fun
tionsFrom the 32 s
enarios listed in Table 5.3 we
an identify 29 top level fun
tions, as three ofthe s
enarios (Che
k ration distribution, Compute pasture eaten and Register heat) are onlysub-s
enarios listed in the episodes of other s
enarios. This is not the
ase for s
enarios su
has Assign a
ow to a group and De�ne
ow type. Though they appear as an episode in somes
enarios, and thus they are sub-s
enarios, they also model independent domain situations.Ea
h of these 29 s
enarios
omes from a behavioural response of the unique subje
t in thedomain: the dairy farmer (HTF1).Observing s
enarios will always motivate the de�nition of an observer fun
tion. However,as we have mentioned in Se
tion 4.3.1, some modifying s
enarios may be modelled withobserver fun
tions. So, before starting the de�nition of the signatures and bodies of thesetop level fun
tions and in order to know whi
h of the heuristi
s to apply, we analysed the list

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 82of modifying s
enarios to determine that the s
enarios Compute next birth date, Computedairy farm individual produ
tion, Compute milking
ow individual produ
tion, and Computegroup individual produ
tion will be modelled with observer fun
tions be
ause the informationthey store
an always be
omputed. Then, in the beginning, the module DAIRY FARM willin
lude the de�nition of 24 generator fun
tions and �ve observer ones, one
oming from thes
enario Compute ration,
lassi�ed at �rst as observing, and the remaining four
oming fromthe s
enarios we have just mentioned (HTF2.1, HTF2.2).Tables 5.8 and 5.9
ontains the informal de�nition for these �rst 29 top level fun
tions aswell as the signature of ea
h fun
tion spe
i�ed in RSL. We also in
lude the title of the s
enariomotivating the de�nition of ea
h fun
tion, and the heuristi
s applied in ea
h
ase are listed.We want to explain that for the four modifying s
enarios we have just de
ided to model withobserver fun
tions, we will apply the heuristi
s
orresponding to observing s
enarios.All these top level fun
tions are de�ned in the system module, the DAIRY FARM mod-ule. This module
ontains the
omplete de�nition (signature and body) for ea
h of them(Appendix C, page 138). As we suggested in Se
tion 4.3.2, the body of these fun
tions
on-tain a
all to one or more fun
tions in se
ond level modules. Ea
h of these
alls motivates thede�nition of new fun
tions in the
orresponding modules. Besides, for almost all partial fun
-tions we modelled pre
onditions as a
all to another top level fun
tion, whi
h in turn
alls the
orresponding lower level ones. We will use the top level fun
tion va

inate
ow to exemplifythe way we pro
eed to de�ne the rest of the fun
tions. The
omplete RSL spe
i�
ation forthis fun
tion isvalue
an re
eive va

: GT.Cow id � D.Date � GT.Va

ine � Dairy farm ! Bool
an re
eive va

(
i, d, va

, df) �CS.
an re
eive va

(
i, d, va

,
ows(df)),va

inate
ow: GT.Cow id � D.Date � GT.Va

ine � Dairy farm �! Dairy farmva

inate
ow(
i, d, va

, df) �
hg
ows(CS.va

inate
ow(
i, d, va

,
ows(df)), df)pre
an re
eive va

(
i, d, va

, df)The signature of the fun
tion was obtained by analysing the fun
tion informal de�nitiontaken from the
orresponding s
enario. We use Cow id as argument be
ause the LEL obje
tCow is an argument whose
olle
tion was modelled with the map Cows. The date and theva

ine are repla
ed by the
orresponding types, but the Va

ination form is apparently notused. The reason is that when deriving the types we de
ided to model all the a
tions appliedto
ows as part of the type Cow (Se
tion 5.4.1). The set of
ows was modelled with a map,and this map is one of the
omponents of the dairy farm state. This is why we use the typeDairy farm as an argument. As we had already mentioned, the pre
onditions of this partialfun
tion are modelled with a
all to the fun
tion
an re
eive va

 also de�ned in the top levelmodule. The bodies of these two fun
tions
ontain a
all to lower level fun
tions. In both
ases, the
all is to a fun
tion de�ned in the module COWS, be
ause the aim of the fun
tion isto register the va

ination of an individual
ow and we modelled ea
h
ow as an element of themap Cows. The informal de�nition of the top level fun
tion
ould be of help to de
ide whereto make the
all, depending on the domain
omponent the fun
tion needs to modify/a

ess.

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 83TOP LEVEL FUNCTIONS SIGNATURE HTFidAssign a group to a
ow HTF2.1assign group to
ow:
ow � date �
urrent groups � group form ! group form HTF3.1assign group to
ow: GT.Cow id � D.Date � Dairy farm �!Dairy farm HTF4Breed arti�
ially HTF2.1breed artif:
alf � date � quantity of milk repla
ement � quantity of balan
ed food �arti�
ial breeding form ! arti�
ial breeding form HTF3.1breed artif: GT.Cow id � D.Date � GT.Litres � GT.Balan
ed � Dairy farm�!Dairy farm HTF4Buy a bull HTF2.1buy bull: bull � date of pur
hase � bull birth date � �eld � bull features � list of bulls! list of bulls HTF3.1buy bull: GT.Bull id � D.Date � D.Date � GT.Field id � GT.Features � Dairy farm�!Dairy farm HTF4Compute next birth date HTF2.2next birth date:
ow � Insemination form ! date HTF3.2next birth date: GT.Cow id � D.Date � Dairy farm �! D.Date HTF4Compute dairy farm individual produ
tion HTF2.2d farm indiv prod: period � Milking form ! Individual produ
tion HTF3.2d farm indiv prod: D.Period � Dairy farm �! GT.Indiv prod HTF4Compute milking
ow individual produ
tion HTF2.2
ow indiv prod: dairy
ow � period � Milking form ! Individual produ
tion HTF3.2
ow indiv prod: GT.Cow id � D.Period � Dairy farm �! GT.Indiv prod HTF4Compute group individual produ
tion HTF2.2group indiv prod: group � period � Milking form � Group form ! Individual produ
-tion HTF3.2group indiv prod: GT.Group id � D.Period � Dairy farm �! GT.Indiv prod HTF4Compute ration HTF2.2
ompute ration: group � weight of average
ow in group ! ration HTF3.2
ompute ration: GT.Group id � Dairy farm �! GT.Quantity HTF4De�ne
alf group HTF2.1de�ne
alf group:
alves minimum age �
alves maximum age �
urrent groups !
urrent groups HTF3.1de�ne
alf group: Nat � Nat � Dairy farm �!Dairy farm HTF4De�ne
ow type HTF2.1de�ne
ow
lassif:
ow !
ow HTF3.1de�ne
ow
lassif: GT.Cow id � D.Date � Dairy farm �!Dairy farm HTF4De�ne plot HTF2.1de�ne plot: group � �eld ! �eld HTF3.1de�ne plot: GT.Group id � GT.Field id � Dairy farm �!Dairy farm HTF4Dis
ard a bull HTF2.1dis
ard bull: bull � date � dis
ard
auses � list of bulls ! list of bulls HTF3.1dis
ard bull: GT.Bull id � D.Date � GT.Dis
ard
ause � Dairy farm �! Dairy farm HTF4Dry dairy
ow HTF2.1dry
ow:
ow � date � drying
auses � dis
ard form ! dis
ard form HTF3.1dry
ow: GT.Cow id � D.Date � GT.Dried
ause � Dairy farm �!Dairy farm HTF4Feed a group HTF2.1feed group: group � date � quantity of
orn silage � quantity of hay HTF3.2� quantity of
on
entrated food � feeding form ! feeding formfeed group: GT.Group id � D.Date � GT.Corn sil � GT.Hay HTF4� GT.Con
 � Dairy farm �! Dairy farmHandle
ow death HTF2.1save
ow death:
ow � date �
auses of death � List of
ows � List of
alves in
alfrearing unit � Dead
ows form ! list of
ows � dead
ows form HTF3.1save
ow death: GT.Cow id � D.Date � GT.Death
ause � Dairy farm �!Dairy farm HTF4Table 5.8: De�nition of top level fun
tions

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 84
TOP LEVEL FUNCTIONS SIGNATURE HTFidInseminate arti�
ially HTF2.1insem
ow artif:
ow � date � method � insemination form ! insemination form HTF3.1insem
ow artif: GT.Cow id � D.Date � GT.Artif info � Dairy farm �!Dairy farm HTF4Inseminate naturally HTF2.1insem
ow natural:
ow � date � bull � insemination form ! insemination form HTF3.1insem
ow natural: GT.Cow id � D.Date � GT.Bull id � Dairy farm �!Dairy farm HTF4Manage birth HTF2.1give birth:
ow �
alf � date of birth � birth form � set of
ows ! birth form � set of
ows HTF3.1give birth: GT.Cow id � GT.Calf sex � D.Date � Dairy farm �!Dairy farm HTF4Re
ord
ow deparasitation HTF2.1deparasite
ow:
ow � date � substan
e � dose � deparasitation form! deparasitationform HTF3.1deparasite
ow: GT.Cow id � D.Date � GT.Dep inf � Dairy farm �!Dairy farm HTF4Re
ord milking HTF2.1milk
ow:
ow � date � litres of milk � milking form ! milking form HTF3.1milk
ow: GT.Cow id � D.Date � GT.Litres � Dairy farm �!Dairy farm HTF4Re
ord
ow weight HTF2.1weigh
ow:
ow � date � weight � weight form ! weight form HTF3.1weigh
ow: GT.Cow id � D.Date � GT.Weight � Dairy farm �!Dairy farm HTF4Re
ord
ows on heat dete
tion HTF2.1dete
t heat: group � date � times � list of
ows on heat � group form ! group form HTF3.1dete
t heat: GT.Group id � D.Date � (GT.Cow id � Bool)� � Dairy farm �!Dairy farm HTF4Register pregnan
y test HTF2.1dete
t pregnant
ow:
ow � date � test � insemination form ! insemination form HTF3.1dete
t pregnant group: GT.Cow id � D.Date � Bool � Dairy farm �! Dairy farm HTF4Sele
t a
alf group HTF2.1sele
t
alf group:
alf � list of groups ! group HTF3.1sele
t
alf group: GT.Cow id � D.Date � Dairy farm �! GT.Group id � Dairy farm HTF4Sell
ow HTF2.1sell
ow:
ow � date � set of
ows � sale form ! set of
ows � sale form HTF3.1sell
ow: GT.Cow id � D.Date � Dairy farm �! Dairy farm HTF4Send
alf to the
alf rearing unit HTF2.1send
alf to
ru:
alf � date �
alf rearing unit set of
alves !
alf rearing unit set of
alves HTF3.1send
alf to
ru: GT.Cow id � D.Date � Dairy farm �! Dairy farm HTF4Send out to pasture HTF2.1send to pasture: group � date � period � plot �group form ! group form HTF3.1send to pasture: GT.Group id � D.Date � � Nat � GT.Plot id � GT.Field id �Dairy farm �! Dairy farm HTF4Take
alf out the
alf rearing unit HTF2.1take
alf out
ru:
alf � date �
alf rearing unit set of
alves !
alf rearing unit set of
alves HTF3.1take
alf out
ru: GT.Cow id � D.Date � Dairy farm �! Dairy farm HTF4Va

inate
ow HTF2.1va

inate
ow:
ow � date � va

ine � va

ination form ! va

ination form HTF3.1va

inate
ow: GT.Cow id � D.Date � GT.Va

ine � Dairy farm �! Dairy farm HTF4Table 5.9: De�nition of top level fun
tions

5.4 The derivation of the RSL spe
i�
ation using our te
hnique 85To de�ne these lower level fun
tions we pro
eed as we explained in Se
tion 4.3.3. Thesignature of the fun
tions a
ross the di�erent levels only
hange in the identifying parame-ters. Fun
tions va

inate
ow and
an re
eive va

 need to a

ess and modify an individual
ow, so
onsidering the set of
ows in a dairy farm were modelled with a map, the identi-fying parameters would be in both
ases Cow id and Cows, the map domain and the maprespe
tively. The rest of the arguments remain the same. Con
erning the result type of thefun
tion va

inate
ow (it is a generator fun
tion), we use the map Cows as it
ontains thedomain
omponent to be modi�ed. The bodies of these se
ond level fun
tions will
ontain a
all to a fun
tion de�ned in a lower level module, in this
ase the module COW, the one thatmanipulates ea
h individual
ow. We in
lude below the RSL spe
i�
ation for all these lowerlevel fun
tions.In the module COWS (instantiated as the obje
t CS in DAIRY FARM)value
an re
eive va

 : GT.Cow id � D.Date � GT.Va

ine � Cows ! Bool
an re
eive va

(
i, d, va

,
s) �
i 2
s ^ C.
an re
eive va

(d, va

,
s(
i)),va

inate
ow: GT.Cow id � D.Date � GT.Va

ine � Cows �! Cowsva

inate
ow(
i, d, va

,
s) �
s y [
i 7! C.va

inate
ow(d, va

,
s(
i)) ℄pre
an re
eive va

(
i, d, va

,
s)In the module COW (instantiated as the obje
t C in COWS)value
an re
eive va

 : D.Date � GT.Va

ine � Cow ! Bool
an re
eive va

(d, va

,
) � ...,va

inate
ow: D.Date � GT.Va

ine � Cow �! Cowva

inate
ow(d, va

,
) �
hg history(CH.add event(d, CE.va

ination(va

), history(
)),
)pre
an re
eive va

(d, va

,
)When de�ning top level fun
tions, it may be possible to determine in whi
h module tostore some of the types derived during the Derivation of Types step and whi
h
ould not bepre
isely lo
ated when de�ning the modules, as we mentioned in Se
tion 5.4.2. For example,from the de�nition above we
an see the type Va

ine must be a

esible from at least twomodules, the module DAIRY FARM and the module COWS. For this reason, we store it inthe module GENERAL TYPES. Making a similar analysis, we
ould determine that somemany other types su
h as Corn sil, Hay, Con
, and Death
ause should be also be de�ned inthe GENERAL TYPES modules.There is another point we would like to
omment. In addition to the 29 top level fun
tions
oming from heuristi
 HTF1, and the fun
tions modelling their
orresponding pre
onditionsthe module DAIRY FARM
ontains some other de�nitions of fun
tions. For example, a

ord-ing to heuristi
 HDT1.2 we do not store what
an be
omputed. Then, we should in
ludethe fun
tion �eld he
tare loading to
al
ulate the he
tare loading of a �eld, as this propertywas not modelled as a
omponent of the type Field (Table 5.6). Besides, there are somemany other fun
tions not derived from the heuristi
s but in
luded later to
he
k
onsisten
y
onditions.

5.5 The ar
hite
ture of the Milk Produ
tion System RSL spe
i�
ation 865.5 The ar
hite
ture of the Milk Produ
tion SystemRSL spe
i�
ationThe RSL spe
i�
ation derived in the previous se
tion represents the a
tivities that o

ur ina dairy farm. This spe
i�
ation is in an appli
ative sequential style. Figure 5.2 displayshow this spe
i�
ation
an be stru
tured in layers using the Layers Pattern (Se
tion 4.2.3).Shadowed boxes represent global obje
ts while the others represent s
hemes.Although global obje
ts
ould be avoided, we de
ided to use them in some
ases in orderto avoid having modules with many parameters. For example, as the operations applied to
ows and groups of
ows were basi
ally the same, we de
ided to provide a general solutionand then we had to de�ne the global obje
ts CE, CH, GE and GH as we showed in Figure 5.1.These obje
ts were pla
ed in the spe
i�
 layer.The spe
i�
 layer in
ludes s
hemes and global obje
ts that are spe
i�
 to a dairy farmappli
ation. For example, the s
hemes COWS, COW, and COW EVENT
ontain the spe
i�
operations applied to
ows that belong to a dairy farm while the s
hemes COW GROUPS,COW GROUP, and GROUP EVENT spe
ify the parti
ular way in whi
h
ows are grouped ina dairy farm. S
hemes su
h as BULLS and FIELDS are de�ned in the general layer be
ausethey are
ommon to di�erent appli
ations within the agri
ultural systems infrastru
ture.Although the s
heme GENERAL TYPES and its
orresponding global obje
t GT may seemto be appli
ation-spe
i�
, as they
ontain the de�nition of most of the types used in thespe
i�
ation, we pla
ed them in the general layer be
ause they must be a

essible not onlyfrom modules in the spe
i�
 layer but also from modules in the general layer itself. Thes
hemes that appear in the middleware layer
an be used in any domain. HISTORY spe
i�esa list of events ordered by date, EVENT INFO de�nes the individual elements to be in
ludedin the list, and DATE and its
orresponding global obje
t D
ontain de�nitions of types andfun
tions related to dates and periods of time.5.6 Con
lusions from the
ase study developedWe have presented the derivation of a spe
i�
ation in RSL for a Milk Produ
tion System, byapplying the te
hnique we proposed in Chapter 4. There are several issues that arose whilederiving the spe
i�
ation from the LEL and the s
enarios.5.6.1 AmbiguityNatural language is suited to validation with stakeholders. But its expressiveness and
ex-ibility mean that natural language des
riptions are open to misinterpretation, i.e.
an beambiguous. Their synta
ti

exibility also make them hard to pro
ess by automati
 tools.However, some of the problems found in the derivation, and asso
iated with natural lan-guage
exibility,
ould be over
ome if stronger standards or guidelines were imposed on theway of des
ribing LEL terms and s
enarios. Even though they have a pre
ise stru
ture and itis established what to write in their
omponents, the same semanti
s may be usually expressedwith many di�erent natural language senten
es. We think in some
ases would be possibleto de�ne a standard form, without restri
ting the power of expression of natural language.When writing the LEL for the Milk Produ
tion System domain, we followed some informalrules to des
ribe similar features in di�erent terms. For example, we use a
onsistent natural

5.6 Con
lusions from the
ase study developed 87

 DAIRY_FARM

 COW_GROUPS DAIRY_FARMERS

COW_GROUP COWS

COW

DAIRY_FARMER

GH

GE

CE

CH

COW_EVENT

GROUP_EVENT

BULLS FIELDS

BULL FIELD

PLOTS

PLOT

HISTORY

EVENT_INFO
 Middleware Layer

 General Layer

Specific Layer

K

CONSTANTS

GT

GENERAL_TYPES

D

DATE Figure 5.2: Ar
hite
ture of the Milk Produ
tion System RSL Spe
i�
ation

5.6 Con
lusions from the
ase study developed 88language stru
ture to express a
omponent of a term: \An x has a y". Other LELs have usedother stru
tures, like just mentioning \Published by a publisher" without stating \A bookhas a publisher". But, a deeper analysis should be
arried out.The de
ision about whi
h restri
tions or stru
ture to impose to natural language should bevery
arefully taken. The use of a restri
ted or
ontrolled natural language, de�ned as a subsetof natural language, may simplify natural language
omputational pro
essing, and as it is stillnatural language, stakeholders
an understand it
orre
tly. Some of the disadvantages of thissolution may be the redu
tion of the expressive power of natural language, and the trainingpeople involved will need in order to use this
ontrolled language
orre
tly. Some people havegone mu
h further in this dire
tion, e.g. [9, 40℄. The risk is that when introdu
ing
onstraintsto natural language one �nishes de�ning something similar to a new formal language. Thisnew language will have a new meaning and thus stakeholders will not be able to interpretit
orre
tly. In addition, if there is a need to use a formal language it would be possible to
hoose one from the formal languages available nowadays, or dire
tly use mathemati
s.Sub-s
enarios may be used when
ommon behaviour is dete
ted in several s
enarios. Weshowed in Table 2.8, Se
tion 2.2, that two sub-s
enarios appeared as episodes of the s
enarioManage birth. We
ould not �nd proper rules for relating subje
ts or obje
ts mentioned in theepisodes of a s
enario, to the s
enario resour
es and a
tors. Moreover, the general heuristi
sto write s
enarios presented in [30℄ suggest not in
luding the resour
es and a
tors of a sub-s
enario when des
ribing the main s
enario. In the s
enario Manage birth, for example, thein
lusion of the sub-s
enario ASSIGN A GROUP TO A COW hides the fa
t that the obje
tCow is the one involved. Without the de�nition of the sub-s
enario this would not havehappened, be
ause from the episodes it would have been
lear enough that the group shouldbe assigned to the Cow and not to the Calf.5.6.2 CompletenessA LEL's main goal is to des
ribe the appli
ation domain language, and the prin
iples of
ir-
ularity and of minimal vo
abulary are suggested as ways of a
hieving this goal. However, animportant point is determining where domain language ends, i.e. whi
h terms must and mustnot be in
luded in the LEL. We think there is no absolute de�nition be
ause although someagreement
an be rea
hed about spe
i�
 terms, su
h as dairy
ow, milking, and va

inationfrom our
ase study, the in
lusion of others may depend on what the software engineer who iswriting the LEL
onsiders in or out the domain language. We show an example in Se
tion 4.1.2involving the words Size and Lo
ation, whi
h were not in
luded in the LEL. This might bebe
ause they were omitted, in whi
h
ase it would be ne
essary to return to the LEL to de�nethem. But this omission might be also justi�ed saying that they are \basi
" words not worthde�ning. It is true that their meaning may be more or less
lear to almost everybody, andthis kind of situation gives rise to another problem whi
h are unspoken assumptions. Domainexperts do not explain some things assuming software engineers know them, and on the otherhand when software engineers
onstru
t models they take some de
isions assuming their un-derstanding of the terms
oin
ides with the domain experts understanding. The word Size,for example, appears in the Longman De�ning Vo
abulary [2℄. The entry of the word in thedi
tionary in
ludes several de�nitions with quite di�erent meanings. So, if its meaning in theappli
ation domain is not pre
isely stated, a software engineer may assume it represents themeasure of a �eld in he
tares, while for the domain expert it is any of a set of measures, su
has small, medium, or large.

5.6 Con
lusions from the
ase study developed 89The solutions to the problems explained above should be in some way
omplementary.Unspoken assumptions should be avoided in order to obtain a
omplete LEL, in whi
h anagreement on ea
h de�nition
ould be rea
hed by domain experts and software engineers. Inaddition, if the LEL is expe
ted to be the input to a next software development step, su
has the spe
i�
ation phase in our proposal, it should be as
omplete as possible. However, adetailed LEL implies a big e�ort not only in the
onstru
tion pro
ess but also in its mainte-nan
e. This is even worse when the domain is well-known, be
ause people will �nd it tediousto write and maintain de�nitions of
on
epts that are supposed to be well understood.How to balan
e details with unspoken assumptions is an issue diÆ
ult to solve.Con
erning the LEL for our
ase study, we should say that it may appear more detailedthan others, and thus the e�ort to develop it was quite
onsiderable. The most importantreason is that, as it is not a
onventional domain, it was ne
essary to in
lude all the informationavailable. In addition, as we knew it would be an important resour
e for the derivation step,we tried to make it as
omplete as possible.5.6.3 Maintenan
eDo
umentation maintenan
e is a problem in any software development proje
t.The spe
i�
ation should be
onsistent with the des
ription the LEL and s
enarios provideabout the domain. It is
ommon to dete
t errors or omissions when deriving and re�ning thespe
i�
ation, or even when writing the s
enarios. This implies returning to the LEL or thes
enarios to
hange what was wrong or to add what was missing.Without the appropriate tools support, this pro
ess is very tedious and time
onsuming,and thus, the size of the LEL and the number of the s
enarios are again a
riti
al point.5.6.4 Domain analysis/Requirements analysisA

ording to the Requirements Baseline [30, 32℄ approa
h, the LEL aims at des
ribing theappli
ation domain language, and the s
enarios des
ribe spe
i�
 appli
ation domain situa-tions, a

ording to the main a
tions performed outside the software system. Thus, s
enarios
an be used to des
ribe, with the required level of detail, any situation in the appli
ationdomain. For example, in our
ase study it would be possible to write a s
enario
alled Milk amilking
ow, enumerating in the episodes all the a
tivities performed by a dairy farmer, su
has taking the milk from the milking
ow, putting the milk in a
ontainer, measuring the litresextra
ted and re
ording this information.The initial spe
i�
ation represents a mapping from real-world
on
epts onto RSL
on-stru
tions. Before writing this spe
i�
ation it should be de
ided the kind of system that willbe �nally implemented. In our
ase study, we de
ided to model an information system insteadof a
ontrol one. This means that, for example, the system we modelled does not milk
ows,it only re
ords the information related to this a
tivity.As we have previously explained, our goal is the de�nition of a set of heuristi
s to derivean initial spe
i�
ation from the LEL and the s
enarios. When
onstru
ting the LEL we takeinto
onsideration all the information that
ould be re
overed from the appli
ation domain.However, as s
enarios would be the main sour
e to de�ne the fun
tions in the spe
i�
ation, we�ltered the information
oming from the LEL to in
lude in the s
enarios only those situationsthat
ould be modelled in the spe
i�
ation of an information system. So, most of the s
enarioswhi
h des
ribe the re
ording of information are quite similar and trivial, and they may look

5.6 Con
lusions from the
ase study developed 90like use-
ases [24℄. The way in whi
h ea
h s
enario was de�ned, following the stru
tureproposed in [30℄ that distinguishes a
tors, resour
es, initial states, et
., turned out to beuseful in the spe
i�
ation of the fun
tions.The LEL and s
enarios for our
ase study are
loser to domain analysis than to require-ments analysis. They represent how things a
tually o

ur in a Milk Produ
tion System.Requirements analysis will show the need for new fun
tions, for example to
arry out sta-tisti
al analysis of the data, or many other spe
i�
 system requirements not
overed in ouranalysis su
h as the ones related to hardware, users, a

ess rights, and ba
kups.

Chapter 6Validating the RSL spe
i�
ationThere are two aspe
ts to showing
orre
tness that are
ommonly distinguished [22℄:� Validation, whi
h is the
he
k that we are
reating what is required, and it
an beexpressed as the
he
k that we are \solving the right problem". It is ne
essarily informal,as the
he
k is against requirements written in natural language.� Veri�
ation, that
onsists in
he
king, with varying degrees of formality, the devel-opment pro
ess is
orre
t. It
an be expressed as the
he
k that we are \solving theproblem right".The aim of validating the RSL spe
i�
ation is to
he
k that we have written the rightspe
i�
ation, i.e. that we have met the requirements. As we try to make the initial spe
i�
ationa
ontra
t between software engineers and stakeholders, the validation of the spe
i�
ationturns to be a very important step. Dis
overing and �xing requirements problems
an help toredu
e the amount of rework to do be
ause of mistakes in the initial spe
i�
ation. To validatea spe
i�
ation we must look outside it, at the requirements. But as usually requirementsare written in natural language, validation
annot be formalised and so there is no way todemonstrate that a requirements spe
i�
ation is
orre
t. The validation pro
ess
an onlyin
rease stakeholders'
on�den
e that the initial spe
i�
ation represents a
lear des
ription ofthe system for design and implementation [45℄.Veri�
ation is
on
erned with
he
king the �nal implementation
onforms to the initialspe
i�
ation. As it assumes the
orre
tness of the initial spe
i�
ation, it must be done aftervalidation.Together, validation and veri�
ation help assure we are \writing the right spe
i�
ationright". Validation needs requirements tra
eability, in order to relate them to where they aremet either in the initial spe
i�
ation or in a later development. On
e we are sure a requirementhas been
aptured, we use veri�
ation to
ontrol it remains
aptured.In this
hapter we brie
y des
ribe some te
hniques proposed in [20℄ to validate an ini-tial spe
i�
ation in RSL, and then we present the approa
h we adopt to validate the RSLspe
i�
ation obtained by applying the te
hnique we proposed in Chapter 4.6.1 Te
hniques to validate a RSL spe
i�
ationThere are a number of te
hniques to validate a spe
i�
ation in RSL [20℄. The main te
hniquein validation is to
he
k that ea
h requirement is met. After writing the initial spe
i�
ation,

6.1 Te
hniques to validate a RSL spe
i�
ation 92we go ba
k to the requirements to determine, for ea
h issue that we
an �nd, one of thefollowing:� It is met.� It is not met, and so we will have to
hange the spe
i�
ation.� It is not met be
ause, for some reason, we think it is not a good idea and so we need todis
uss with the
ustomers.� It is deferred to later in development, and so we add it to a list of the requirementsagainst whi
h later development steps will be validated. This applies to non-fun
tionalrequirements and to things that we have not yet designed, as for example aspe
ts ofuser interfa
e or parti
ular algorithms to be used.The rest of the validation te
hniques mentioned are the following:� Read the spe
i�
ation to look for properties it will have and whi
h are not mentionedin the requirements.It is typi
al that
ustomers omit to mention issues that seem too obvious to them, as forexample if a data stru
ture should be initialised, and if so to what. As a
onsequen
es
enarios, or use
ases, often la
k essential but, to the
ustomer, obvious things. Then,it would be ne
essary to set up a formal pro
edure of queries to
ustomers and theiranswers being do
umented.� Develop system tests (test
ases and expe
ted results)This may help to
larify the requirements, as it is a way of revealing problems su
h asin
ompleteness and ambiguity. Besides, the tests
an be shown to the stakeholders whowill usually �nd them easier to read than the formal spe
i�
ation.� Rewrite the requirements from the spe
i�
ationAlthough it is an expensive task, it generally helps one obtain requirements do
umentsthar are
learer, better stru
tured, more
on
ise, and more
omplete than the originals.� Prototype all or parts of the system.By trying out the system prototype stakeholders will see if it meets their real needs,and then, they
an make suggestions for improvements. One possibility is to do a qui
kand simpli�ed re�nement of the abstra
t types in the spe
i�
ation, and then use thetranslators to SML [49℄ or C++ [3℄. These tranlators are part of the RAISE tools [19℄,and they allow one to run test
ases in order to get a feeling of what the spe
i�
ationreally does.The appli
ation of any of the validation te
hniques mentioned above, provides early feed-ba
k to the stakeholders. This has the added advantage of
ommitting them to what has bedone so far. It also helps stakeholders understand the added
ost and danger of later require-ments
hanges. The aim is to make the initial spe
i�
ation a
ontra
t between the softwareengineers and the stakeholders.

6.2 Our approa
h to validate the spe
i�
ation 936.2 Our approa
h to validate the spe
i�
ationOur goal in validating the RSL spe
i�
ation obtained applying the te
hnique we proposed isto
he
k this spe
i�
ation meets the requirements modelled with LEL and s
enarios.Considering the validation te
hniques presented in the previous se
tion, we think a
om-bination of prototyping with system tests would help us to a
hieve our goal. The main reasonfor sele
ting these te
hniques is we
ould take advantage of the translators already imple-mented as part of the RAISE tools [19℄, su
h as the SML translator, thus minimising thedevelopment
osts for the prototype. The prototype obtained using the SML translator willnot only help us in
he
king the spe
i�
ation against LEL and s
enarios, but it may alsoassist in
larifying the real requirements for the system, as the stakeholders may parti
ipatein this validation task. Running the prototype with appropriate test
ases stakeholders may�nd easier to dis
over problems with poorly understood requirements, and then suggest howthe requirements may be improved.6.2.1 The SML Translator: a brief des
riptionRSL is a wide-spe
trum spe
i�
ation and design language. This means it
an be used to for-mulate initial, very abstra
t spe
i�
ations as well as to express low level designs suitable fortranslation to programming languages. Though RSL is more suitable for the abstra
t spe
-i�
ation of general problems, it provides a
omplete set of synta
ti
al primitives to des
ribe
on
rete implementations. It would be of help to have an RSL interpreter to run
on
retespe
i�
ations in order to get a feeling of what ea
h spe
i�
ation really does.As an answer to this issue it was proposed in [49℄ to use an existing runtime system, theStandard ML of New Jersey [1℄, to be the ba
k end. Standard ML of New Jersey is a
ompilerfor the Standard ML '97 (SML) programming language with asso
iated libraries, tools, anddo
umentation. SML [1℄ is a safe, modular, stri
t, fun
tional, polymorphi
 programminglanguage with
ompile-time type
he
king and type inferen
e, garbage
olle
tion, ex
eptionhandling, immutable data types and updatable referen
es, abstra
t data types, and parametri
modules. It has eÆ
ient implementations and a formal de�nition with a proof of soundness.The advantage of using this existing runtime system, instead of interpreting RSL dire
tly,is that it saves the time and eliminates the diÆ
ulties in implementing a runtime system, su
has instru
tion generation, and garbage
olle
tion, whi
h are not trivial. Although translatingthe fun
tional part of RSL into SML manually is not diÆ
ult, the RSL to SML translatoravoids the users to have to learn another programming language. Translation to SML ismainly intended for prototyping and testing.RSL has a very ri
h set of features but not all of them
an be translated into a fun
tionalprogramming language, like SML. RSL elements su
h as abstra
t types, axioms, post expres-sions, and impli
it values and impli
it fun
tions
annot be
urrently translated into SML. So,sometimes would be ne
essary to make some re�nements in order to get a
on
rete RSL spe
-i�
ation whi
h
ould be translated into SML. A
omplete des
ription of this translator
anbe found in [49℄, and as the rest of the RAISE tools it
an be downloaded from UNU/IIST'sweb site.

6.2 Our approa
h to validate the spe
i�
ation 946.2.2 Validating our spe
i�
ationThe initial spe
i�
ation derived applying the three step pro
ess we des
ribed in Chapter 4is an appli
ative one, i.e it is written in terms of de�nitions and appli
ations of fun
tions.Besides, it may have some abstra
t type and fun
tion de�nitions. So, to make use of the SMLtranslator, we did a qui
k and simpli�ed re�nement of the abstra
t types we found to obtaina
on
rete appli
ative version of the derived spe
i�
ation. For some of the types, as we didnot have enough information, we gave a temporary de�nition whi
h
ould be repla
ed laterby a more appropriate one. For example, for types su
h as Photo, Brand and Features wedid not have information, then we de�ned them of type Text, leaving for a later developmenttheir de�nitive spe
i�
ation.In addition, we de�ned an appropriate set of test
ases in order to run the spe
i�
ationwith them and
he
k if the spe
i�
ation does what was required. S
enarios may be of greathelp when designing appropriate test
ases. The goal of a s
enario
ontains the aim to berea
hed in the domain after performing the s
enario. Then, to validate ea
h fun
tion in thespe
i�
ation we suggest going to the s
enario that motivated its de�nition, and analysingthe goal to de�ne one or more test
ases. In addition, the s
enario
ontext may help tode�ne appropriate test
ases to
he
k partial fun
tions. In our
ase study, Tables 5.8 and 5.9
ontain for ea
h top level fun
tion derived applying the heuristi
s, the s
enario that
ausedits de�nition.Test
ases are always evaluated in order of de�nition, and this is parti
ularly useful forimperative spe
i�
ations with variables to store information [20℄. As the information storedas a result of one test
ase is available for the next one, it would be possible to test s
enariosstep-by-step by using a sequen
e of test
ases. To a
hieve this, we formulated a
on
reteimperative spe
i�
ation from the
on
rete appli
ative one.

Chapter 7Con
lusionsThe advantage of formal methods su
h as RAISE is they help to avoid requirements ambigui-ties and misinterpretations, and they provide a
orre
t software development pro
ess based onmathemati
al proofs. But, formal spe
i�
ations are usually only a

essible to formal methodsspe
ialists. This is parti
ularly in
onvenient during the �rst stages of the software develop-ment pro
ess, when the parti
ipation of stakeholders, unfamiliar with this kind of des
ription,is
ru
ial as the de�nition of
omplete and pre
ise requirements
annot be done without aninvolvment of the stakeholders, who are responsible for supplying information and validatingthe �nal requirements. Stakeholders' parti
ipation
an be guaranteed if natural language isused.Then, to
ontribute to bridge the gap between stakeholders and the formal methods world,we have presented a three-step pro
ess to derive an initial formal spe
i�
ation in RSL fromLEL and s
enarios, two natural language models belonging to the Requirements Baseline.On
e this initial spe
i�
ation is derived, the pro
ess may
ontinue with the steps proposed inthe RAISE Method. For example, the initial appli
ative and partially abstra
t spe
i�
ationderived
ould be developed into a
on
rete one to make use of the SML translator and, thus,obtain a qui
k prototype to validate the spe
i�
ation and get a feeling of what it really does.For ea
h step of the pro
ess we proposed, we de�ned a number of heuristi
s whi
h areguidelines about how to start with the de�nition of an initial spe
i�
ation, taking into a

ountthe stru
tured des
ription of a domain provided by LEL and s
enarios. The LEL providesstru
tural features of the relevant terms in the domain, thus limiting the de�nition of types tothose that
orrespond to signi�
ant terms. Using the behavioural des
ription represented inthe s
enarios, it is possible to identify the main fun
tionality to model in the spe
i�
ation. Inaddition, the stru
ture proposed in [30℄ to des
ribe ea
h s
enario makes simpler the derivationof fun
tion signatures. However, even though LEL and s
enarios have a pre
ise stru
ture and itis established what to write in their
omponents, the same semanti
s may be usually expressedwith many di�erent natural language senten
es. But, as we have explained in Se
tion 5.6 wethink some of the problems found in the derivation, and asso
iated with natural languageexpressiveness and
exibility,
ould be over
ome if stronger standards or guidelines wereimposed to the way of des
ribing LEL symbols and s
enarios.In order to validate our proposal, we applied the three-step pro
ess designed to a
omplete
ase study, the Milk Produ
tion System (Chapter 5). The experien
es gained during thisdevelopment helped us to
omplete, improve, and re�ne the heuristi
s proposed.

7.1 Main
ontributions 967.1 Main
ontributionsThe following are the main
ontributions of our work:� A te
hnique to be used in the �rst stages of development using the RAISE Method[20℄ and [22℄ illustrates how to spe
ify and develop systems using RAISE. When analysingdevelopments of RSL spe
i�
ations of di�erent domains, we found they start from in-formal des
riptions
ontaining synopsis, narrative, and terminology (Chapter 1). On
eobtained these informal des
riptions, in general, ea
h
ase followed its own approa
hto obtain the RSL spe
i�
ation, though of
ourse they all
onsidered the prin
iplesproposed in the RAISE Method.We proposed and de�ned a
on
rete and detailed three-step pro
ess that
ould be appliedin any domain, allowing to take pro�t of informal des
riptions and redu
ing the gapbetween them and the �nal RSL spe
i�
ation.� The possibility of using a layered ar
hite
ture for the spe
i�
ationThe three-step pro
ess we developed gives as result a set of modules hierar
hi
ally stru
-tured, aiming at in
reasing the maintainability and legibility of the spe
i�
ation. Thehierar
hy of RSL modules obtained
an be mapped onto a layered ar
hite
ture by de-s
ribing the stru
ture of modules using the Layers pattern. This ar
hite
ture is the basisto start applying the steps of the RAISE Method and provides the spe
i�
 properties allits developments should have. This means that, for example, any implementation or ex-tension development step should preserve the layers and the relationships among them.The use of a layered ar
hite
ture is parti
ularly useful when designing
omplex systems,be
ause it fa
ilitates and en
ourages not only reuse but also separate and step-wisedevelopment.� Fruitful use of the large amount of information usually available after problem analysisLEL and s
enarios provide a detailed des
ription of an appli
ation domain, and aswe have already mentioned, they are valuable for supporting
ommuni
ation amongsoftware engineers and stakeholders. But, an important point with them is how tofruitfully use all the information they
ontain along the software development pro
ess.By using the three-step pro
ess we proposed, the e�ort to de�ne
omplete requirementsmodels is worth doing be
ause, though partially, they
ould be later mapped onto aformal spe
i�
ation.� A
hievement of an exe
utable spe
i�
ation for a rapid prototyping of requirementsThe heuristi
s we de�ned followed
losely the prin
iples the RAISE Method proposes,so the initial spe
i�
ation derived
ould be later developed into a
on
rete one a

ordingto the steps provided by the RAISE Method. With a
on
rete spe
i�
ation the SMLtranslator
ould be used in order to have a qui
k prototype and get a feeling of whatthe spe
i�
ation really does. In Chapter 6, we exempli�ed how to a
hieve this by usingthe
ase study we sele
ted.� Tra
king of tra
eability relationships A signi�
ant fa
tor in quality software implemen-tation is the ability to tra
e the implementation through the stages of spe
i�
ation,

7.2 Future work 97ar
hite
ture, design, implementation, and testing [29℄. The tra
eability relationshipmay be de�ned in terms of a simple \tra
ed-to" and \tra
ed-from" model.The tables we presented in Chapter 5, may be
onsidered a �rst attempt to tra
k theserelationships. Though they
ontain the information in a \tra
ed-to" way (for example,they show how a LEL symbol is modelled with a type or a fun
tion), the \tra
ed-from"relationships
ould be added by in
luding appropriate
omments in the RSL spe
i�
ationderived. However, a more detailed and deeper analysis should be made be
ause tra
ingrelationships are not always one-to-one.7.2 Future workWe plan to improve the three-step pro
ess we proposed by re�ning and
ompleting the heuris-ti
s presented in this work, though obviously a
omplete automati
 derivation is by no meanspossible, as LEL and s
enarios
ontain all the ne
essary and unavoidable ambiguity of thereal world, while the spe
i�
ation
ontains de
isions about how to model this real world. Theanalysis of other
ase studies may help in this point.It would also be interesting to have a tool to assist in the derivation pro
ess. At present,there are two groups of students working in the development of two di�erent tools. Oneof the groups, is developing a web-based appli
ation that not only implements the three-step pro
ess we have proposed but also assists in the
onstru
tion of LEL and s
enarios.Extreme Programming (XP) [4℄ is the software development methodology sele
ted to guidethe
onstru
tion of the tool, and Java Server Pages (JSP) is used to separate the dynami
 partof the web pages from the stati
 HTML. Both tools
ould be later integrated with the RAISEtools in order to have assistan
e in the RSL spe
i�
ation
omplete development pro
ess.As we have mentioned in Se
tion 7.1, tra
king of tra
eability relationships is an importantissue that needs further analysis. The tool we have already mentioned may also in
ludeassistan
e to follow relationships that may exist between elements in the requirements modelsand the RSL spe
i�
ation, and vi
e versa.

Bibliography[1℄ Standard ML of New Jersey. http://www.smlnj.org/.[2℄ Longman Di
tionary of Contemporary English. Longman, 3rd edition, 1995.[3℄ U. Ahn and C. George. C++ Translator for RAISE Spe
i�
ation Language. Te
hni
alReport 220, United Nations University/International Institute for Software Te
hnology,Ma
au, November 2000.[4℄ K. Be
k. Extreme Programming Explained: Embra
e Change. Addison-Wesley, 2000.[5℄ D. Bjorner. Software Engineering: A New Approa
h. Le
ture notes, Te
hni
al Universityof Denmark, 2000.[6℄ D. Bjorner, C. George, and S. Prehn. Industrial-Strength Formal Methods in Pra
ti
e,
hapter "S
heduling and res
heduling of trains". Springer-Verlag, 1999.[7℄ B. Bryant and B. Lee. Two-Level Grammar as an Obje
t-Oriented Requirements Spe
i�-
ation Language. In Pro
eedings of the 35th Hawaii International Conferen
e on SystemS
ien
es, pages 1{10. IEEE Press, 2002.[8℄ B. R. Bryant. Obje
t-Oriented Natural Language Requirements Spe
i�
ation. In Pro-
eedings of ACSC 2000, 23rd Australasian Computer S
ien
e Conferen
e, pages 24{30,2000.[9℄ J.F.M Burg. Linguisti
 Instruments in Requirements Engineering. IOS Press, Nether-lands, 1997.[10℄ F. Bus
hman, Meunier R., H. Rohnert, P. Sommerlad, and M. Stal. Pattern-orientedSoftware Ar
hite
ture. John Wiley and Sons, 1996.[11℄ A. Dasso. A Course on Formal Methods using RAISE. Te
hni
al Report 114, UnitedNations University/International Institute for Software Te
hnology, Ma
au, June 1997.[12℄ L. De Bortoli. Estudo de Caso: Bibliote
a do Instituto de Informati
a da UniversidadeFederal do Rio Grande do Sul. Porto Alegre, Brasil, 1999.[13℄ M. Del Fresno, J. Doorn, C. Leonardi, V. Mau
o, M. Ridao, and L. Rivero. Modelo deEs
enarios y LEL para el Caso de Estudio del C��r
ulo Cerrado de Compra de un Au-tom�ovil. Work presented for the Course Requirements Engineering, Universidad Na
ionaldel Centro de la Provin
ia de Buenos Aires, Argentina, 1997.

BIBLIOGRAPHY 99[14℄ M. del Fresno, V. Mau
o, M. Ridao, J. Doorn, and L. Rivero. Deriva
i�on de ObjetosUtilizando LEL y Es
enarios en un Caso Real. In Pro
eedings of WER'98 - Workshopen Engenharia do Requisitos, pages 79{90, 1998. Maringa. Brazil.[15℄ W. Dzida and R. Freitag. Making Use of S
enarios for Validating Analysis and Design.IEEE Transa
tions on Software Engineering, 24(12):1182{1196, De
ember 1998.[16℄ N. Fu
hs, U. S
hwertel, and S. Torge. Controlled Natural Language
an Repla
e First-order Logi
. In Pro
eedings of IEEE Int.Conf. on Automated Software Engineering, 1999.[17℄ O. Gar
ia and C. Gentile. Es
enarios de la Constru

i�on de Es
enarios: Autoapli
a
i�onde la Metodolog��a. Tesis de grado, Universidad Na
ional del Centro de la Provin
ia deBuenos Aires, Argentina, 2000.[18℄ D. Garlan. Software Ar
hite
ture: a Roadmap. In The Future of Software Engineering.ACM Press, 2000.[19℄ C. George. RAISE Tools User Guide. Resear
h Report 227, UNU/IIST, Ma
au, February2001.[20℄ C. George. Introdu
tion to RAISE. Te
hni
al Report 249, United Nations Univer-sity/International Institute for Software Te
hnology, Ma
au, Mar
h 2002.[21℄ The RAISE Language Group. The RAISE Spe
i�
ation Language. BCS Pra
titionerSeries. Prenti
e Hall, 1992.[22℄ The RAISE Method Group. The RAISE Development Method. BCS Pra
titioner Series.Prenti
e Hall, 1995.[23℄ G. Hadad, G. Kaplan, and J. Leite. L�exi
o Extendido del Lenguaje y Es
enarios delMeeting S
heduler. Te
hni
al report, Universidad de Belgrano, Buenos Aires, Argentina,1998.[24℄ I. Ja
obson, G. Boo
h, and J. Rumbaugh. The Uni�ed Software Development Pro
ess.Addison-Wesley, 1999.[25℄ N. Juristo, A. Moreno, and M. Lopez. How to Use Linguisti
 Instruments for Obje
t-Oriented Analysis. IEEE Software, pages 80{89, May-June 2000.[26℄ B. Lee. Automated Conversion from a Requirements Do
umentation to an Exe
utableFormal Spe
i�
ation. In Pro
eedings of the 16th IEEE International Conferen
e on Au-tomated Software Engineering (ASE 2001), 2001.[27℄ B. Lee and B. Bryant. Automated Conversion from Requirements Do
umentation toan Obje
t-Oriented Formal Spe
i�
ation Language. In Pro
eedings of the 2002 ACMSymposium on Applied Computing, pages 932{936, 2002.[28℄ B. Lee and B. Bryant. Prototyping of Requirements Do
uments Written in NaturalLanguage. In Pro
eedings of SESEC 2002, the 2002 Southeastern Software EngineeringConferen
e, 2002.

BIBLIOGRAPHY 100[29℄ D. LeÆngwell and D. Widrig. Managing Software Requirements: A Uni�ed Approa
h.Addison-Wesley, 2000.[30℄ J. Leite, G. Hadad, J. Doorn, and G. Kaplan. A S
enario Constru
tion Pro
ess. Re-quirements Engineering Journal, 5(1):38{61, 2000. Springer-Verlag.[31℄ J. Leite and A. Oliveira. A Client Oriented Requirements Baseline. In Pro
eedings of theSe
ond IEEE International Symposium On Requirements Engineering, pages 108{115,1995.[32℄ J. Leite, G. Rossi, V. Maiorana, F. Balaguer, G. Kaplan, G. Hadad, and A. Oliveros.Enhan
ing a Requirements Baseline with S
enarios. Requirements Engineering Journal,2(4):184{198, 1997. Springer-Verlag.[33℄ C. Leonardi. Una Estrategia de Modelado Con
eptual de Objetos basada en Modelosde Requisitos en Lenguaje Natural. Master's thesis, Universidad Na
ional de La Plata,Argentina, November 2001.[34℄ C. Leonardi, V. Maiorana, and F. Balaguer. Una Estrategia de An�alisis Orientada aObjetos basada en Es
enarios. In A
tas II Jornadas de Ingenier��a de Software JIS '97,pages 87{100, Donostia, San Sebasti�an, Espa~na, 1997.[35℄ V. Mau
o and C. George. Using Requirements Engineering to Derive a Formal Spe
-i�
ation. Te
hni
al Report 223, United Nations University/International Institute forSoftware Te
hnology, Ma
au, De
ember 2000.[36℄ V. Mau
o, D. Ries
o, and C. George. Deriving the Types of a Formal Spe
i�
ation froma Client-Oriented Te
hnique. In Pro
eedings of the 2nd International Conferen
e onSoftware Engineering, Arti�
ial Intelligen
e, Networking and Parallel/Distributed Com-puting, pages 1{8, Japan, 2001.[37℄ V. Mau
o, D. Ries
o, and C. George. Heuristi
s to Stru
ture a Formal Spe
i�
ation inRSL from a Client-oriented Te
hnique. In Pro
eedings of the 1st Annual InternationalConferen
e on Computer and Information S
ien
e (ICIS 01), pages 323{330, U.S.A.,2001.[38℄ V. Mau
o, D. Ries
o, and C. George. Using a S
enario Model To Derive the Fun
tionsof a Formal Spe
i�
ation. In Pro
eedings of the 8th Asia-Pa
i�
 Software EngineeringConferen
e (APSEC 2001), IEEE Press, pages 329{332, Ma
ao, 2001.[39℄ V. Mau
o, D. Ries
o, and C. George. A Layered Ar
hite
ture for a Formal Spe
i�
ationin RSL. In Pro
eedings of the International Conferen
e on Computer S
ien
e, SoftwareEngineering, Information Te
hnology, e-Business and Appli
ations (CSITeA02), pages258{263, Brazil, 2002.[40℄ A. Moreno Capu
hino, Juristo N., and Van de Riet R.P. Formal justi�
ation in Obje
t-oriented Modelling: A Linguisti
 Approa
h. Data and Knowledge Engineering, 33(1):25{47, April 2000. Elsevier.[41℄ B. Nuseibeh and S. Easterbrook. Requirements Engineering: A Roadmap. In Pro
eedingsof the Conferen
e on The Future of Software Engineering, pages 35{46. ACM, 2000.

BIBLIOGRAPHY 101[42℄ Pak Jong Ok, Ri Hyon Sul, and C. George. A Management System for a UniversityLibrary. Te
hni
al Report 186, United Nations University/International Institute forSoftware Te
hnology, Ma
au, February 2000.[43℄ M. Patras and R. Moore. A Formal Model of an Agent-mediated Ele
troni
 Market.Te
hni
al Report 211, United Nations University/International Institute for SoftwareTe
hnology, Ma
au, August 2000.[44℄ I. Sommerville. Software Engineering. Addison-Wesley, 2001.[45℄ I. Sommerville and P. Sawyer. Requirements Engineering: A Good Pra
ti
e Guide. JohnWiley and Sons, 1998.[46℄ J. Tapamo. Domain Analysis of a System of Assessment of Natural Resour
e Usage.Te
hni
al Report 179, United Nations University/International Institute for SoftwareTe
hnology, Ma
au, November 1999.[47℄ A. van Lamsweerde. Formal Spe
i�
ation: a Roadmap. In Pro
eedings of the Conferen
eon The Future of Software Engineering, pages 147{159. ACM, 2000.[48℄ A. van Lamsweerde. Requirements Engineering in the Year 00: A Resear
h Perspe
tive.In Pro
eedings of the 22nd International Conferen
e on Software Engineering, pages 5{19.ACM, 2000.[49℄ K. Wei and C. George. RSL to SML Translator. Te
hni
al Report 208, United NationsUniversity/International Institute for Software Te
hnology, Ma
au, August 2000.[50℄ J. Wing. A Spe
i�er's Introdu
tion to Formal Methods. IEEE Computer, pages 8{24,September 1990.

Appendix AThe Lexi
on ViewARTIFICIAL BREEDING/BREED ARTIFICIALLYNotion� It is the breeding of a
alf away from its mother, in a pla
e
alled
alf rearing unit.� It is
arried out by a dairy farmer.Behavioural Response� It starts when a dairy farmer sends
alf to the
alf rearing unit.� Calf is fed with 4-5 litres of milk or milk repla
ement and at most 1 kg of balan
ed foodper day.� The quantity of milk repla
ement and balan
ed food given per day to ea
h
alf in the
alf rearing unit is saved in the Arti�
ial breeding form.� It �nishes when the dairy farmer takes
alf out the
alf rearing unit.ARTIFICIAL INSEMINATION/INSEMINATES ARTIFICIALLYNotion� Insemination without using a bull.� A dairy farmer puts sperm taken, from a bull, into the dairy
ow or heifer body.Behavioural Response� It is performed 12 hours after the dairy
ow or the heifer is dete
ted to be on heat.� Spe
i�
 information relative to the pro
edure is saved in the Insemination form.ASSIGNS TO A GROUP/ASSIGNED TO A GROUPNotion� A dairy farmer adds a
ow to a group.

103Behavioural Response� It is done daily.� A dairy farmer has a list of
urrent de�ned groups.� If the
ow is a post-birth
ow whi
h has a re
ent birth, or a milking
ow whose individualprodu
tion is at least 10 per
ent greater than the individual produ
tion of the dairy farm,group of type 1 is sele
ted.� If the
ow is a dairy
ow in group of type 1 and its last birth date is greater or equalthan 3 months, group of type 2 is sele
ted.� If the
ow is a dry
ow or a pregnant heifer whose next birth date is within 15-20 days,pre-birth
ow type group is sele
ted.� If the
ow is an early pregnant
ow in its seventh month of pregnan
y, dry
ow typegroup is sele
ted.� If the
ow is a dis
ard
ow, dis
ard
ow type group is sele
ted.� If the
ow is a
alf, a dairy farmer sele
ts a
alf group.� If the
ow is a heifer, heifer type group is sele
ted.� The arrival date for the new group and the identi�
ation number of the
ow are regis-tered.BALANCED FOOD/BALANCEDNotion� It is a mixture of
ereals given to
ows.Behavioural Response� It is measured in kilograms of dried feedstu�s.� The quantity given to ea
h
ow is registered.BE ON HEAT/ON HEAT/HEATNotion� A dairy
ow or a heifer is in a sexual
ondition ready for being inseminated.� It is dete
ted by a dairy farmer.Behavioural Response� It happens every 21 days.� The dairy
ow or heifer should not be pregnant.

104� Heat is registered.� The dairy
ow or heifer
an be inseminated.BIRTH/CALVING/GIVE BIRTHNotion� It is the
oming of a
alf out of a dairy
ow's or heifer's body.Behavioural Response� If a dairy
ow is involved, it should be a pre-birth
ow.� If a heifer is involved, it should be in the ninth month of pregnan
y.� The dairy farmer saves birth.BRANDNotion� Mark whi
h identi�es the dairy farm.Behavioural Response� It is stamped on
alves bodies with a hot pie
e of metal when they are in the
alf rearingunit.BULLNotion� Male in the dairy
ow family.� It has a name.� It has a date of birth.� It has a set of
hara
teristi
s.� It has a date of pur
hase.� It is in a �eld.Behavioural Response� It is used to inseminate naturally dairy
ow or heifer.� It may be dis
arded.BUYS BULLSNotion

105� The dairy farmer de
ides to add a new bull to the dairy farm.Behavioural Response� The bull is added to the set of bulls of the dairy farm and it is sent to a �eld.� The date of the transa
tion, the features of the bull, and its date of birth are registered.� The bull is ready to inseminate dairy
ows or heifers in the dairy farm.CALFNotion� It is a
ow of less than 12 months age.� Its mother is a dairy
ow.� It may be with its mother, in the
alf rearing unit or in a group of type
alf.� It may have a
urrent group.� It may be in a plot.� It weighs 40 kg at birth.� When it is 60 days, it weighs approximately 60 kg.� It may be male or female.Behavioural Response� If it is a male
alf, it
an be sold after birth.� After birth, it is kept with its dairy
ow mother from 1 to 5 days.� At most 5 days after birth, it is sent to the
alf rearing unit for arti�
ial breeding.� In the
alf rearing unit, it is tied to a stake for 45-60 days.� During the 45-60 days in the
alf rearing unit, it re
eives 4-5 litres of milk repla
ementor milk and up to 1 kg of balan
ed food per day.� When it is able to eat 1 kg of balan
ed food, the milk or repla
ement milk is suspendedand it is sent to a small plot to eat grass.� After leaving the
alf rearing unit, it is assigned to a group of type
alf.� It is given balan
ed food until it is 6 months age.� After leaving the
alf rearing unit, it is deparasited every 2 or 3 months.� When it is 3, 6, 9 and 12 months it re
eives va

ination with the triple va

ine.� If it is female, it has a photograph.

106� If it is female, it re
eives va

ination against bru
ellosis.CALF REARING UNITNotion� It is a pla
e where
alves of less than 60 days age are kept for arti�
ial breeding.� It has a set of
alves.Behavioural Response� Ea
h arrival or departure of a
alf is registered.COMPUTES BIRTH DATENotion� A dairy farmer
omputes the approximate next birth date for a dairy
ow or heifer.Behavioural Response� The dairy
ow or heifer should be pregnant.� 9 months are added to the last insemination date.� Computed date is saved.COMPUTES INDIVIDUAL PRODUCTIONNotion� The dairy farmer
al
ulates individual produ
tion of a dairy farm, a milking
ow or agroup.Behavioural Response� For a milking
ow, it is
omputed dividing the addition of the litres produ
ed in a periodinto the number of milking in the period.� For a group, it is
omputed dividing the addition of the litres produ
ed by the wholegroup in a period into the number of milking of the group in that period.� For a dairy farm, it is
omputed dividing the addition of the litres produ
ed by all themilking
ow in a period into the number of milking in that period.� The individual produ
tion
al
ulated is registered.COMPUTES PASTURE EATENNotion� A dairy farmer determines the quantity of pasture eaten by ea
h
ow in a group.

107Behavioural Response� It is
omputed as the di�eren
e between the ration a
ow should eat and the additionof
orn silage, hay,
on
entrated food the
ow is given.� The quantity
omputed, the date and the identi�
ation number of ea
h
ow in the groupare registered.COMPUTES RATIONNotion� A dairy farmer de�nes the total kilograms for the ration ea
h
ow in a group should begiven.Behavioural Response� If the type of the group is 1 or pre-birth
ow, the total kilograms are the 3,5 per
ent ofthe weight of an average dairy
ow in the group.� If the type of the group is 2, the total kilograms are the 3 per
ent of the weight of anaverage dairy
ow in the group.� If the type of the group is dry
ow or dis
ard
ow, the total kilograms are the 2 per
entof the weight of an average dairy
ow in the group.� If the type of the group is heifer, the total kilograms are the 3 per
ent of the weight ofan average heifer in the group.� If the type of the group is
alf and group range of ages are between 2 and 4 months, thetotal kilograms are the 2.2 per
ent of the weight of an average
alf in the group.� If the type of the group is
alf and group range of ages starts from 4 months or more,the total kilograms are the 2.5 per
ent of the weight of an average
alf in the group.� The total kilograms of the ration and the date for ea
h
ow in the group are registered.CONCENTRATED FOOD/CONCENTRATEDNotion� It is a mixture of grains (
orn, barley, wheat) or balan
ed food given to
ows as food.Behavioural Response� It is measured in kilograms of dried feedstu�s.� The quantity given to ea
h
ow is registered.CONTROLS WEIGHTNotion

108� A dairy farmer
ompares the
urrent weight of a
ow to the expe
ted weight, to deter-mine if it is a

ording to standards.Behavioural Response� If the
ow is a just
alf, the weight should be nearly 40 kgs.� If the
ow is a 60 days old
alf, the weight should be nearly 60 kgs.� If the
ow is a 15 months old heifer, the weight should be nearly 350 kgs.� If the
ow is a dry
ow or a milking
ow, the weight should be between 550 and 580 kgs.� If the
ow is a dis
ard
ow, the weight should be 580 kgs or more.CORN SILAGENotion� One of the foods given to
ows, whi
h is prepared using the whole
orn plant.Behavioural Response� It is measured in kilograms of dried feedstu�s.� The quantity given to ea
h
ow is registered.COWNotion� It is a large animal kept in a farm to produ
e milk or meat.� It has an identi�
ation number in its ear.� It also has an earring with the identi�
ation number.� It may have a brand.� It has a date of birth.� It may be male or female.� It has a
urrent weight.� It may be a
alf, a heifer, or a dairy
ow.Behavioural Response� It is weighed every month or every three months.� It re
eives va

ination against di�erent diseases.� It is assigned to a group.

109� It is fed every day.� It re
eives deparasitation.� It is pla
ed in a plot.DAIRY COWNotion� It is a female
ow whi
h has had at least one
alf.� It is in a plot.� It may be milking
ow, dry
ow, or dis
ard
ow.� It weighs between 550 and 580 kilograms.� Its useful life lasts more or less 4 years.� It has an individual produ
tion.� It belongs to a group of type 1, 2, pre-birth
ow, dry
ow or dis
ard
ow.� It may be pregnant.� It may be on heat every 21 days.Behavioural Response� When on heat, heat is registered.� It is milked for approximately 10 months in ea
h 12 months.� It may re
eive insemination by arti�
ial insemination or natural insemination.� It generally gives birth to one
alf per 12 months, and ea
h birth is saved.� When it is 4 years or more and approximately 580 kg weight, it may be driedDAIRY FARMNotion� Farm where
ows are bred with the goal of produ
ing good quality milk and obtaininga good in
ome.� It has at least one dairy farmer.� It has a set of
ows.� It may have a set of bulls.� It is divided into a set of �elds.

110� It has a set of groups of
ows.� It has a
alf rearing unit.� It has an average individual produ
tion.� It has a brand whi
h identi�es it.Behavioural Response� Arrivals and departures of
ows are registered.� Arrivals and departures from
alf rearing unit are registered.� The individual produ
tion is
omputed.� Any
hange in the �elds lo
ation or size is re
orded.� Any
hange in the set of groups is saved.DAIRY FARMERNotion� Person in
harge of all the a
tivities in a dairy farm.� He has a name.� He has a salary.� He may have one or more employees.Behavioural Response� He milks all the milking
ow.� He dete
ts heat.� He assigns to a group ea
h
ow of the dairy farm.� He de�nes plot.� He de
ides when to dry a
ow for dis
ard.� He feeds groups of
ows.� He
omputes ration for ea
h
ow.� He va

inates ea
h
ow a

ording to its needs.� He weighs
ow.� He de�nes
alf groups.� He deparasites
alves or heifers.

111� He de
ides when to inseminate dairy
ows or heifers.� He saves birth.� He registers heat.� He sends
alf to the
alf rearing unit.� He
arries out
alves arti�
ial breeding.� He takes
alf out the
alf rearing unit.� He sele
ts a
alf group for ea
h
alf.� He sells
ow.� He handles
ow death.� He
omputes individual produ
tion of a milking
ow, a group or a dairy farm.� He buys bull for the dairy farm.� He dis
ards bull.� He
omputes birth date for ea
h dairy
ow or heifer.� He inseminates arti�
ially dairy
ows or heifers.� He sends to eat pasture ea
h group in the dairy farm.� He dete
ts pregnant
ow.� He de�nes
ow type.DEFINES CALF GROUPNotion� A dairy farmer de�nes one group of type
alf for a set of
alves whi
h have 60 or lessdays di�eren
e in their birth date.Behavioural Response� The group is assigned an identi�
ation.� The group is set minimum and maximum ages.DEFINES COW TYPE/DEFINE COW TYPENotion� A dairy farmer sets the type of a
ow a

ording to its
hara
teristi
s.Behavioural Response

112� If the
ow is a 12 months female
alf, its type is set to heifer.� If the
ow is a heifer whi
h has a re
ent birth, its type is set to dairy
ow.� If the
ow is a dairy
ow whi
h has a re
ent birth , its type is set to post-birth
ow.� If the
ow is a pregnant post-birth
ow whose last birth was 3 months ago, its type isset to early pregnant
ow.� If the
ow is an early pregnant
ow in its seventh month of pregnan
y, its type is set todry
ow.� If the
ow is a dry
ow whose next birth is within 15-20 days, its type is set topre-birth
ow.� If the
ow is a non pregnant dairy
ow and it is a post-birth
ow whi
h
ould not be
omepregnant after 4 inseminations, its type is set to empty
ow.� If the
ow is a dairy
ow re
ently dried, its type is set to dis
ard
ow.DEFINES PLOTNotion� It is the de�nition of a plot in a �eld to send a group to eat pasture.� It is performed by a dairy farmer.Behavioural Response� Considering the pasture, the group type and the number of
ows in the group, adairy farmer determines a division of the �eld.� The identi�
ation, size and lo
ation of the plot is registered in the
orresponding �eld.DEPARASITES/DEPARASITATIONNotion� A dairy farmer gives a substan
e to a
alf or a heifer to prote
t it against parasites.Behavioural Response� It is �rst applied to a
alf when it leaves the
alf rearing unit.� It is applied to ea
h
alf every 2 or 3 months.� It is applied to a heifer every 2 or 3 months until it is pregnant.� The dose given, the date and the identi�
ation number of the
alf or heifer are re
orded.DETECT PREGNANT COWNotion

113� A dairy farmer examines a dairy
ow or heifer to dete
t if it is pregnant or not.Behavioural Response� The dairy
ow or heifer was mated in its last on heat period.� If it is pregnant, the date and the dairy
ow or heifer identi�
ation number are savedin the Insemination form.� If it is a pregnant dairy
ow, a dairy farmer de�nes
ow type as early pregnant
ow anddairy
ow is assigned to a group.� If it is a non pregnant dairy
ow and it is a post-birth
ow whi
h
ould not be
omepregnant after 4 inseminations, de�ne
ow type as empty
ow.DISCARD COWNotion� It is a dairy
ow re
ently dried.� It belongs to group of type dis
ard
ow.Behavioural Response� It is kept in group of dis
ard
ow for some months until its weight is 600 kg or more.� When its weight is 600 kg or more, it is sold.DISCARDS BULLNotion� The dairy farmer deletes a bull from the set of bulls be
ause it is not in
onditions tomate
ows or be
ause it died.Behavioural Response� The bull is deleted from the set of bulls.� The
auses, the bull name and the date are registered.DRIED FEEDSTUFFS/DRY MATERIALNotion� It is a unit of weight used to measure the quantity of bulky foods (pasture, hay or
orn silage),
on
entrated food and balan
ed food that
ompose a ration.Behavioural Response� It is expressed in kilograms.

114DRY A COW FOR DISCARD/DRIEDNotion� The dairy farmer stops milking a milking
ow.Behavioural Response� The milking
ow is an empty
ow at the end of its la
tation period or it may be adairy
ow whi
h has a disease or reprodu
tive problems.� The date, the identi�
ation number of the dairy
ow and the drying
auses are regis-tered.� De�ne
ow type as dis
ard
ow.� The dairy
ow is assigned to a group of type dis
ard
ow.DRY COWNotion� It is a pregnant dairy
ow whose next birth date is within 2 months.� It has a next birth date.� It may be a pre-birth
ow.� It belongs to group of type dry
ow.Behavioural Response� It is not milked.� Between 15 and 20 days before the birth, it is assigned to a group of type pre-birth
ow.EARLY PREGNANT COWNotion� It is a pregnant milking
ow whose last birth was at least 3 months ago.� It may belong to a group of type 1 or type 2.� It has an approximated next birth date.Behavioural Response� After the seventh month of pregnan
y, it is assigned to group of type dry
ow.EMPTY COWNotion

115� It is a milking
ow whi
h
ould not be
ome pregnant after 4 inseminations.� It belongs to a group of type 1 or 2.Behavioural Response� It is in la
tation period.� When the la
tation period �nishes, it is dried.FEEDS GROUP/FEED A GROUP/FED/FEEDINGNotion� A dairy farmer gives a group the
orresponding ration.Behavioural Response� It is done on
e a day.� A dairy farmer
omputes ration.� The ration is distributed as follows:if the type of the group is 1 or heifer, 30-35 per
ent is
on
entrated food, 25-30 per
ent is
orn silage, 10 per
ent is hay;if the type of the group is 2 or dry
ow or pre-birth
ow , 25-30 per
ent is
orn silage,15-20 per
ent is
on
entrated food, 10 per
ent is hay;if the type of the group is dis
ard
ow, only pasture are given;if the type of the group is
alf and
alves age is less than 6 months or
alves are femaleof more than 6 months old, 40 per
ent of balan
ed food is given.if the type of the group is
alf and
alves age is greater than 6 months and
alves aremale, only pasture are given.� The quantities of
on
entrated food,
orn silage and hay given to ea
h
ow of the groupand the date are registered in the Feeding form.� A dairy farmer
omputes pasture eaten.FIELDNotion� Land where
ows eat pasture.� It has an identi�
ation.� It has a pre
ise lo
ation in the dairy farm.� It has a size.� It has a pasture.

116� It has an he
tare loading.� It is divided into a set of plots.� It has a list of previous plotsBehavioural Response� A dairy farmer divides it into a set of plots, separated by ele
tri
 wires.� Many di�erent groups
an be eating in it simultaneously.GROUP/COW GROUPNotion� It is a set of only
alves, only heifers or only dairy
ows.� It has an identi�
ation.� It may be of one of the following types: 1, 2, pre-birth
ow, dis
ard
ow, dry
ow, heiferor
alf.� If it is of type
alf, it has a range of ages of its members.� Ex
ept for the ones of type
alf, all the others are unique.� If the type is 1 or 2 it has an individual produ
tion.Behavioural Response� It is sent out to pasture in a plot.� It is daily fed.� Groups of type 1, 2 and heifer are examined to dete
t
ows on heat.HANDLES COWS DEATH/HANDLE COW DEATHNotion� The dairy farmer re
ords the death of a
ow and its body is taken away.Behavioural Response� The date, the
auses of the death and the history of the
ow are saved.� The
ow is deleted from the dairy farm set of
ows.� If the
ow is a
alf in the
alf rearing unit, it is deleted from the
alf rearing unit set of
alves.� If not, it is deleted from the group to whi
h it belongs.� The
ow's body is taken away from the dairy farm.

117HAYNotion� Grass
ut and dried to be used as
ows food.Behavioural Response� It is measured in kilograms of dried feedstu�s.� The quantity given to ea
h
ow is registered.HEAT DETECTIONNotion� To observe a group of milking
ow or heifer to dete
t whi
h of them are on heat.� It is done by a dairy farmer while the
ows are in a plot.Behavioural Response� It is done twi
e a day.� It is applied only to a group of type 1, 2 and heifer.� A dairy farmer observes
arefully ea
h
ow.� For ea
h milking
ow or heifer on heat, heat is registered.� Milking
ow and heifer dete
ted on heat
an be inseminated.HEAT IS REGISTERED/REGISTERS HEATNotion� The dairy farm re
ords that a heifer or a dairy
ow has been dete
ted on heat.Behavioural Response� A dairy farmer has done heat dete
tion.� The date, time and heifer or dairy
ow identi�
ation number are saved in the Inseminationform.HECTARE LOADINGNotion� It is the number of
ows per he
tare.Behavioural Response� It should be maintained near 1,4.

118HEIFERNotion� It is a female
ow of 12 months age or more whi
h has not yet had a
alf.� It may be pregnant.� It may be on heat every 21 days.� It belongs to group of type heifer.� It is in a plot.� It weighs approximately 350 kilograms when it is 15 months age.Behavioural Response� It may re
eive the �rst insemination by arti�
ial insemination or natural inseminationwhen it rea
hes 64 per
ent of the weight of an adult dairy
ow.� When on heat, heat is registered.� After the �rst birth, it is
onsidered a dairy
ow.� It re
eives deparasitation every 2 or 3 months until it be
omes pregnant.IDENTIFICATION NUMBERNotion� It is a number that uniquely identi�es a
ow.Behavioural Response� It is assigned upon birth.� It is tattooed in the ear when the
alves are in the
alf rearing unit.� It is the number that appears in the earring.� It is required to make any referen
e to a
ow.INDIVIDUAL PRODUCTION/MILK INDIVIDUAL PRODUCTIONNotion� It is the average of the litres of milk produ
ed in a period of time by a milking
ow, agroup or a dairy farm.Behavioural Response� It is measured in litres.� The dairy farmer
omputes individual produ
tion.

119INSEMINATION/INSEMINATE/INSEMINATESNotion� To put sperm into a dairy
ow's or heifer's body to make it pregnant.� It may be arti�
ial insemination or natural insemination.Behavioural Response� Ea
h dairy
ow or heifer is given at most 4 possibilities.� A dairy farmer de
ides if it will be arti�
ial insemination or natural insemination.� It
an be performed only on an on heat heifer or on heat post-birth
ow or empty
owwhi
h has been dete
ted on heat in the last 12 hours.� Date, type and identi�
ation number of the dairy
ow or heifer are registered in theInsemination form.LACTATION/LACTATION PERIODNotion� Period after the birth of a
alf in whi
h a dairy
ow produ
es milk.� Dairy
ow should be a milking
ow.Behavioural Response� It lasts approximately seven months.� Dairy
ows
an be milked.MAXIMUM LACTATION/PEAK LACTATIONNotion� It is the maximum value of a milking
ow's individual produ
tion.Behavioural Response� It is rea
hed between 60 and 70 days after the birth.� It
oin
ides with the milking
ow's maximum ration.MILKNotion� White liquid produ
ed by dairy
ows as food for their
alves or to be drunk by humans.Behavioural Response

120� It is measured in litres.� It
an only be taken from a milking
ow.� Ea
h
alf in the
alf rearing unit may re
eive 4-5 litres per day.MILKING/TO MILK/MILKED/MILKS/MILKINGNotion� Take the milk from a milking
ow.� It is done by a dairy farmer twi
e a day, in the morning and in the evening.Behavioural Response� It is applied only to a milking
ow.� A dairy farmer extra
ts the milk and puts it in a bu
ket to be measured.� The litres of milk produ
ed by the milking
ow, the date and the time are registered inthe Milking form.MILKING COWNotion� It is a dairy
ow
urrently produ
ing milk.� It may be an early pregnant
ow, a post-birth
ow or an empty
ow.� It may belong to group of type 1 or type 2.� It may be pregnant.� It may be on heat every 21 days.Behavioural Response� It is in la
tation period.� It is milked twi
e a day, in the morning and in the evening.� It may re
eive insemination by arti�
ial insemination or natural insemination.� When on heat, heat is registered.MILK REPLACEMENT/MILK SUBSTITUTENotion� It is a kind of liquid food given to
alves when they are in the
alf rearing unit.� It has a trade mark.

121Behavioural Response� It is measured in litres.� 4-5 litres are given to ea
h
alf in the
alf rearing unit per day.NATURAL INSEMINATION/INSEMINATE NATURALLYNotion� Insemination done by a bull.Behavioural Response� The bull and the dairy
ow or heifer are brought together in a �eld by the dairy farmer12 hours after the last one is dete
ted to be on heat.� The bull name is registered in the Insemination form.PASTURENotion� Growing grass.� It may be of di�erent spe
ies.� It has a level of quality.Behavioural Response� It is dire
tly harvested by
ows.� It is measured in kilograms of dried feedstu�s.� For ea
h
ow in a group, a dairy farmer
omputes pasture eaten.PLOT/PLOT AREANotion� Ea
h one of the parts in whi
h a �eld is divided into.� It has an identi�
ation.� It has a lo
ation inside the �eld.� It has a size.� It has a starting date.� It has an approximated period of duration in days.� In any time it is o

upied by one group.

122Behavioural Response� Its size is de�ned by a dairy farmer.� A group is sent out to pasture in it.POST-BIRTH COWNotion� It is a milking
ow whose last birth was in the last 3 months.� It belongs to group of type 1.� It has a last birth date.Behavioural Response� It
an be inseminated up to 4 times to be
ome pregnant.� The �rst on heat period after birth is not
onsidered for a new insemination.� It re
eives insemination between 45 and 60 days after the birth.� Three months after the birth, it is assigned to a group of type 2.PRE-BIRTH COWNotion� It is a dry
ow whose next birth is within 15 to 20 days.� It belongs to group of type pre-birth
ow.Behavioural Response� In the ninth month of pregnan
y, it gives birth to a
alf and the birth is saved.� After birth, it is assigned to a group of type 1.PREGNANT/PREGNANCYNotion� A heifer or a dairy
ow has a
alf developing in the uterus.Behavioural Response� The heifer or dairy
ow has been inseminated.� It lasts 9 months.� The heifer or dairy
ow
annot be on heat.

123RATIONNotion� It is the quantity of kilograms of dried feedstu�s to satisfy the daily requirements of a
ow.� It is
omposed by kilograms of
orn silage, hay,
on
entrated food, balan
ed food andpasture.Behavioural Response� The dairy farmer
omputes ration for ea
h
ow in ea
h group.SAVE BIRTH/SAVES BIRTH/BIRTH IS SAVEDNotion� A dairy farmer manages all the things related to a re
ent birth of a dairy
ow or a heifer.Behavioural Response� The
alf is assigned an identi�
ation number and it is added to the dairy farm set of
ows.� If a heifer is involved, de�ne
ow type as dairy
ow.� The new
alf is added to the dairy
ow's list of birth.� The date and the identi�
ation number of the
alf and the dairy
ow are registered inthe Birth form.� De�ne
ow type as post-birth
ow� The post-birth
ow is assigned to a group of type 1.SELECTS A CALF GROUPNotion� A dairy farmer
hooses a group of type
alf a

ording to
alf's age.Behavioural Response� A dairy farmer analyses
urrent groups looking for a group of type
alf whi
h �ts the
alf's age.� If it does not exist, dairy farmer de�nes
alf group.SELLS COW/SOLDNotion� A dairy farmer sends a
ow to the market to be sold.

124Behavioural Response� The
ow should be a dis
ard
ow or a male
alf.� The
ow was re
ently weighed.� The date, weight and the history of the
ow are saved.� The
ow is deleted from the dairy farm set of
ows.� The
ow is taken to the market.SENDS CALF TO THE CALF REARING UNITNotion� A
alf is sent to the
alf rearing unit for arti�
ial breeding.� It is
arried out by a dairy farmer.Behavioural Response� It happens at most 5 days after
alf's birth.� The
alf is added to the set of
alves of the
alf rearing unit.� The entry date and the
alf identi�
ation number are registered.� Calf is tattooed the identi�
ation number.� Calf may be stamped the brand.� Calf is put on the earring.� If the
alf is a female
alf, it is taken a photograph.SENDS TO EAT PASTURE/SENT TO EAT PASTURENotion� A dairy farmer sends a group to eat pasture in a plot of a �eld.Behavioural Response� The leaving date for the previous plot is saved.� The entry date and the period the group is expe
ted to be in the plot are re
orded.� The plot identi�
ation is registered.� The group identi�
ation is re
orded.TAKES CALF OUT THE CALF REARING UNITNotion

125� A dairy farmer de
ides a
alf should �nish arti�
ial breeding.Behavioural Response� It happens between 45-60 days after birth when the
alf is able to eat at least 1 kilogramof balan
ed food.� Leaving date and identi�
ation number of the
alf are registered.� The
alf is removed from the set of
alves of the
alf rearing unit.� Calf is assigned to a group of type
alf.VACCINATES COW/VACCINATES/VACCINATIONNotion� To inje
t a va

ine to a
ow to prote
t it against a disease.� It may be against bru
ellosis, diarrhoea or triple disease.� It is performed by a dairy farmer.Behavioural Response� The va

ine has not expired.� If the
ow is a female
alf of 3-10 months age and it has not re
eived it yet, bru
ellosisva

ine is given.� If the
ow is a pregnant heifer or a dry
ow in its seventh or ninth month of pregnan
y,diarrhoea va

ine is given.� If the
ow is a
alf of 3, 6, 9 or 12 months age, triple va

ine is given.� The identi�
ation number of the
ow, the date and the va

ine serial number given areregistered.VACCINENotion� It is a substan
e to prote
t against a disease.� It has a serial number.� It may be against bru
ellosis, diarrhoea or triple disease.� It has an expiration date.Behavioural Response� It is given to
ows by a dairy farmer.

126WEIGHS COW/WEIGH COW/WEIGHEDNotion� A dairy farmer takes a
ow to the s
ale to determine its weight.Behavioural Response� It
an be done monthly or every 3 months.� A dairy farmer takes the
ow to the pla
e where the s
ale is lo
ated.� The
ow
omes up the s
ale.� The weight showed by the s
ale, the date and the identi�
ation number of the
ow arere
orded.

Appendix BThe S
enario ViewTITLE: Assign a group to a
owGOAL: Add a
ow to a group.CONTEXT: Pre: Cow is in the
alf rearing unit or
ow is a member of a group.RESOURCES: Cow Date List of
urrent groups Group formACTORS: Dairy farmerEPISODES:� If the
ow is a post-birth
ow whi
h has just given birth to a
alf, or a milking
owwhose individual produ
tion is at least 10 per
ent greater than the dairy farm individualprodu
tion then the dairy farmer sele
ts group of type 1.� If the
ow is a dairy
ow in group 1 and its last birth date is greater than 3 monthsor the
ow is a pregnant dairy
ow in less than seventh month of pregnan
y then thedairy farmer sele
ts group of type 2.� If the
ow is a dry
ow or a pregnant heifer whose next birth date is within 15-20 daysthen the dairy farmer sele
ts pre-birth
ow type group.� If the
ow is an early pregnant
ow in its seventh month of pregnan
y then the dairyfarmer sele
ts dry
ow type group.� If the
ow is a dis
ard
ow then the dairy farmer sele
ts dis
ard
ow type group.� If the
ow is a
alf then SELECT A CALF GROUP.� If the
ow is a heifer then the dairy farmer sele
ts heifer type group.� The dairy farmer registers in the Group form the arrival date for the new group andthe identi�
ation number of the
ow.TITLE: Breed arti�
iallyGOAL: Register the arti�
ial breeding of a
alf.CONTEXT: It is done daily while the
alf is in the
alf rearing unit. Pre: The quantity ofmilk or milk repla
ement is approximately 4-5 litres and the quantity of balan
ed food is atmost 1 kilogram.RESOURCES: Calf Date Quantity of milk repla
ement Quantity of balan
ed food

128Arti�
ial breeding formACTORS: Dairy farmerEPISODES:� The dairy farmer re
ords in the Arti�
ial breeding form the quantity of balan
ed foodand milk repla
ement given to ea
h
alf per day.TITLE: Buy a bullGOAL: Add a new bull to the dairy farm.CONTEXT: Pre: Bull is in
onditions to inseminate
owsRESOURCES: Bull Date of pur
hase Bull date of birth Field Bull featuresList of bullsACTORS: Dairy farmerEPISODES:� The dairy farmer adds the bull to the set of bulls of the dairy farm.� The dairy farmer sends the bull to a �eld.� The dairy farmer registers the date of the transa
tion, the bull features and date ofbirth.TITLE: Che
k ration distributionGOAL: Che
k if ration distribution is a

ording to group type.CONTEXT: It may be done on
e a day, before feeding a group. Pre: Group is not empty.RESOURCES: Group Total ration Quantity of
on
entrated food Quantity ofhay Quantity of
orn silageACTORS: Dairy farmerEPISODES:� If the type of the group is 1 or heifer then the dairy farmer de�nes the ration as 30-35per
ent of
on
entrated food, 25-30 per
ent of
orn silage, 10-15 per
ent of hay.� If the type of the group is 2 or dry
ow or pre-birth
ow then the dairy farmer de�nesthe ration as 15-20 per
ent of
on
entrated food, 25-30 per
ent of
orn silage, 10-15per
ent of hay.� If the type of the group is dis
ard
ow then the dairy farmer sets all the quantities tozero.� If the type of the group is
alf and
alves age is less than 6 months or
alves are femaleof more than 6 months age then the dairy farmer de�nes the ration as 40 per
ent ofbalan
ed food and the remaining quantities are zero.� If the type of the group is
alf and
alves age is greater than 6 months and
alves aremale then the dairy farmer sets all the quantities to zero.

129TITLE: Compute next birth dateGOAL: Determine the approximate next birth date for a dairy
ow or heifer.CONTEXT: Pre: The
ow is a dairy
ow or a heifer and it is pregnant.RESOURCES: Cow Insemination formACTORS: Dairy farmerEPISODES:� The dairy farmer adds 9 months to the last insemination date.� The dairy farmer saves the
omputed date.TITLE: Compute dairy farm individual produ
tionGOAL: Determine the individual produ
tion of a dairy farm in a periodCONTEXT: Pre: The dairy farm has at least one milking
ow with at least one milking inthe period.RESOURCES: Period Milking formACTORS: Dairy farmerEPISODES:� The dairy farmer divides the addition of the litres produ
ed by all the milking
ow inthe period into the number of milking
orresponding to the milking
ows in that period.� The dairy farmer registers the individual produ
tion
al
ulated.TITLE: Compute milking
ow individual produ
tionGOAL: Determine the individual produ
tion of a dairy
ow in a periodCONTEXT: Pre: The dairy
ow has at least one milking in the periodRESOURCES: Dairy
ow Period Milking formACTORS: Dairy farmerEPISODES:� The dairy farmer divides the addition of the litres produ
ed by the dairy
ow in theperiod into the number of milking in the period.� The dairy farmer registers the individual produ
tion
al
ulated.TITLE: Compute group individual produ
tionGOAL: Determine the individual produ
tion of a group in a periodCONTEXT: Pre: The group is type 1 or 2 and it has at least one milking
ow whi
h hasat least one milking.RESOURCES: Group Period Milking form Group formACTORS: Dairy farmerEPISODES:� The dairy farmer divides the addition of the litres produ
ed by the whole group in theperiod into the total number of milking
orresponding to all the milking
ow in thegroup in that period.

130� The dairy farmer registers the individual produ
tion
al
ulated.TITLE: Compute pasture eatenGOAL: Determine the quantity of pasture eaten by ea
h
ow in a group.CONTEXT: Pre: The total kilograms of the ration have been
al
ulated and the quantityof
orn silage, hay and
on
entrated has been de
idedRESOURCES: Group Feeding formACTORS: Dairy farmerEPISODES:� The dairy farmer
omputes the di�eren
e between the ration a
ow should eat and theaddition of
orn silage, hay,
on
entrated food the
ow was given.� The dairy farmer registers the quantity of pasture
omputed, the date and theidenti�
ation number of ea
h
ow in the group.TITLE: Compute rationGOAL: Determine the total kilograms of the ration ea
h
ow in a group should be given ina day.CONTEXT: Pre: Group is not emptyRESOURCES: Group Weight of an average
ow in the groupACTORS: Dairy farmerEPISODES:� If group type is 1 or pre-birth
ow then the dairy farmer sets the total kilograms to3,5 per
ent of the weight of an average dairy
ow in the group.� If group type is 2 then the dairy farmer sets the total kilograms to 3 per
ent of theweight of an average dairy
ow in the group.� If group type is dry
ow or dis
ard
ow then the dairy farmer sets the total kilogramsto 2 per
ent of the weight of an average dairy
ow in the group.� If group type is heifer then the dairy farmer sets the total kilograms to 3 per
ent ofthe weight of an average heifer in the group.� If group type is
alf and range of ages are between 2 and 4 months then the dairy farmersets the total kilograms to the 2.2 per
ent of the weight of an average
alf in the group.� If group type is
alf and range of ages starts from 4 months or more then the dairy farmersets the total kilograms to 2.5 per
ent of the weight of an average
alf in the group.TITLE: De�ne
alf groupGOAL: De�ne a new group of type
alf.CONTEXT: Pre: Range of ages has at most 60 days di�eren
e.RESOURCES: Calves minimum age Calves maximum age List of
urrent groupsACTORS: Dairy farmerEPISODES:

131� The dairy farmer assigns the group an identi�
ation.� The dairy farmer sets the minimum and maximum ages for the new group.� The dairy farmer adds the new group to the list of groups.TITLE: De�ne
ow typeGOAL: Set the type of a
ow a

ording to its
hara
teristi
sCONTEXT: Pre:RESOURCES: CowACTORS: Dairy farmerEPISODES:� If the
ow is a 12 months female
alf then the dairy farmer sets the type to heifer.� If the
ow is a heifer whi
h has just given birth to a
alf then the dairy farmer sets thetype to dairy
ow.� If the
ow is a dairy
ow whi
h has just given birth to a
alf then the dairy farmer setsthe type to post-birth
ow.� If the
ow is a pregnant post-birth
ow whose last birth was 3 months ago then thedairy farmer sets the type to pregnant
ow.� If the
ow is pregnant
ow in its seventh month of pregnan
y then the dairy farmersets the type to dry
ow.� If the
ow is a dry
ow whose next birth is within 15-20 days then the dairy farmersets the type to pre-birth
ow.� If the
ow is a non pregnant dairy
ow and it is a post-birth
ow whi
h
ould not be
omepregnant after 4 inseminations then the dairy farmer sets the type to empty
ow.� If the
ow is a dairy
ow re
ently dried then the dairy farmer sets the type to dis
ard
ow.TITLE: De�ne plotGOAL: Delimit a plot in a �eld to send out a group to pasture.CONTEXT: Pre: The group is not emptyRESOURCES: Group FieldACTORS: Dairy farmerEPISODES:� The dairy farmer determines a division of the �eld
onsidering the pasture, the grouptype and the number of
ows in the group.� The dairy farmer registers the identi�
ation, size and lo
ation of the plot, and durationperiod in the
orresponding �eld.

132TITLE: Dis
ard a bullGOAL: Delete a bull from the dairy farm set of bullsCONTEXT: Pre: Bull has just died or is not in
onditions to inseminate
ows.RESOURCES: Bull Date Dis
ard
auses List of bullsACTORS: Dairy farmerEPISODES:� The dairy farmer deletes the bull from the dairy farm set of bulls.� The dairy farmer register the
auses, the bull name and the date.TITLE: Dry dairy
owGOAL: Stop milking a milking
owCONTEXT: Pre: Milking
ow may be at the end of its la
tation period or it may have adisease or it may have reprodu
tive problemsRESOURCES: Milking
ow Date Drying
auses Dis
ard formACTORS: Dairy farmerEPISODES:� The dairy farmer registers the date, drying
auses and the identi�
ation number of themilking
ow in the Dis
ard form.� DEFINE COW TYPE as dis
ard
ow.� ASSIGN A GROUP TO A COW.TITLE: Feed a groupGOAL: Register the
orresponding daily ration given to a group.CONTEXT: It is done on
e a day. Pre: Group is not empty.RESOURCES: Group Date Quantity of
orn silage Quantity of Hay Quantityof
on
entrated food Feeding formACTORS: Dairy farmerEPISODES:� COMPUTE RATION.� The dairy farmer re
ords, in the Feeding form, the date and the quantities of
orn silage,hay and
on
entrated food given to ea
h
ow in the group.� COMPUTE PASTURE EATEN.TITLE: Handle
ow deathGOAL: Register the death of a
owCONTEXT: Pre: The
ow is in a group or if it is a
alf of at most 60 days age, it may bein the
alf rearing unit.RESOURCES: Cow Date of death Causes of death Dairy farm set of
ows

133Calf rearing unit set of
alves Dead
ows formACTORS: Dairy farmerEPISODES:� The dairy farmer saves the date, the
auses of the death and the history of the
ow inthe Dead
ows form.� # The dairy farmer deletes the
ow from the dairy farm set of
ows.� If the
ow is a
alf in the
alf rearing unit then the dairy farmer deletes it from the
alf rearing unit set of
alves.� If not then the dairy farmer deletes it from the group to whi
h it belongs.#TITLE: Inseminate arti�
iallyGOAL: Register the arti�
ial insemination of a dairy
ow or heifer.CONTEXT: Pre: The
ow is a post-birth
ow whi
h has had more than one on heat periodafter the last birth, or is a dairy
ow or a heifer, and has been dete
ted on heat in the last 12hours and it has been inseminated at most 3 times without be
oming pregnantRESOURCES: Cow Date Method Insemination formACTORS: Dairy farmerEPISODES:� The dairy farmer registers, in the Insemination form, date, identi�
ation number of thepost-birth
ow or heifer and information relative to the pro
edure followed.TITLE: Inseminate naturallyGOAL: Register the natural insemination of a dairy
ow or heifer.CONTEXT: Pre: Cow is a post-birth
ow whi
h has had more than one on heat periodafter the last birth, or is a dairy
ow or a heifer, and has been dete
ted on heat in the last 12hours and it has been inseminated at most 3 times without be
oming pregnant.RESOURCES: Cow Date Bull Insemination formACTORS: Dairy farmerEPISODES:� The dairy farmer saves, in the Insemination form, date, identi�
ation number of thepost-birth
ow or heifer and the name of the bull.TITLE: Manage birthGOAL: Manage all things related to a re
ent birth.CONTEXT: Pre: The
ow is a dairy
ow or a heifer whi
h has just given birth to a
alf.RESOURCES: Cow Calf Date of the birth Birth form Dairy farm set of
owsACTORS: Dairy farmerEPISODES:� The dairy farmer assigns an identi�
ation number to the
alf.� The dairy farmer adds the new
alf to the dairy farm set of
ows.

134� # The dairy farmer adds the new
alf to the dairy
ow's or heifer's list of given birthto
alves.� The dairy farmer re
ords in the Birth form the date and the identi�
ation number ofthe
alf and the
ow.#� ASSIGN A GROUP TO A COW, a group of type 1.� DEFINE COW TYPE as post-birth
ow.TITLE: Re
ord
ow deparasitationGOAL: Re
ord the deparasitation of a
alf or a heifer.CONTEXT: Pre: Cow is a
alf whi
h has just left the
alf rearing unit or a
alf that hasnot been deparasited in the last 2 or 3 months or a heifer that is not pregnant and that hasnot been deparasited in the last 2 or 3 months.RESOURCES: Cow Date Substan
e Dose Deparasitation formACTORS: Dairy farmerEPISODES:� The dairy farmer re
ords the dose given, the date and the identi�
ation number of the
ow.TITLE: Re
ord milkingGOAL: Re
ord the milking of a milking
ow.CONTEXT: It is done in the morning or in the evening. Pre: Milking
ow has not beenmilked yet.RESOURCES: Milking
ow Date Litres of milk Milking formACTORS: Dairy farmerEPISODES:� The dairy farmer re
ords, in the milking form, the litres of milk measured, the milking
owidenti�
ation number, date and time of extra
tion.TITLE: Register
ow weightGOAL: Register the weight of a
ow.CONTEXT: It o

urs in the pla
e where the s
ale is lo
ated. Pre: The
ow has not beenweighed in the last 3 months or in the last month or the
ow is going to be sold.RESOURCES: Cow Date Weight form WeightACTORS: Dairy farmerEPISODES:� The dairy farmer saves, in the Weight form, the weight, the date and theidenti�
ation number of the
ow.TITLE: Register
ows on heat dete
tionGOAL: Register whi
h milking
ow or heifer in a group is on heat.

135CONTEXT: It o

urs in a plot.Pre: Group is of type 1, 2 or heifer and it has been examinedat most on
e that day.RESOURCES: Group Date Time List of
ows on heat Group formACTORS: Dairy farmerEPISODES:� REGISTER HEAT for ea
h
ow dete
ted on heat.� The dairy farmer registers date, time and group examined in the Group form.TITLE: Register heatGOAL: Re
ord that a dairy
ow or heifer is on heatCONTEXT: Pre: A dairy farmer has done heat dete
tion and the
ow is a dairy
ow orheifer dete
ted on heatRESOURCES: Cow Date of dete
tion Time of dete
tion Insemination formACTORS: Dairy farmerEPISODES:� The dairy farmer re
ords in the Insemination form, the date, time and
owidenti�
ation number.TITLE: Register pregnan
y testGOAL: Register the result of the pregnan
y test for a dairy
ow or heifer.CONTEXT: Pre: Cow is a dairy
ow or heifer inseminated in its last on heat period.RESOURCES: Cow Date Test Insemination formACTORS: Dairy farmerEPISODES:� The dairy farmer saves the date, the dairy
ow or heifer identi�
ation number and thetest in the Insemination form.� If it is a pregnant dairy
ow then DEFINE COW TYPEASSIGN A GROUP TO A COW.TITLE: Sele
t a
alf groupGOAL: Choose a group of type
alf for a
alf a

ording to its age.CONTEXT: Pre: Calf is in the
alf rearing unit or in a group of type
alf.RESOURCES: Calf List of
urrent groupsACTORS: Dairy farmerEPISODES:� The dairy farmer looks for a group of type
alf, whi
h �ts the
alf's age.� If the group does not exist then DEFINE CALF GROUP.

136TITLE: Sell
owGOAL: Re
ord
ow was sent to the market to be soldCONTEXT: Pre: Cow is a dis
ard
ow or a male
alf and
ow has been weighed the day ofthe sale.RESOURCES: Cow Date of sale Dairy farm set of
ows Sale formACTORS: Dairy farmerEPISODES:� The dairy farmer saves in the Sale form the date, weight and the
omplete history ofthe
ow.� The dairy farmer deletes the
ow from the dairy farm set of
ows.TITLE: Send
alf to the
alf rearing unitGOAL: Re
ord a
alf is sent to the
alf rearing unit.CONTEXT: Pre: The
alf is approximately between 1 and 5 days ageRESOURCES: Calf Date Calf rearing unit set of
alvesACTORS: Dairy farmerEPISODES:� # The dairy farmer adds the
alf to the
alf rearing unit set of
alves.� The dairy farmer registers the entry date and the
alf identi�
ation number.#TITLE: Send out to pastureGOAL: Send a group to eat pasture in a plotCONTEXT: Pre: The group is not emptyRESOURCES: Group Date Period for the new plot New plot Group formACTORS: Dairy farmerEPISODES:� The dairy farmer saves leaving date for the previous plot.� The dairy farmer re
ords, in the Group form, the entry date, the period the group isexpe
ted to be in the plot, the plot identi�
ation and the group identi�
ation.TITLE: Take
alf out the
alf rearing unitGOAL: Register the end of a
alf's arti�
ial breeding.CONTEXT: Pre: Calf is between 45 and 60 days age and it is able to eat at least 1 kilogramof balan
ed food per day.RESOURCES: Calf Date Calf rearing unit set of
alvesACTORS: Dairy farmerEPISODES:� # The dairy farmer re
ords leaving date and identi�
ation number of the
alf.� The dairy farmer removes the
alf from the set of
alves of the
alf rearing unit.#

137� ASSIGN TO A GROUP of type
alf.TITLE: Va

inate
owGOAL: Register the va

ination of a
ow.CONTEXT: Pre: The va

ine has not expired and the
ow is a pregnant heifer or a dry
owin its seventh or ninth month of pregnan
y and the va

ine is against diarrhoea, or the
owis a female
alf of 3-10 months and the va

ine is against bru
ellosis, or the
ow is a
alf of 3,6, 9 or 12 months age and the va

ine is triple.RESOURCES: Cow Date Va

ine Va

ination formACTORS: Dairy farmerEPISODES:� The dairy farmer registers, in the Va

ination form, the identi�
ation number of the
ow, the date and the va

ine serial number and type.

Appendix CThe Spe
i�
ation
C.1 DAIRY FARM Module
ontext: FIELDS, COW GROUPS, BULLS, DAIRY FARMERSs
heme DAIRY FARM =
lassobje
tCS : COWS,BS : BULLS,FS : FIELDS,CGS : COW GROUPS(CS),DFS : DAIRY FARMERStypeDairy farm ::
ows : CS.Cows $
hg
owsbulls : BS.Bulls $
hg bulls�elds : FS.Fields $
hg �eldsgroups : CGS.Cow groups $
hg groupsdairy farmers :DFS.Dairy farmers $
hg dairy farmerspast
ows : CS.Cows $
hg past
owsvalue
an goto group :GT.Cow id � D.Date � Dairy farm ! Bool
an goto group(
i, d, df) �CGS.
an goto group(
i, d, CS.sele
t group for
ow(
i, d,
ows(df)),
ows(df), groups(df)),assign group to
ow :GT.Cow id � D.Date � Dairy farm �! Dairy farm

C.1 DAIRY FARM Module 139assign group to
ow(
i, d, df) �
hg
ows(CS.assign group to
ow(
i, d,CGS.sele
t group for
ow(
i, d,
ows(df), groups(df)),
ows(df)), df)pre
an goto group(
i, d, df),
an breed artif :GT.Cow id � D.Date � GT.Litres � GT.Quantity �Dairy farm !Bool
an breed artif(
i, d, mr, bal, df) �GT.
alf rearing unit 2 groups(df) ^CS.
an breed artif(
i, d, mr, bal,
ows(df)),breed artif :GT.Cow id � D.Date � GT.Litres � GT.Balan
ed �Dairy farm �!Dairy farmbreed artif(
i, d, mr, bal, df) �
hg
ows(CS.breed artif(
i, d, mr, bal,
ows(df)), df)pre
an breed artif(
i, d, mr, bal, df),buy bull :GT.Bull id � D.Date � D.Date � GT.Field id �GT.Features � Dairy farm �!Dairy farmbuy bull(bi, bd, d, �, f, df) �
hg bulls(BS.add bull(bi, bd, d, �, f, bulls(df)), df)pre bi 62 bulls(df) ^ � 2 �elds(df),
an give birth :GT.Cow id � D.Date � Dairy farm ! Bool
an give birth(
i, d, df) �CS.
an give birth(
i, d,
ows(df)),next birth date :GT.Cow id � D.Date � Dairy farm �! D.Datenext birth date(
i, d, df) �CS.next birth date(
i, d,
ows(df))pre
an give birth(
i, d, df),dfarm has prod milk : D.Period � Dairy farm ! Bool

C.1 DAIRY FARM Module 140dfarm has prod milk(p, df) �CGS.has produ
ed milk(GT.one, p, groups(df),
ows(df)) _CGS.has produ
ed milk(GT.two, p, groups(df),
ows(df)),d farm indiv prod :D.Period � Dairy farm �! GT.Indiv prodd farm indiv prod(p, df) �let
ows in one =CGS.
ows in group(GT.one, groups(df),
ows(df)),
ows in two =CGS.
ows in group(GT.two, groups(df),
ows(df))in CS.
ows milk in period(p,
ows in one [
ows in two) /real (CS.number milkings in period(p,
ows in one) +CS.number milkings in period(p,
ows in two))endpre dfarm has prod milk(p, df),
ow has prod milk :GT.Cow id � D.Period � Dairy farm ! Bool
ow has prod milk(
i, p, df) �CS.has produ
ed milk(
i, p,
ows(df)),
ow indiv prod :GT.Cow id � D.Period � Dairy farm �!GT.Indiv prod
ow indiv prod(
i, p, df) �CS.
ow indiv prod(
i, p,
ows(df))pre
ow has prod milk(
i, p, df),group has prod milk :GT.Group id � D.Period � Dairy farm ! Boolgroup has prod milk(gt, p, df) �CGS.has produ
ed milk(gt, p, groups(df),
ows(df)),group indiv prod :GT.Group id � D.Period � Dairy farm �!GT.Indiv prodgroup indiv prod(gt, p, df) �CGS.group indiv prod(gt, p, groups(df),
ows(df))pre group has prod milk(gt, p, df),

C.1 DAIRY FARM Module 141
an
ompute ration : GT.Group id � Dairy farm ! Bool
an
ompute ration(gt, df) �CGS.
an
ompute ration(gt, groups(df),
ows(df)),
ompute ration :GT.Group id � Dairy farm �! GT.Quantity
ompute ration(gt, df) �CGS.
ompute ration(gt, groups(df),
ows(df))pre
an
ompute ration(gt, df),de�ne
alf group :Nat � Nat � Dairy farm �! Dairy farmde�ne
alf group(ds, de, df) �
hg groups(CGS.de�ne
alf group(ds, de, groups(df)), df)preGT.
alf(ds, de) 62 groups(df) ^de � ds � K.
alves age dif,de�ne
ow
lassif :GT.Cow id � D.Date � Dairy farm �! Dairy farmde�ne
ow
lassif(
i, d, df) �
hg
ows(CS.de�ne
ow
lassif(
i, d,
ows(df)), df)pre
i 2
ows(df),set plot :GT.Group id � GT.Field id � Dairy farm !GT.Plot id � GT.Size � GT.Lo
ation � D.Date �Nat=� dummy value for now �=set plot(gt, �, df) �(1, 0.0, 0000, D.mk Date(2003, 1, 1, 3), 1),
an de�ne plot :GT.Group id � GT.Field id � Dairy farm ! Bool
an de�ne plot(gt, �, df) �� 2 �elds(df) ^ gt 2 groups(df) ^�CGS.empty(gt, groups(df),
ows(df)),de�ne plot :GT.Group id � GT.Field id � Dairy farm �!Dairy farmde�ne plot(gt, �, df) �let (pi, si, lo, sd, dn) = set plot(gt, �, df) in
hg �elds(FS.add plot(pi, si, lo, sd, dn, �, �elds(df)),

C.1 DAIRY FARM Module 142df)endpre
an de�ne plot(gt, �, df),
an dis
ard bull : GT.Bull id � Dairy farm ! Bool
an dis
ard bull(bi, df) �BS.
an dis
ard bull(bi, bulls(df)),dis
ard bull :GT.Bull id � D.Date � GT.Dis
ard
ause �Dairy farm �!Dairy farmdis
ard bull(bi, d, d
, df) �
hg bulls(BS.dis
ard bull(bi, d, d
, bulls(df)), df)pre
an dis
ard bull(bi, df),
an dry
ow :GT.Cow id � D.Date � Dairy farm ! Bool
an dry
ow(
i, d, df) �CS.
an dry
ow(
i, d,
ows(df)),dry
ow :GT.Cow id � D.Date � GT.Dried
ause � Dairy farm �!Dairy farmdry
ow(
i, d, d
, df) �
hg
ows(CS.dry
ow(
i, d, d
,
ows(df)), df)pre
an dry
ow(
i, d, df),
an feed group :GT.Group id � D.Date � Dairy farm ! Bool
an feed group(gt, d, df) �CGS.
an feed group(gt, d, groups(df),
ows(df)),feed group :GT.Group id � D.Date � GT.Corn sil � GT.Hay �GT.Con
 � Dairy farm �!Dairy farmfeed group(gt, d,
orn, hay,
on
, df) �
hg groups(CGS.feed group(gt, d,
orn, hay,
on
, groups(df),
ows(df)),df)pre
an feed group(gt, d, df),
an save
ow death : GT.Cow id � Dairy farm ! Bool
an save
ow death(
i, df) �

C.1 DAIRY FARM Module 143CS.
an save
ow death(
i,
ows(df), past
ows(df)),save
ow death :GT.Cow id � D.Date � GT.Death
ause � Dairy farm �!Dairy farmsave
ow death(
i, d, d
, df) �let(
s, p
s) =CS.save
ow death(
i, d, d
,
ows(df), past
ows(df))in
hg past
ows(p
s,
hg
ows(
s, df))endpre
an save
ow death(
i, df),
an insem
ow :GT.Cow id � D.Date � Dairy farm ! Bool
an insem
ow(
i, d, df) �CS.
an insem
ow(
i, d,
ows(df)),insem
ow artif :GT.Cow id � D.Date � GT.Artif info � Dairy farm �!Dairy farminsem
ow artif(
i, d, ai, df) �
hg
ows(CS.insem
ow artif(
i, d, ai,
ows(df)), df)pre
an insem
ow(
i, d, df),insem
ow natural :GT.Cow id � D.Date � GT.Bull id � Dairy farm �!Dairy farminsem
ow natural(
i, d, bi, df) �
hg
ows(CS.insem
ow natural(
i, d, bi,
ows(df)), df)pre bi 2 bulls(df) ^
an insem
ow(
i, d, df),give birth :GT.Cow id � GT.Calf sex � D.Date � Dairy farm �!Dairy farmgive birth(
i,
sex, d, df) �
hg
ows(CS.give birth(
i,
sex, d,
ows(df)), df)pre
an give birth(
i, d, df),
an deparasite
ow :GT.Cow id � D.Date � Dairy farm ! Bool
an deparasite
ow(
i, d, df) �CS.
an deparasite
ow(
i, d,
ows(df)),

C.1 DAIRY FARM Module 144deparasite
ow :GT.Cow id � D.Date � GT.Dep inf � Dairy farm �!Dairy farmdeparasite
ow(
i, d, d inf, df) �
hg
ows(CS.deparasite
ow(
i, d, d inf,
ows(df)), df)pre
an deparasite
ow(
i, d, df),
an milk
ow :GT.Cow id � D.Date � Dairy farm ! Bool
an milk
ow(
i, d, df) �CS.
an milk
ow(
i, d,
ows(df)),milk
ow :GT.Cow id � D.Date � GT.Litres � Dairy farm �!Dairy farmmilk
ow(
i, d, lts, df) �
hg
ows(CS.milk
ow(
i, d, lts,
ows(df)), df)pre
an milk
ow(
i, d, df),
an weigh
ow :GT.Cow id � D.Date � Dairy farm ! Bool
an weigh
ow(
i, d, df) �CS.
an weigh
ow(
i, d,
ows(df)),weigh
ow :GT.Cow id � D.Date � GT.Weight � Dairy farm �!Dairy farmweigh
ow(
i, d, w, df) �
hg
ows(CS.weigh
ow(
i, d, w,
ows(df)), df)pre
an weigh
ow(
i, d, df),
an dete
t heat :GT.Group id � D.Date � (GT.Cow id � Bool)� �Dairy farm !Bool
an dete
t heat(gt, d,
sl, df) �CGS.
an dete
t heat(gt, d,
sl, groups(df),
ows(df)),dete
t heat :GT.Group id � D.Date � (GT.Cow id � Bool)� �Dairy farm �!Dairy farmdete
t heat(gt, d,
sl, df) �let

C.1 DAIRY FARM Module 145(
gs,
s) =CGS.dete
t heat(gt, d,
sl, groups(df),
ows(df))in
hg groups(
gs,
hg
ows(
s, df))endpre
an dete
t heat(gt, d,
sl, df),
an dete
t pregnan
y :GT.Cow id � D.Date � Dairy farm ! Bool
an dete
t pregnan
y(
i, d, df) �CS.
an dete
t pregnan
y(
i, d,
ows(df)),dete
t pregnant
ow :GT.Cow id � D.Date � Bool � Dairy farm �!Dairy farmdete
t pregnant
ow(
i, d, preg, df) �
hg
ows(CS.dete
t pregnant
ow(
i, d, preg,
ows(df)), df)pre
an dete
t pregnan
y(
i, d, df),
an sele
t
alf group :GT.Cow id � Dairy farm ! Bool
an sele
t
alf group(
i, df) �CGS.
an sele
t
alf group(
i,
ows(df)),sele
t
alf group :GT.Cow id � D.Date � Dairy farm �!GT.Group id � Dairy farmsele
t
alf group(
i, d, df) �let(gt, gs) =CGS.sele
t
alf group(
i, d,
ows(df), groups(df))in (gt,
hg groups(gs, df))endpre
an sele
t
alf group(
i, df),
an sell
ow :GT.Cow id � D.Date � Dairy farm ! Bool
an sell
ow(
i, d, df) �CS.
an sell
ow(
i, d,
ows(df), past
ows(df)),sell
ow :GT.Cow id � D.Date � Dairy farm �! Dairy farmsell
ow(
i, d, df) �

C.1 DAIRY FARM Module 146let(
s, p
s) =CS.sell
ow(
i, d,
ows(df), past
ows(df))in
hg past
ows(p
s,
hg
ows(
s, df))endpre
an sell
ow(
i, d, df),
an goto
ru :GT.Cow id � D.Date � Dairy farm ! Bool
an goto
ru(
i, d, df) �GT.
alf rearing unit 2 groups(df) ^CS.
an goto
ru(
i, d,
ows(df)),send
alf to
ru :GT.Cow id � D.Date � Dairy farm �! Dairy farmsend
alf to
ru(
i, d, df) �
hg
ows(CS.send
alf to
ru(
i, d,
ows(df)), df)pre
an goto
ru(
i, d, df),
an send to pasture :GT.Group id � D.Date � Nat � GT.Plot id �GT.Field id � Dairy farm !Bool
an send to pasture(gt, d, dn, pi, �, df) �CGS.
an send to pasture(gt, d, pi, �, groups(df),
ows(df)) ^FS.is de�ned(pi, �, d, dn, �elds(df)),send to pasture :GT.Group id � D.Date � Nat � GT.Plot id �GT.Field id � Dairy farm �!Dairy farmsend to pasture(gt, d, dn, pi, �, df) �
hg groups(CGS.send to pasture(gt, d, dn, pi, �, groups(df),
ows(df)), df)pre
an send to pasture(gt, d, dn, pi, �, df),
an take out
ru :GT.Cow id � D.Date � Dairy farm ! Bool
an take out
ru(
i, d, df) �
i 2
ows(df) ^GT.
alf rearing unit 2 groups(df) ^CS.
an take out
ru(
i, d,
ows(df)) ^CS.
an eat bal(
i, d,
ows(df)) ^

C.1 DAIRY FARM Module 147CGS.
an goto group(
i, d, CS.sele
t group for
ow(
i, d,
ows(df)),
ows(df), groups(df)),take
alf out
ru :GT.Cow id � D.Date � Dairy farm �! Dairy farmtake
alf out
ru(
i, d, df) �assign group to
ow(
i, d, df)pre
an take out
ru(
i, d, df),
an re
eive va

 :GT.Cow id � D.Date � GT.Va

ine � Dairy farm !Bool
an re
eive va

(
i, d, va

, df) �CS.
an re
eive va

(
i, d, va

,
ows(df)),va

inate
ow :GT.Cow id � D.Date � GT.Va

ine � Dairy farm �!Dairy farmva

inate
ow(
i, d, va

, df) �
hg
ows(CS.va

inate
ow(
i, d, va

,
ows(df)), df)pre
an re
eive va

(
i, d, va

, df),�eld he
tare loading :GT.Field id � D.Date � Dairy farm �!GT.He
t loading�eld he
tare loading(�, d, df) �real (CGS.number
ows in �eld(�, d, groups(df),
ows(df))) /FS.�eld size(�, �elds(df))pre � 2 �elds(df),group
urrent plot :GT.Group id � D.Date � Dairy farm �! GT.In plotgroup
urrent plot(gt, d, df) �CGS.group
urrent plot(gt, d, groups(df))pre gt 2 groups(df),
ow
urrent plot :GT.Cow id � D.Date � Dairy farm �! GT.In plot
ow
urrent plot(
i, d, df) �CGS.group
urrent plot(
ow group(
i, df), d, groups(df))pre
i 2
ows in group(
ow group(
i, df), df) ^
ow group(
i, df) 2 groups(df),

C.1 DAIRY FARM Module 148
an be in group : GT.Cow id � Dairy farm ! Bool
an be in group(
i, df) �CS.
an be in group(
i,
ows(df)),
ow group : GT.Cow id � Dairy farm �! GT.Group id
ow group(
i, df) � CS.
ow group(
i,
ows(df))pre
an be in group(
i, df),
ow events :GT.Cow id � D.Period � CE.Cow event kind �Dairy farm �!CH.History
ow events(
i, p, ev kind, df) �CS.
ow events(
i, p, ev kind,
ows(df))pre
i 2
ows(df),group events :GT.Group id � D.Period � GE.Group event kind �Dairy farm �!GH.Historygroup events(gt, p, ev kind, df) �CGS.group events(gt, p, ev kind, groups(df))pre gt 2 groups(df),
ows in group : GT.Group id � Dairy farm �! CS.Cows
ows in group(gt, df) �CGS.
ows in group(gt, groups(df),
ows(df))pre gt 2 groups(df),
ow mother : GT.Cow id � Dairy farm �! GT.Cow id
ow mother(
i, df) � CS.
ow mother(
i,
ows(df))pre
i 2
ows(df),
ow
lassif :GT.Cow id � Dairy farm �! GT.Cow
lassif
ow
lassif(
i, df) � CS.
ow
lassif(
i,
ows(df))pre
i 2
ows(df),
ow history p :GT.Cow id � D.Period � Dairy farm �! CH.History
ow history p(
i, p, df) �CS.
ow history p(
i, p,
ows(df))pre
i 2
ows(df),is wf group plot : D.Date � Dairy farm ! Bool

C.1 DAIRY FARM Module 149is wf group plot(d, df) �(8 gt : GT.Group id �gt 2 groups(df))letplot = group
urrent plot(gt, d, df),� = GT.�eld id(plot),pi = GT.plot id(plot)in � 2 �elds(df) ^(FS.exists plot(pi, �, �elds(df)))CGS.is only group(gt, d, pi, �, groups(df)))end),is wf
ow mother : D.Date � Dairy farm ! Boolis wf
ow mother(d, df) �(8
i : GT.Cow id �(
i 2
ows(df) _
i 2 past
ows(df)))(8 ev : CH.Event �ev 2
ow events(
i, D.upto(d), CE.birth, df))let
f = CE.
alf id(CH.event inf(ev)) in
f 2
ows(df) _
f 2 past
ows(df)end)),is wf
ow group : D.Date � Dairy farm ! Boolis wf
ow group(d, df) �(8
i : GT.Cow id �(
i 2
ows(df) _
i 2 past
ows(df)))(8 ev : CH.Event �ev 2
ow events(
i, D.upto(d), CE.
ow to group, df))let gt = CE.group(CH.event inf(ev)) ingt 2 groups(df)end)),is wf
ow insem : D.Date � Dairy farm ! Boolis wf
ow insem(d, df) �(8
i : GT.Cow id �(
i 2
ows(df) _
i 2 past
ows(df)))(8 ev : CH.Event �ev 2
ow events(
i, D.upto(d), CE.insemination, df))

C.1 DAIRY FARM Module 150letinsem =CE.insem
lassif(CH.event inf(ev))in
ase insem ofGT.nat insem(bi) ! bi 2 bulls(df),! trueendend)),is wf group to plot : D.Date � Dairy farm ! Boolis wf group to plot(d, df) �(8 gt : GT.Group id �gt 2 groups(df))(8 ev : GH.Event �ev 2group events(gt, D.upto(d), GE.group to plot, df))let plot = GE.plot in(GH.event inf(ev)) inGT.�eld id(plot) 2 �elds(df) ^(FS.exists plot(GT.plot id(plot), GT.�eld id(plot),�elds(df)) _FS.is past plot(GT.plot id(plot), GT.�eld id(plot),�elds(df)))end)),
he
k milking re
ord : Dairy farm ! Bool
he
k milking re
ord(df) �(8
i : GT.Cow id �
i 2
ows(df))(8 h1, h2, h3 : CH.History �CS.
ow history(
i,
ows(df)) = h3 b h2 b h1 ^h2 6= hi ^CE.kind of(CH.event inf(h2(len (h2)))) =CE.birth ^�CH.in history(CE.
ow dried, h2) ^�CH.in history(CE.death, h2) ^(8 ev : CH.Event �ev 2 h2 ^CE.is
ow to group(CH.event inf(ev)))CE.group(CH.event inf(ev)) 6= GT.dry
ow))CH.
he
k event re
ord(K.day milkings, K.hours toleran
e, h2))),

C.2 COW GROUPS Module 151�� Two more fun
tions similar to
he
k milking re
ord�� should be written: one to
he
k that ea
h�� group re
eives one feeding in ea
h 24 hours�� period and the other to
he
k that groups�� of type heifer,one and two have two heat dete
tions�� per 24 hours period�� more
he
king fun
tions may be ne
essaryis
onsistent dairy farm :Nat � Nat � D.Date � Dairy farm ! Boolis
onsistent dairy farm(max h, min h, d, df) �is wf group plot(d, df) ^is wf
ow mother(d, df) ^ is wf
ow group(d, df) ^is wf
ow insem(d, df) ^is wf group to plot(d, df) ^
he
k milking re
ord(df)endC.2 COW GROUPS Module
ontext: COW GROUP, COWSs
heme COW GROUPS(CS : COWS) =
lassobje
t CG : COW GROUPtype Cow groups = GT.Group id !m CG.Cow groupvalueadd
ow group :GT.Group id � Cow groups �! Cow groupsadd
ow group(gt,
gs) �
gs y [gt 7! CG.make
ow group() ℄pre gt 62
gs ^ �is
alf group(gt),is
alf group : GT.Group id ! Boolis
alf group(gt) �
ase gt ofGT.
alf(,) ! true,! falseend,de�ne range : GT.Cow id � Cow groups ! Nat � Nat=� dummy value for now �=de�ne range(id,
gs) � (0, 0),

C.2 COW GROUPS Module 152de�ne
alf group :Nat � Nat � Cow groups �! Cow groupsde�ne
alf group(ds, de,
gs) �
gs y [GT.
alf(ds, de) 7! CG.make
ow group() ℄pre GT.
alf(ds, de) 62
gs,delete
ow group :GT.Group id � Cow groups ! Cow groupsdelete
ow group(gt,
gs) �
gs n fgtg,
ows in group :GT.Group id � Cow groups � CS.Cows �! CS.Cows
ows in group(gt,
gs,
s) �if
s = [℄ then [℄elselet
i = hd
s inif CS.is in group(
i, gt,
s)then[
i 7!
s(
i) ℄ y
ows in group(gt,
gs,
s n f
ig)else
ows in group(gt,
gs,
s n f
ig)endendendpre gt 2
gs,is female
alf group :GT.Group id � Cow groups � CS.Cows ! Boolis female
alf group(gt,
gs,
s) �gt 2
gs ^(8
i : GT.Cow id �
i 2
ows in group(gt,
gs,
s))CS.is female
alf(
i,
s)),has produ
ed milk :GT.Group id � D.Period � Cow groups � CS.Cows !Boolhas produ
ed milk(gt, p,
gs,
s) �gt 2
gs ^ (gt = GT.one _ gt = GT.two) ^(9
i : GT.Cow id �
i 2
s ^ CS.is in group(
i, gt,
s) ^CS.has produ
ed milk(
i, p,
s)),group indiv prod :GT.Group id � D.Period � Cow groups � CS.Cows �!

C.2 COW GROUPS Module 153GT.Indiv prodgroup indiv prod(gt, p,
gs,
s) �CS.
ows milk in period(p,
ows in group(gt,
gs,
s)) /real (CS.number milkings in period(p,
ows in group(gt,
gs,
s)))pre has produ
ed milk(gt, p,
gs,
s),
an sele
t
alf group : GT.Cow id � CS.Cows ! Bool
an sele
t
alf group(
i,
s) �
i 2
s ^ CS.is
alf(
i,
s),sele
t
alf group :GT.Cow id � D.Date � CS.Cows � Cow groups �!GT.Group id � Cow groupssele
t
alf group(
i, d,
s,
gs) �if
gs = [℄thenlet(s, e) = de�ne range(
i,
gs),new groups = de�ne
alf group(s, e,
gs)in (GT.
alf(s, e), new groups)endelse
ase hd
gs ofGT.
alf(ds, de) !if D.is in range(ds, de, CS.C.
ow age days(d,
s(
i)))then (GT.
alf(ds, de),
gs)elselet(s, e) = de�ne range(
i,
gs),new groups = de�ne
alf group(s, e,
gs)in (GT.
alf(s, e), new groups)endend,!sele
t
alf group(
i, d,
s,
gs n fhd
gsg)endendpre
an sele
t
alf group(
i,
s),empty : GT.Group id � Cow groups � CS.Cows ! Boolempty(gt,
gs,
s) �

C.2 COW GROUPS Module 154gt 2
gs ^
ows in group(gt,
gs,
s) = [℄,
an goto group :GT.Cow id � D.Date � GT.Group id � CS.Cows �Cow groups !Bool
an goto group(
i, d, gt,
s,
gs) �
i 2
s ^ gt 2
gs ^CS.
an goto group(
i, d, gt,
s),sele
t group for
ow :GT.Cow id � D.Date � CS.Cows � Cow groups �!GT.Group idsele
t group for
ow(
i, d,
s,
gs) �if CS.is
alf(
i,
s)thenlet (gt, gs) = sele
t
alf group(
i, d,
s,
gs) ingtendelse CS.sele
t group for
ow(
i, d,
s)endpre
i 2
s ^(�CS.is
alf(
i,
s) ^CS.sele
t group for
ow(
i, d,
s) 2
gs _CS.is
alf(
i,
s) ^let (gt, gs) = sele
t
alf group(
i, d,
s,
gs) ingt 2
gsend),average weight :GT.Group id � Cow groups � CS.Cows ! GT.Weightaverage weight(gt,
gs,
s) �let
ows =
ows in group(gt,
gs,
s),number
ows =
ard (dom (
ows))in CS.sum
urrent weight(
ows) / real (number
ows)endpre gt 2
gs,
an
ompute ration :GT.Group id � Cow groups � CS.Cows ! Bool
an
ompute ration(gt,
gs,
s) �gt 2
gs ^ �empty(gt,
gs,
s) ^gt 6= GT.
alf rearing unit,

C.2 COW GROUPS Module 155
ompute ration :GT.Group id � Cow groups � CS.Cows �! GT.Quantity
ompute ration(gt,
gs,
s) �letp =
ase gt ofGT.one ! K.ration one,GT.pre birth
ow ! K.ration two,GT.two ! K.ration two,GT.dry
ow ! K.ration dry,GT.dis
ard
ow ! K.ration dis
ard,GT.heifer ! K.ration heifer,GT.
alf(min, max) !if min � K.
alf min age ration ^max � K.
alf max age rationthen K.ration
alf minelse K.ration
alf maxendendin p � average weight(gt,
gs,
s) / 100.00endpre
an
ompute ration(gt,
gs,
s),
an send to pasture :GT.Group id � D.Date � GT.Plot id �GT.Field id � Cow groups � CS.Cows !Bool
an send to pasture(gt, d, pi, �,
gs,
s) �gt 2
gs ^ is only group(gt, d, pi, �,
gs) ^�empty(gt,
gs,
s) ^CG.
an send to pasture(d,
gs(gt)),is only group :GT.Group id � D.Date � GT.Plot id �GT.Field id � Cow groups !Boolis only group(gt, d, pi, �,
gs) �gt 2
gs ^(8 g : GT.Group id �g 2
gs)g = gt _CG.in plot(d,
gs(g)) 6= GT.mk In plot(�, pi)),

C.2 COW GROUPS Module 156send to pasture :GT.Group id � D.Date � Nat � GT.Plot id �GT.Field id � Cow groups � CS.Cows �!Cow groupssend to pasture(gt, d, dn, pi, �,
gs,
s) �
gs y[gt 7! CG.send to pasture(d, dn, pi, �,
gs(gt)) ℄pre
an send to pasture(gt, d, pi, �,
gs,
s),
ompute pasture eaten :GT.Group id � GT.Ration � Cow groups � CS.Cows �!GT.Quantity
ompute pasture eaten(gt, r,
gs,
s) �let rq =
ompute ration(gt,
gs,
s) in(rq � GT.total foods(r))endpre gt 2
gs,is well def ration one :GT.Quantity � GT.Corn sil � GT.Hay �GT.Balan
ed � GT.Grain !Boolis well def ration one(rq,
orn, hay, bal, gr) �
orn � K.min
orn one � rq / 100.0 ^
orn � K.max
orn one � rq / 100.0 ^hay � K.min hay one � rq / 100.0 ^hay � K.max hay one � rq / 100.0 ^bal + GT.gr quantity(gr) �K.min
on
 one � rq / 100.0 ^bal + GT.gr quantity(gr) �K.max
on
 one � rq / 100.0,is well def ration two :GT.Quantity � GT.Corn sil � GT.Hay �GT.Balan
ed � GT.Grain !Boolis well def ration two(rq,
orn, hay, bal, gr) �
orn � K.min
orn two � rq / 100.0 ^
orn � K.max
orn two � rq / 100.0 ^hay � K.min hay two � rq / 100.0 ^hay � K.max hay two � rq / 100.0 ^bal + GT.gr quantity(gr) �K.min
on
 two � rq / 100.0 ^bal + GT.gr quantity(gr) �K.max
on
 two � rq / 100.0,

C.2 COW GROUPS Module 157is well def ration dis
ard :GT.Quantity � GT.Corn sil � GT.Hay �GT.Balan
ed � GT.Grain !Boolis well def ration dis
ard(rq,
orn, hay, bal, gr) �
orn = 0.0 ^ hay = 0.0 ^bal + GT.gr quantity(gr) = 0.0,is well def ration
al� :GT.Quantity � GT.Corn sil � GT.Hay �GT.Balan
ed � GT.Grain !Boolis well def ration
al�(rq,
orn, hay, bal, gr) �
orn = 0.0 ^ hay = 0.0 ^ bal � K.min bal
alf ^bal � K.min bal
alf ^ GT.gr quantity(gr) = 0.0,is well def ration
alfm :GT.Quantity � GT.Corn sil � GT.Hay �GT.Balan
ed � GT.Grain !Boolis well def ration
alfm(rq,
orn, hay, bal, gr) �
orn = 0.0 ^ hay = 0.0 ^ bal = 0.0 ^GT.gr quantity(gr) = 0.0,is well def ration :GT.Group id � GT.Quantity � GT.Corn sil �GT.Hay � GT.Balan
ed � GT.Grain � Cow groups �CS.Cows !Boolis well def ration(gt, rq,
orn, hay, bal, gr,
gs,
s) �gt 2
gs ^ �empty(gt,
gs,
s) ^gt 6= GT.
alf rearing unit ^if (gt = GT.one _ gt = GT.heifer)then is well def ration one(rq,
orn, hay, bal, gr)elsif(gt = GT.two _ gt = GT.dry
ow _gt = GT.pre birth
ow)thenis well def ration two(rq,
orn, hay, bal, gr)elsif gt = GT.dis
ard
owthenis well def ration dis
ard(rq,
orn, hay, bal, gr)elsiflet GT.
alf(s, e) = gt in(e � K.
alf middle age _

C.2 COW GROUPS Module 158is female
alf group(gt,
gs,
s))endthenis well def ration
al�(rq,
orn, hay, bal, gr)elseis well def ration
alfm(rq,
orn, hay, bal, gr)end,
an feed group :GT.Group id � D.Date � Cow groups � CS.Cows !Bool
an feed group(gt, d,
gs,
s) �gt 2
gs ^ �empty(gt,
gs,
s) ^gt 6= GT.
alf rearing unit ^CG.
an feed group(d,
gs(gt)),feed group :GT.Group id � D.Date � GT.Corn sil � GT.Hay �GT.Con
 � Cow groups � CS.Cows �!Cow groupsfeed group(gt, d,
orn, hay,
on
,
gs,
s) �letration = GT.mk Ration(0.0,
orn, hay,
on
),new r =GT.
hg pasture(
ompute pasture eaten(gt, ration,
gs,
s),ration)in
gs y [gt 7! CG.feed group(new r, d,
gs(gt)) ℄endpre
an feed group(gt, d,
gs,
s),
an dete
t heat :GT.Group id � D.Date � (GT.Cow id � Bool)� �Cow groups � CS.Cows !Bool
an dete
t heat(gt, d,
sl,
gs,
s) �gt 2
gs ^(gt = GT.one _ gt = GT.two _ gt = GT.heifer) ^(8 (
i, h) : GT.Cow id � Bool �(
i, h) 2
sl)
i 2
ows in group(gt,
gs,
s)) ^CG.
an dete
t heat(d,
gs(gt)),dete
t heat :GT.Group id � D.Date � (GT.Cow id � Bool)� �

C.2 COW GROUPS Module 159Cow groups � CS.Cows �!Cow groups � CS.Cowsdete
t heat(gt, d,
sl,
gs,
s) �(
gs y [gt 7! CG.dete
t heat(d,
gs(gt)) ℄,
s y CS.register heat(d,
sl,
s))pre
an dete
t heat(gt, d,
sl,
gs,
s),number
ows in group :GT.Group id � Cow groups � CS.Cows �! Natnumber
ows in group(gt,
gs,
s) �
ard (dom (
ows in group(gt,
gs,
s)))pre gt 2
gs,is in �eld :GT.Field id � D.Date � GT.Group id � Cow groups !Boolis in �eld(�, d, gt,
gs) �gt 2
gs ^GT.�eld id(CG.in plot(d,
gs(gt))) = �,number
ows in �eld :GT.Field id � D.Date � Cow groups � CS.Cows ! Natnumber
ows in �eld(�, d,
gs,
s) �if
gs = [℄ then 0elselet gt = hd
gs inif is in �eld(�, d, gt,
gs)thennumber
ows in group(gt,
gs,
s) +number
ows in �eld(�, d,
gs n fgtg,
s)else number
ows in �eld(�, d,
gs n fgtg,
s)endendend,group
urrent plot :GT.Group id � D.Date � Cow groups �! GT.In plotgroup
urrent plot(gt, d,
gs) �CG.in plot(d,
gs(gt))pre gt 2
gs,group events :GT.Group id � D.Period � GE.Group event kind �Cow groups �!GH.Historygroup events(gt, p, ev kind,
gs) �

C.3 COW GROUP Module 160CG.group events(p, ev kind,
gs(gt))pre gt 2
gsendC.3 COW GROUP Module
ontext: GT, GHs
heme COW GROUP =
lasstype Cow group :: history : GH.History $
hg historyvaluein plot : D.Date � Cow group �! GT.In plotin plot(d,
g) �letGE.group to plot(pl, n) =GH.get last ev info(GE.group to plot, history(
g))in plendpre GH.in history(GE.group to plot, history(
g)),is in plot : GT.In plot � D.Date � Cow group ! Boolis in plot(pl, d,
g) �GH.in history(GE.group to plot, history(
g)) ^letd1 =GH.get last ev date(GE.group to plot, history(
g)),GE.group to plot(plo, n) =GH.get last ev info(GE.group to plot, history(
g))in pl = plo ^�GH.event in period(GE.group out plot, D.sin
e(d1), history(
g))end,make
ow group : Unit ! Cow groupmake
ow group() � mk Cow group(GH.empty),
an send to pasture : D.Date � Cow group ! Bool
an send to pasture(d,
g) �

C.3 COW GROUP Module 161if GH.in history(GE.group to plot, history(
g))thenletd1 =GH.get last ev date(GE.group to plot, history(
g)),ev =GH.get last ev info(GE.group to plot, history(
g)),n = GE.days number(ev)in �GH.event in period(GE.group out plot, D.sin
e(d1), history(
g)) ^�GH.event in period(GE.group to plot, D.sin
e(d1), history(
g))endelse trueend,send to pasture :D.Date � Nat � GT.Plot id � GT.Field id �Cow group �!Cow groupsend to pasture(d, dn, pi, �,
g) �if GH.in history(GE.group to plot, history(
g))thenletnew gr =
hg history(GH.add event(d, GE.group out plot, history(
g)),
g)in
hg history(GH.add event(d,GE.group to plot(GT.mk In plot(�, pi), dn),history(new gr)),
g)endelse
hg history(GH.add event(d,GE.group to plot(GT.mk In plot(�, pi), dn),history(
g)),
g)endpre
an send to pasture(d,
g),

C.3 COW GROUP Module 162
an feed group : D.Date � Cow group ! Bool
an feed group(d,
g) �GH.in history(GE.group to plot, history(
g)) ^�GH.event in period(GE.feeding, D.sin
e(D.last midnight(d)),history(
g)),feed group :GT.Ration � D.Date � Cow group ! Cow groupfeed group(r, d,
g) �
hg history(GH.add event(d, GE.feeding(r), history(
g)),
g),
an dete
t heat : D.Date � Cow group ! Bool
an dete
t heat(d,
g) �if D.in morning(d)thenGH.event in period(GE.heat dete
tion, D.sin
e(D.last midnight(d)),history(
g))elseGH.event in period(GE.heat dete
tion, D.sin
e(D.last midday(d)),history(
g))end,dete
t heat : D.Date � Cow group �! Cow groupdete
t heat(d,
g) �
hg history(GH.add event(d, GE.heat dete
tion, history(
g)),
g)pre
an dete
t heat(d,
g),group rations : D.Period � Cow group ! GH.Historygroup rations(p,
g) �GH.�lter(GE.is feeding)(history(
g)),group events :D.Period � GE.Group event kind � Cow group !GH.Historygroup events(p, ev kind,
g) �
ase ev kind ofGE.group to plot ! group plots(p,
g),GE.feeding ! group feedings(p,
g),GE.heat dete
tion ! group heat det(p,
g),

C.4 GH Module 163! hiend,group plots : D.Period � Cow group ! GH.Historygroup plots(p,
g) �GH.evs in period(p, GH.�lter(GE.is group to plot)(history(
g))),group feedings : D.Period � Cow group ! GH.Historygroup feedings(p,
g) �GH.evs in period(p, GH.�lter(GE.is feeding)(history(
g))),group heat det : D.Period � Cow group ! GH.Historygroup heat det(p,
g) �GH.evs in period(p, GH.�lter(GE.is heat dete
tion)(history(
g)))endC.4 GH Module
ontext: HISTORY, GEobje
t GH :HISTORY(GEfGroup event for Event info,Group event kind for Event kindg)C.5 GE Module
ontext: GROUP EVENTobje
t GE : GROUP EVENTC.6 GROUP EVENT Module
ontext: Ks
heme GROUP EVENT =
lasstypeGroup event ==

C.6 GROUP EVENT Module 164group to plot(plot in : GT.In plot, days number : Nat) jgroup out plot jfeeding(ration : GT.Ration) jheat dete
tion,Group event kind ==group to plot jgroup out plot jfeeding jheat dete
tionvaluekind of : Group event ! Group event kindkind of(gev) �
ase gev ofgroup to plot(,) ! group to plot,group out plot ! group out plot,feeding() ! feeding,heat dete
tion ! heat dete
tionend,is feeding : Group event ! Boolis feeding(gev) �
ase kind of(gev) offeeding ! true,! falseend,is group to plot : Group event ! Boolis group to plot(gev) �
ase kind of(gev) ofgroup to plot ! true,! falseend,is group out plot : Group event ! Boolis group out plot(gev) �
ase kind of(gev) ofgroup out plot ! true,! falseend,is heat dete
tion : Group event ! Boolis heat dete
tion(gev) �
ase kind of(gev) ofheat dete
tion ! true,

C.7 COWS Module 165! falseendendC.7 COWS Module
ontext: COWs
heme COWS =
lassobje
t C : COWtype Cows = GT.Cow id !m C.Cowvalueadd
ow :GT.Cow id � D.Date � GT.Cow
lassif � Cows �!Cowsadd
ow(
i, birthd,
lassif,
s) �
s y [
i 7! C.make
ow(birthd,
lassif) ℄pre
i 62
s,delete
ow : GT.Cow id � Cows ! Cowsdelete
ow(
i,
s) �
s n f
ig,update
lassif :GT.Cow id � GT.Cow
lassif � Cows �! Cowsupdate
lassif(
i,
lassif,
s) �let new
las = C.
hg
lassif(
lassif,
s(
i)) in
s y [
i 7! new
las ℄endpre
i 2
s,is female
alf : GT.Cow id � Cows ! Boolis female
alf(
i,
s) �
i 2
s ^ C.is female
alf(
s(
i)),
an milk
ow : GT.Cow id � D.Date � Cows ! Bool
an milk
ow(
i, d,
s) �
i 2
s ^ C.
an milk
ow(d,
s(
i)),milk
ow :GT.Cow id � D.Date � GT.Litres � Cows �! Cowsmilk
ow(
i, d, lts,
s) �
s y [
i 7! C.milk
ow(d, lts,
s(
i)) ℄

C.7 COWS Module 166pre
an milk
ow(
i, d,
s),
an dry
ow : GT.Cow id � D.Date � Cows ! Bool
an dry
ow(
i, d,
s) �
i 2
s ^ �C.is dried(
s(
i)),dry
ow :GT.Cow id � D.Date � GT.Dried
ause � Cows �!Cowsdry
ow(
i, d, d
,
s) �
s y [
i 7! C.dry
ow(d, d
,
s(
i)) ℄pre
an dry
ow(
i, d,
s),
an weigh
ow : GT.Cow id � D.Date � Cows ! Bool
an weigh
ow(
i, d,
s) �
i 2
s ^ C.
an weigh
ow(d,
s(
i)),weigh
ow :GT.Cow id � D.Date � GT.Weight � Cows �! Cowsweigh
ow(
i, d, w,
s) �
s y [
i 7! C.weigh
ow(d, w,
s(
i)) ℄pre
an weigh
ow(
i, d,
s),
an deparasite
ow :GT.Cow id � D.Date � Cows ! Bool
an deparasite
ow(
i, d,
s) �
i 2
s ^ C.
an deparasite
ow(d,
s(
i)),deparasite
ow :GT.Cow id � D.Date � GT.Dep inf � Cows �! Cowsdeparasite
ow(
i, d, di,
s) �
s y [
i 7! C.deparasite
ow(d, di,
s(
i)) ℄pre
an deparasite
ow(
i, d,
s),
an insem
ow : GT.Cow id � D.Date � Cows ! Bool
an insem
ow(
i, d,
s) �
i 2
s ^ C.
an insem
ow(d,
s(
i)),insem
ow artif :GT.Cow id � D.Date � GT.Artif info � Cows �!Cowsinsem
ow artif(
i, d, ai,
s) �
s y [
i 7! C.insem
ow artif(d, ai,
s(
i)) ℄pre
an insem
ow(
i, d,
s),insem
ow natural :

C.7 COWS Module 167GT.Cow id � D.Date � GT.Bull id � Cows �! Cowsinsem
ow natural(
i, d, bi,
s) �
s y [
i 7! C.insem
ow natural(d, bi,
s(
i)) ℄pre
an insem
ow(
i, d,
s),
an dete
t pregnan
y :GT.Cow id � D.Date � Cows ! Bool
an dete
t pregnan
y(
i, d,
s) �
i 2
s ^ C.
an dete
t pregnan
y(d,
s(
i)),dete
t pregnant
ow :GT.Cow id � D.Date � Bool � Cows �! Cowsdete
t pregnant
ow(
i, d, preg,
s) �
s y [
i 7! C.dete
t pregnant
ow(d, preg,
s(
i)) ℄pre
an dete
t pregnan
y(
i, d,
s),
an save
ow death : GT.Cow id � Cows � Cows ! Bool
an save
ow death(
i,
s, p
s) �
i 2
s ^ �C.is dead
ow(
s(
i)) ^
i 62 p
s,save
ow death :GT.Cow id � D.Date � GT.Death
ause � Cows � Cows �!Cows � Cowssave
ow death(
i, d, d
,
s, p
s) �let new
ow = C.save
ow death(d, d
,
s(
i)) in(delete
ow(
i,
s), p
s y [
i 7! new
ow ℄)endpre
an save
ow death(
i,
s, p
s),
an re
eive va

 :GT.Cow id � D.Date � GT.Va

ine � Cows ! Bool
an re
eive va

(
i, d, va

,
s) �
i 2
s ^ C.
an re
eive va

(d, va

,
s(
i)),va

inate
ow :GT.Cow id � D.Date � GT.Va

ine � Cows �! Cowsva

inate
ow(
i, d, va

,
s) �
s y [
i 7! C.va

inate
ow(d, va

,
s(
i)) ℄pre
an re
eive va

(
i, d, va

,
s),
an sell
ow :GT.Cow id � D.Date � Cows � Cows ! Bool
an sell
ow(
i, d,
s, p
s) �
i 2
s ^ C.
an sell
ow(d,
s(
i)) ^
i 62 p
s,

C.7 COWS Module 168sell
ow :GT.Cow id � D.Date � Cows � Cows �!Cows � Cowssell
ow(
i, d,
s, p
s) �let new
ow = C.sell
ow(d,
s(
i)) in(delete
ow(
i,
s), p
s y [
i 7! new
ow ℄)endpre
an sell
ow(
i, d,
s, p
s),
an give birth : GT.Cow id � D.Date � Cows ! Bool
an give birth(
i, d,
s) �
i 2
s ^ C.
an give birth(d,
s(
i)),next birth date :GT.Cow id � D.Date � Cows �! D.Datenext birth date(
i, d,
s) �C.next birth date(d,
s(
i))pre
an give birth(
i, d,
s),has produ
ed milk :GT.Cow id � D.Period � Cows ! Boolhas produ
ed milk(
i, p,
s) �
i 2
s ^ C.has produ
ed milk(p,
s(
i)),
ow indiv prod :GT.Cow id � D.Period � Cows �! GT.Indiv prod
ow indiv prod(
i, p,
s) �C.
ow indiv prod(p,
s(
i))pre has produ
ed milk(
i, p,
s),
ows milk in period : D.Period � Cows ! GT.Litres
ows milk in period(p,
s) �if
s = [℄ then 0.0elselet
i = hd
s inC.milk in period(p,
s(
i)) +
ows milk in period(p,
s n f
ig)endend,number milkings in period : D.Period � Cows ! Natnumber milkings in period(p,
s) �if
s = [℄ then 0elselet
i = hd
s inC.number milkings in period(p,
s(
i)) +

C.7 COWS Module 169number milkings in period(p,
s n f
ig)endend,is in group : GT.Cow id � GT.Group id � Cows ! Boolis in group(
i, gt,
s) �
i 2
s ^ C.is in group(gt,
s(
i)),is
alf : GT.Cow id � Cows ! Boolis
alf(
i,
s) �
i 2
s ^ C.is
alf(
s(
i)),
an be in group : GT.Cow id � Cows ! Bool
an be in group(
i,
s) �
i 2
s ^ C.
an be in group(
s(
i)),
ow group : GT.Cow id � Cows �! GT.Group id
ow group(
i,
s) � C.
ow group(
s(
i))pre
an be in group(
i,
s),
an goto group :GT.Cow id � D.Date � GT.Group id � Cows ! Bool
an goto group(
i, d, gt,
s) �
i 2
s ^ C.
an goto group(d, gt,
s(
i)),sele
t group for
ow :GT.Cow id � D.Date � Cows �! GT.Group idsele
t group for
ow(
i, d,
s) �C.sele
t group for
ow(d,
s(
i))pre
i 2
s ^(C.is heifer(
s(
i)) _ C.is dairy
ow(
s(
i))),assign group to
ow :GT.Cow id � D.Date � GT.Group id � Cows �! Cowsassign group to
ow(
i, d, gt,
s) �
s y [
i 7! C.assign group to
ow(d, gt,
s(
i)) ℄pre
an goto group(
i, d, gt,
s),de�ne
ow
lassif :GT.Cow id � D.Date � Cows �! Cowsde�ne
ow
lassif(
i, d,
s) �
s y [
i 7! C.de�ne
ow
lassif(d,
s(
i)) ℄pre
i 2
s,
an goto
ru : GT.Cow id � D.Date � Cows ! Bool
an goto
ru(
i, d,
s) �

C.7 COWS Module 170
i 2
s ^ C.
an goto
ru(d,
s(
i)),send
alf to
ru :GT.Cow id � D.Date � Cows �! Cowssend
alf to
ru(
i, d,
s) �
s y [
i 7! C.send
alf to
ru(d,
s(
i)) ℄pre
an goto
ru(
i, d,
s),
an take out
ru : GT.Cow id � D.Date � Cows ! Bool
an take out
ru(
i, d,
s) �
i 2
s ^ C.
an take out
ru(d,
s(
i)),
an breed artif :GT.Cow id � D.Date � GT.Litres � GT.Quantity �Cows !Bool
an breed artif(
i, d, mr, bal,
s) �
i 2
s ^ C.
an breed artif(d, mr, bal,
s(
i)),breed artif :GT.Cow id � D.Date � GT.Litres � GT.Quantity �Cows �!Cowsbreed artif(
i, d, mr, bal,
s) �
s y [
i 7! C.breed artif(d, mr, bal,
s(
i)) ℄pre
an breed artif(
i, d, mr, bal,
s),
an eat bal : GT.Cow id � D.Date � Cows ! Bool
an eat bal(
i, d,
s) �
i 2
s ^ C.
an eat bal(d,
s(
i)),register heat :D.Date � (GT.Cow id � Bool)� � Cows ! Cowsregister heat(d,
sl,
s) �if
sl = hi then
selselet (
i, heat) = hd
sl inif
i 2
s ^C.
an register heat(d, heat,
s(
i))then
s y [
i 7! C.register heat(d, heat,
s(
i)) ℄ [register heat(d, tl
sl,
s)else register heat(d, tl
sl,
s)endend

C.7 COWS Module 171end,de�ne
ow id : Unit ! GT.Cow id=� dummy value for now �=de�ne
ow id() � 0,give birth :GT.Cow id � GT.Calf sex � D.Date � Cows �! Cowsgive birth(
i,
sex, d,
s) �let
alf id = de�ne
ow id() in
s y[
i 7! C.give birth(d,
alf id,
sex,
s(
i)) ℄ [[
alf id 7! C.make
alf(
sex, d) ℄endpre
an give birth(
i, d,
s),
ow mother : GT.Cow id � Cows �! GT.Cow id
ow mother(
i,
s) �let
im = hd
s inif C.is mother(
i,
s(
i),
s(
im)) then
imelse
ow mother(
i,
s n f
img)endendpre
i 2
s ^
s 6= [℄,
ow events :GT.Cow id � D.Period � CE.Cow event kind � Cows �!CH.History
ow events(
i, p, ev kind,
s) �C.
ow events(p, ev kind,
s(
i))pre
i 2
s,
ow
lassif : GT.Cow id � Cows �! GT.Cow
lassif
ow
lassif(
i,
s) � C.
ow
lassif(
s(
i))pre
i 2
s,
ow history p :GT.Cow id � D.Period � Cows �! CH.History
ow history p(
i, p,
s) � C.
ow history p(p,
s(
i))pre
i 2
s,
ow history : GT.Cow id � Cows �! CH.History
ow history(
i,
s) � C.history(
s(
i)),sum
urrent weight : Cows ! GT.Weightsum
urrent weight(
s) �

C.8 COW Module 172if
s = [℄ then 0.0elselet
i = hd
s inC.
urrent weight(
s(
i)) +sum
urrent weight(
s n f
ig)endendendC.8 COW Module
ontext: CHs
heme COW =
lasstypeCow ::birthday : D.Date
ow
lassif : GT.Cow
lassif $
hg
lassifhistory : CH.History $
hg historyvaluemake
ow : D.Date � GT.Cow
lassif ! Cowmake
ow(d,

lass) � mk Cow(d,

lass, CH.empty),default heifer info : GT.Heifer info =GT.mk Heifer info(0000),=� dummy value for now �=is
alf : Cow ! Boolis
alf(
) �
ase
ow
lassif(
) ofGT.
alf() ! true,! falseend,
alf lo
ation : Cow �! GT.Calf lo
ation
alf lo
ation(
) �if CH.in history(CE.
ow to group, history(
))thenletCE.
ow to group(gt) =CH.get last ev info(CE.
ow to group, history(
))in GT.with group(gt)

C.8 COW Module 173endelse GT.with motherendpre is
alf(
),is female
alf : Cow ! Boolis female
alf(
) �
ase
ow
lassif(
) ofGT.
alf(
 inf) !
ase GT.
alf sex(
 inf) ofGT.female
alf() ! true,GT.male
alf ! falseend,! falseend,is heifer : Cow ! Boolis heifer(
) �
ase
ow
lassif(
) ofGT.heifer() ! true,! falseend,is dairy
ow : Cow ! Boolis dairy
ow(
) �
ase
ow
lassif(
) ofGT.dairy() ! true,! falseend,is dis
ard
ow : Cow ! Boolis dis
ard
ow(
) �
ase
ow
lassif(
) ofGT.dairy(d
 info) !
ase GT.dairy
lassif(d
 info) ofGT.dis
ard ! true,! falseend,! falseend,is milking
ow : Cow ! Boolis milking
ow(
) �
ase
ow
lassif(
) ofGT.dairy(
 inf) !
ase GT.dairy
lassif(
 inf) of

C.8 COW Module 174GT.milking() ! true,! falseend,! falseend,is empty
ow : Cow ! Boolis empty
ow(
) �
ase
ow
lassif(
) ofGT.dairy(
 inf) !
ase GT.dairy
lassif(
 inf) ofGT.milking(m
 inf) !
ase m
 inf ofGT.empty ! true,! falseend,! falseend,! falseend,is post birth
ow : Cow ! Boolis post birth
ow(
) �
ase
ow
lassif(
) ofGT.dairy(
 inf) !
ase GT.dairy
lassif(
 inf) ofGT.milking(m
 inf) !
ase m
 inf ofGT.post birth ! true,! falseend,! falseend,! falseend,is early pregnant
ow : Cow ! Boolis early pregnant
ow(
) �
ase
ow
lassif(
) ofGT.dairy(
 inf) !
ase GT.dairy
lassif(
 inf) ofGT.milking(m
 inf) !
ase m
 inf ofGT.early pregnant ! true,! falseend,

C.8 COW Module 175! falseend,! falseend,is dry
ow : Cow ! Boolis dry
ow(
) �
ase
ow
lassif(
) ofGT.dairy(
 inf) !
ase GT.dairy
lassif(
 inf) ofGT.dry() ! true,! falseend,! falseend,is pre birth
ow : Cow ! Boolis pre birth
ow(
) �
ase
ow
lassif(
) ofGT.dairy(
 inf) !
ase GT.dairy
lassif(
 inf) ofGT.dry(d
 inf) !
ase d
 inf ofGT.pre birth ! true,! falseend,! falseend,! falseend,is non pre birth
ow : Cow ! Boolis non pre birth
ow(
) �
ase
ow
lassif(
) ofGT.dairy(
 inf) !
ase GT.dairy
lassif(
 inf) ofGT.dry(d
 inf) !
ase d
 inf ofGT.non pre birth ! true,! falseend,! falseend,! falseend,

C.8 COW Module 176
ow age months : D.Date � Cow ! Nat
ow age months(d,
) � D.months sin
e(birthday(
), d),dairy
ow age : D.Date � Cow �! Natdairy
ow age(d,
) �D.months sin
e(�rst birth date(
), d) / 12pre is dairy
ow(
),
ow age days : D.Date � Cow ! Nat
ow age days(d,
) � D.days sin
e(birthday(
), d),is pregnant : D.Date � Cow ! Boolis pregnant(d,
) �(is heifer(
) _ is dairy
ow(
)) ^�is on heat(d,
) ^CH.in history(CE.preg dete
tion, history(
)) ^letd =CH.get last ev date(CE.preg dete
tion, history(
))in CE.pregnant(CH.get last ev info(CE.preg dete
tion, history(
))) = true ^�CH.event in period(CE.birth, D.sin
e(d), history(
))end,is on heat : D.Date � Cow ! Boolis on heat(d,
) �(is heifer(
) _ is dairy
ow(
)) ^�is pregnant(d,
) ^CH.in history(CE.heat, history(
)) ^let d = CH.get last ev date(CE.heat, history(
)) inCH.event in period(CE.heat, D.last n hours(K.heat period, d),history(
))end,pregnan
y month : D.Date � Cow �! Natpregnan
y month(d,
) �D.months sin
e(last insem date(
), d)pre is pregnant(d,
),milked : D.Date � Cow ! Boolmilked(d,
) �

C.8 COW Module 177if D.in morning(d)thenCH.event in period(CE.milking, D.sin
e(D.last midnight(d)),history(
))elseCH.event in period(CE.milking, D.sin
e(D.last midday(d)),history(
))end,
an milk
ow : D.Date � Cow ! Bool
an milk
ow(d,
) �is milking
ow(
) ^ �milked(d,
),milk
ow : D.Date � GT.Litres � Cow �! Cowmilk
ow(d, lts,
) �
hg history(CH.add event(d, CE.milking(lts), history(
)),
)pre
an milk
ow(d,
),end la
tation : D.Date � Cow ! Boolend la
tation(d,
) �is milking
ow(
) ^CH.in history(CE.birth, history(
)) ^D.months sin
e(last birth date(
), d) �K.la
t period,
urrent weight : Cow �! GT.Weight
urrent weight(
) �letweight =CE.weight(CH.get last ev info(CE.weigh, history(
)))in weightendpre CH.in history(CE.weigh, history(
)),last heat date : Cow �! D.Datelast heat date(
) �CH.get last ev date(CE.heat, history(
))pre CH.in history(CE.heat, history(
)),�rst birth date : Cow �! D.Date�rst birth date(
) �

C.8 COW Module 178CH.date(CH.get �rst event(
ow births(D.sin
e(birthday(
)),
)))pre CH.in history(CE.birth, history(
)),last birth date : Cow �! D.Datelast birth date(
) �CH.get last ev date(CE.birth, history(
))pre CH.in history(CE.birth, history(
)),last insem date : Cow �! D.Datelast insem date(
) �CH.get last ev date(CE.insemination, history(
))pre CH.in history(CE.insemination, history(
)),is dried : Cow ! Boolis dried(
) �CH.event in period(CE.
ow dried, D.sin
e(birthday(
)), history(
)),dry
ow : D.Date � GT.Dried
ause � Cow �! Cowdry
ow(d, d
,
) �letnew
1 =
hg history(CH.add event(d, CE.
ow dried(d
), history(
)),
),new
2 =assign group to
ow(d, GT.dry
ow, new
1)in set dis
ard
lassif(d, new
2)endpre �is dried(
),
an weigh
ow : D.Date � Cow ! Bool
an weigh
ow(d,
) ��CH.event in period(CE.weigh, D.last n months(1, d), history(
)) _(is dis
ard
ow(
) _ �is female
alf(
)) ^�CH.event in period(CE.weigh, D.sin
e(D.last midnight(d)),history(
)),weigh
ow : D.Date � GT.Weight � Cow �! Cowweigh
ow(d, w,
) �
hg history(

C.8 COW Module 179CH.add event(d, CE.weigh(w), history(
)),
)pre
an weigh
ow(d,
),
an deparasite
ow : D.Date � Cow ! Bool
an deparasite
ow(d,
) �is
alf(
) ^(is in group(GT.
alf rearing unit,
) _�CH.event in period(CE.deparasitation,D.last n months(K.deparas period, d),history(
))) _is heifer(
) ^ �is pregnant(d,
) ^�CH.event in period(CE.deparasitation,D.last n months(K.deparas period, d), history(
)),deparasite
ow : D.Date � GT.Dep inf � Cow �! Cowdeparasite
ow(d, di,
) �
hg history(CH.add event(d, CE.deparasitation(di), history(
)),
)pre
an deparasite
ow(d,
),
orre
t he weight : Cow ! Bool
orre
t he weight(
) �
urrent weight(
) �K.he weight per � K.dairy weight,
an insem
ow : D.Date � Cow ! Bool
an insem
ow(d,
) �(is post birth
ow(
) ^len (
ow heats(D.sin
e(last birth date(
)),
)) � 1 _is heifer(
) ^
orre
t he weight(
)) ^len (
ow inseminations(D.last n months(K.insem months, d),
)) <K.insem limit ^ is on heat(d,
),insem
ow artif :D.Date � GT.Artif info � Cow �! Cowinsem
ow artif(d, ai,
) �
hg history(CH.add event(d, CE.insemination(GT.artif insem(ai)),history(
)),
)pre
an insem
ow(d,
),

C.8 COW Module 180insem
ow natural :D.Date � GT.Bull id � Cow �! Cowinsem
ow natural(d, bi,
) �
hg history(CH.add event(d, CE.insemination(GT.nat insem(bi)),history(
)),
)pre
an insem
ow(d,
),
an be pregnant
ow : D.Date � Cow ! Bool
an be pregnant
ow(d,
) �(is heifer(
) _ is dairy
ow(
)) ^CH.in history(CE.heat, history(
)) ^CH.event in period(CE.insemination, D.sin
e(last heat date(
)),history(
)),
an dete
t pregnan
y : D.Date � Cow ! Bool
an dete
t pregnan
y(d,
) �
an be pregnant
ow(d,
) ^CH.in history(CE.insemination, history(
)) ^D.days sin
e(d,CH.get last ev date(CE.insemination, history(
))) �K.preg dete
t period,dete
t pregnant
ow : D.Date � Bool � Cow �! Cowdete
t pregnant
ow(d, preg,
) �if pregthenif is dairy
ow(
)thenletnew
1 =
hg history(CH.add event(d, CE.preg dete
tion(true), history(
)),
),new
2 =assign group to
ow(d, GT.two, new
1)in de�ne
ow
lassif(d, new
2)endelse
hg history(CH.add event(

C.8 COW Module 181d, CE.preg dete
tion(true), history(
)),
)endelse
hg history(CH.add event(d, CE.preg dete
tion(false), history(
)),
)endpre
an dete
t pregnan
y(d,
),is dead
ow : Cow ! Boolis dead
ow(
) �CH.event in period(CE.death, D.sin
e(birthday(
)), history(
)),save
ow death :D.Date � GT.Death
ause � Cow �! Cowsave
ow death(d, d
,
) �
hg history(CH.add event(d, CE.death(d
), history(
)),
)pre �is dead
ow(
),va

 re
eived :GT.Va

 type � D.Period � Cow ! Boolva

 re
eived(vt, p,
) ��(9 ev : CH.Event �ev 2CH.evs in period(p, CH.�lter(CE.is va

ination)(history(
))) ^let va

 = CE.va

ine(CH.event inf(ev)) inGT.va

 type(va

) = vtend),
an re
eive va

 : D.Date � GT.Va

ine � Cow ! Bool
an re
eive va

(d, va

,
) �
ase GT.va

 type(va

) ofGT.triple !is
alf(
) ^�va

 re
eived(GT.triple,D.last n months(K.triple va

 period, d),
) ^(
ow age months(d,
) = 3 _
ow age months(d,
) = 6 _
ow age months(d,
) = 9 _
ow age months(d,
) = 12),GT.diarrhoea !is heifer(
) ^ is pregnant(d,
) _

C.8 COW Module 182is dry
ow(
) ^(pregnan
y month(d,
) = 7 ^�va

 re
eived(GT.diarrhoea, D.last n months(1, d),
) _pregnan
y month(d,
) = K.pregnan
y period ^�va

 re
eived(GT.diarrhoea, D.last n months(1, d),
)),GT.bru
ellosis !is female
alf(
) ^
ow age months(d,
) � 3 ^
ow age months(d,
) � 10 ^�va

 re
eived(GT.va

 type(va

), D.sin
e(birthday(
)),
)end ^ �GT.expired(d, va

) ^�CH.event in period(CE.va

ination, D.sin
e(D.last midnight(d)),history(
)),va

inate
ow : D.Date � GT.Va

ine � Cow �! Cowva

inate
ow(d, va

,
) �
hg history(CH.add event(d, CE.va

ination(va

), history(
)),
)pre
an re
eive va

(d, va

,
),
an sell
ow : D.Date � Cow ! Bool
an sell
ow(d,
) �(�is female
alf(
) _ is dis
ard
ow(
)) ^CH.event in period(CE.weigh, D.sin
e(D.last midnight(d)), history(
)) ^�CH.event in period(CE.
ow sale, D.sin
e(birthday(
)), history(
)),sell
ow : D.Date � Cow �! Cowsell
ow(d,
) �
hg history(CH.add event(d, CE.
ow sale, history(
)),
)pre
an sell
ow(d,
),next birth date : D.Date � Cow �! D.Datenext birth date(d,
) �D.add n months(last insem date(
), K.pregnan
y period)pre
an give birth(d,
),sum litres : CH.History ! GT.Litres

C.8 COW Module 183sum litres(h) �if h = hi then 0.0elselet lts = CE.litres(CH.event inf(hd h)) inlts + sum litres(tl h)endend,milk in period : D.Period � Cow ! GT.Litresmilk in period(p,
) �sum litres(CH.evs in period(p, CH.�lter(CE.is milking)(history(
)))),has produ
ed milk : D.Period � Cow ! Boolhas produ
ed milk(p,
) �CH.event in period(CE.milking, p, history(
)),number milkings in period : D.Period � Cow ! Natnumber milkings in period(p,
) �len (
ow milkings(p,
)),
ow indiv prod : D.Period � Cow �! GT.Indiv prod
ow indiv prod(p,
) �milk in period(p,
) /real (number milkings in period(p,
))pre has produ
ed milk(p,
),is in group : GT.Group id � Cow ! Boolis in group(gt,
) � gt =
ow group(
),
an goto group : D.Date � GT.Group id � Cow ! Bool
an goto group(d, gt,
) �if CH.in history(CE.
ow to group, history(
)) ^gt =CE.group(CH.get last ev info(CE.
ow to group, history(
)))then falseelse trueend,assign group to
ow :D.Date � GT.Group id � Cow �! Cowassign group to
ow(d, gt,
) �

C.8 COW Module 184
hg history(CH.add event(d, CE.
ow to group(gt), history(
)),
)pre
an goto group(d, gt,
),
an be in group : Cow ! Bool
an be in group(
) ��is
alf(
) _is
alf(
) ^
alf lo
ation(
) 6= GT.with mother,
ow group : Cow �! GT.Group id
ow group(
) �CE.group(CH.get last ev info(CE.
ow to group, history(
)))pre
an be in group(
),
an be in one : D.Date � Cow ! Bool
an be in one(d,
) �is post birth
ow(
) ^D.is in period(last birth date(
), D.last n days(7, d)),
an be in two : D.Date � Cow ! Bool
an be in two(d,
) �is in group(GT.one,
) ^D.months sin
e(last birth date(
), d) � 3 _is dairy
ow(
) ^ is pregnant(d,
) ^pregnan
y month(d,
) < 7,
an be in pre birth : D.Date � Cow ! Bool
an be in pre birth(d,
) �(is dry
ow(
) _ is heifer(
) ^ is pregnant(d,
)) ^D.is in range(15, 20, D.days sin
e(next birth date(d,
), d)),
an be in dry : D.Date � Cow ! Bool
an be in dry(d,
) �is early pregnant
ow(
) ^pregnan
y month(d,
) � 7,
an be in dis
ard : Cow ! Bool
an be in dis
ard(
) � is dis
ard
ow(
),sele
t group for
ow : D.Date � Cow �! GT.Group idsele
t group for
ow(d,
) �if
an be in one(d,
) then GT.one

C.8 COW Module 185elsif
an be in two(d,
) then GT.twoelsif
an be in pre birth(d,
)then GT.pre birth
owelsif
an be in dry(d,
) then GT.dry
owelsif
an be in dis
ard(
) then GT.dis
ard
owelse GT.heiferendpre is heifer(
) _ is dairy
ow(
),de�ne
ow
lassif : D.Date � Cow ! Cowde�ne
ow
lassif(d,
) �if is female
alf(
) ^
ow age months(d,
) � 12then set heifer
lassif(d,
)elsif(is heifer(
) _ is dairy
ow(
)) ^CH.in history(CE.birth, history(
)) ^D.days sin
e(d, last birth date(
)) � 7then set post birth
lassif(d,
)elsifis pregnant(d,
) ^ is post birth
ow(
) ^D.months sin
e(last birth date(
), d) � 3then set early pregnant
lassif(d,
)elsif is pregnant(d,
) ^ pregnan
y month(d,
) = 7then set dry
lassif(d,
)elsifis dry
ow(
) ^D.is in range(15, 20, D.days sin
e(next birth date(d,
), d))then set pre birth
lassif(d,
)elsifis post birth
ow(
) ^ �is pregnant(d,
) ^len (
ow inseminations(D.sin
e(last birth date(
)),
)) =K.insem limitthen set empty
lassif(d,
)elsif is dried(
) then set dis
ard
lassif(d,
)else
end,set heifer
lassif : D.Date � Cow �! Cowset heifer
lassif(d,
) �
hg
lassif(GT.heifer(default heifer info),
)pre is female
alf(
) ^
ow age months(d,
) � 12,set post birth
lassif : D.Date � Cow �! Cowset post birth
lassif(d,
) �

C.8 COW Module 186if is heifer(
)then
hg
lassif(GT.dairy(GT.mk Dairy info(GT.milking(GT.post birth))),
)elselet GT.dairy(d inf) =
ow
lassif(
) in
hg
lassif(GT.dairy(GT.
hg dairy
lassif(GT.milking(GT.post birth), d inf)),
)endendpre(is heifer(
) _ is dairy
ow(
)) ^CH.in history(CE.birth, history(
)) ^D.days sin
e(d, last birth date(
)) � 7,set early pregnant
lassif : D.Date � Cow �! Cowset early pregnant
lassif(d,
) �let GT.dairy(d inf) =
ow
lassif(
) in
hg
lassif(GT.dairy(GT.
hg dairy
lassif(GT.milking(GT.early pregnant), d inf)),
)endpreis pregnant(d,
) ^ is post birth
ow(
) ^D.months sin
e(last birth date(
), d) � 3,set dry
lassif : D.Date � Cow �! Cowset dry
lassif(d,
) �let GT.dairy(d inf) =
ow
lassif(
) in
hg
lassif(GT.dairy(GT.
hg dairy
lassif(GT.dry(GT.non pre birth), d inf)),
)endpre is pregnant(d,
) ^ pregnan
y month(d,
) = 7,set pre birth
lassif : D.Date � Cow �! Cowset pre birth
lassif(d,
) �let GT.dairy(d inf) =
ow
lassif(
) in
hg
lassif(GT.dairy(

C.8 COW Module 187GT.
hg dairy
lassif(GT.dry(GT.pre birth), d inf)),
)endpreis dry
ow(
) ^D.is in range(15, 20, D.days sin
e(next birth date(d,
), d)),set empty
lassif : D.Date � Cow �! Cowset empty
lassif(d,
) �let GT.dairy(d inf) =
ow
lassif(
) in
hg
lassif(GT.dairy(GT.
hg dairy
lassif(GT.milking(GT.empty), d inf)),
)endpreis post birth
ow(
) ^ �is pregnant(d,
) ^len (
ow inseminations(D.sin
e(last birth date(
)),
)) =K.insem limit,set dis
ard
lassif : D.Date � Cow �! Cowset dis
ard
lassif(d,
) �let GT.dairy(d inf) =
ow
lassif(
) in
hg
lassif(GT.dairy(GT.
hg dairy
lassif(GT.dis
ard, d inf)),
)endpre is dried(
),is with mother : D.Date � Cow ! Boolis with mother(d,
) �is
alf(
) ^CH.in history(CE.
alf with mother, history(
)) ^�CH.in history(CE.
alf to
ru, history(
)),
an goto
ru : D.Date � Cow ! Bool
an goto
ru(d,
) �is
alf(
) ^
ow age days(d,
) � 5 ^is with mother(d,
) ^�CH.event in period(CE.
alf to
ru, D.sin
e(birthday(
)), history(
)),add photo : D.Date � Cow �! Cow=� dummy value for now �=

C.8 COW Module 188add photo(d,
) �
,send
alf to
ru : D.Date � Cow �! Cowsend
alf to
ru(d,
) �if is female
alf(
)then
hg history(CH.add event(d, CE.
alf to
ru, history(
)),add photo(d,
))else
hg history(CH.add event(d, CE.
alf to
ru, history(
)),
)endpre
an goto
ru(d,
),
an take out
ru : D.Date � Cow ! Bool
an take out
ru(d,
) �is
alf(
) ^is in group(GT.
alf rearing unit,
) ^
ow age days(d,
) � K.min age out
ru ^
ow age days(d,
) � K.max age out
ru ^
an eat bal(d,
),
an breed artif :D.Date � GT.Litres � GT.Quantity � Cow ! Bool
an breed artif(d, mr, bal,
) �is
alf(
) ^is in group(GT.
alf rearing unit,
) ^mr � K.min milk
ru ^ mr � K.max milk
ru ^bal � 1.0 ^�CH.event in period(CE.artif breeding, D.sin
e(D.last midnight(d)),history(
)),breed artif :D.Date � GT.Litres � GT.Quantity � Cow �! Cowbreed artif(d, mr, bal,
) �
hg history(CH.add event(d, CE.artif breeding(mr, bal), history(
)),
)pre
an breed artif(d, mr, bal,
),
an eat bal : D.Date � Cow ! Bool
an eat bal(d,
) �is
alf(
) ^is in group(GT.
alf rearing unit,
) ^

C.8 COW Module 189CH.in history(CE.artif breeding, history(
)) ^letb =CE.bal(CH.get last ev info(CE.artif breeding, history(
)))in b � 1.0end,
an register heat : D.Date � Bool � Cow ! Bool
an register heat(d, heat,
) �heat ^ �is on heat(d,
),register heat : D.Date � Bool � Cow �! Cowregister heat(d, heat,
) �
hg history(CH.add event(d, CE.heat, history(
)),
)pre
an register heat(d, heat,
),
an give birth : D.Date � Cow ! Bool
an give birth(d,
) �is pregnant(d,
) ^pregnan
y month(d,
) = K.pregnan
y period ^�CH.event in period(CE.birth,D.last n months(K.pregnan
y period, d),history(
)),give birth :D.Date � GT.Cow id � GT.Calf sex � Cow �! Cowgive birth(d,
alf id,
sex,
) �letnew
1 =
hg history(CH.add event(d, CE.birth(
alf id), history(
)),
),new
2 = assign group to
ow(d, GT.one, new
1)in set post birth
lassif(d, new
2)endpre
an give birth(d,
),make
alf : GT.Calf sex � D.Date ! Cowmake
alf(
sex, d) �mk Cow(d, GT.
alf(GT.mk Calf info(
sex)),

C.8 COW Module 190CH.add event(d, CE.
alf with mother, CH.empty)),
he
k weight : GT.Weight � GT.Weight ! Bool=� dummy value for now �=
he
k weight(w1, w2) � true,
ow events :D.Period � CE.Cow event kind � Cow ! CH.History
ow events(p, ev kind,
) �
ase ev kind ofCE.birth !
ow births(p,
),CE.heat !
ow heats(p,
),CE.preg dete
tion !
ow pregnan
ies(p,
),CE.insemination !
ow inseminations(p,
),CE.va

ination !
ow va

inations(p,
),CE.deparasitation !
ow deparasitations(p,
),CE.weigh !
ow weighs(p,
),CE.
ow to group !
ow groups(p,
),CE.milking !
ow milkings(p,
),CE.artif breeding !
ow artif breedings(p,
),! hiend,
ow weighs : D.Period � Cow ! CH.History
ow weighs(p,
) �CH.evs in period(p, CH.�lter(CE.is weigh)(history(
))),
ow va

inations : D.Period � Cow ! CH.History
ow va

inations(p,
) �CH.evs in period(p, CH.�lter(CE.is va

ination)(history(
))),
ow deparasitations : D.Period � Cow ! CH.History
ow deparasitations(p,
) �CH.evs in period(p, CH.�lter(CE.is deparasitation)(history(
))),
ow births : D.Period � Cow ! CH.History
ow births(p,
) �CH.evs in period(p, CH.�lter(CE.is birth)(history(
))),
ow inseminations : D.Period � Cow ! CH.History
ow inseminations(p,
) �CH.evs in period(

C.8 COW Module 191p, CH.�lter(CE.is insemination)(history(
))),
ow heats : D.Period � Cow ! CH.History
ow heats(p,
) �CH.evs in period(p, CH.�lter(CE.is on heat)(history(
))),
ow milkings : D.Period � Cow ! CH.History
ow milkings(p,
) �CH.evs in period(p, CH.�lter(CE.is milking)(history(
))),
ow pregnan
ies : D.Period � Cow ! CH.History
ow pregnan
ies(p,
) �CH.evs in period(p, CH.�lter(CE.is preg dete
tion)(history(
))),
ow groups : D.Period � Cow ! CH.History
ow groups(p,
) �CH.evs in period(p, CH.�lter(CE.is
ow to group)(history(
))),
ow artif breedings : D.Period � Cow ! CH.History
ow artif breedings(p,
) �CH.evs in period(p, CH.�lter(CE.is artif breeding)(history(
))),in la
tation period : D.Date � Cow ! Boolin la
tation period(d,
) � is milking
ow(
),dried date : Cow �! D.Datedried date(
) �CH.get last ev date(CE.
ow dried, history(
))pre is dried(
),is mother : GT.Cow id � Cow � Cow ! Boolis mother(
i,
,
m) �is dairy
ow(
m) ^(9 ev : CH.Event �ev 2
ow births(D.sin
e(birthday(
)),
m) ^let
f id = CE.
alf id(CH.event inf(ev)) in
f id =
iend),
ow history p : D.Period � Cow ! CH.History
ow history p(p,
) � CH.evs in period(p, history(
))

C.9 CH Module 192endC.9 CH Module
ontext: HISTORY, CEobje
t CH :HISTORY(CEfCow event for Event info,Cow event kind for Event kindg)C.10 CE Module
ontext: COW EVENTobje
t CE : COW EVENTC.11 COW EVENT Module
ontext: Ks
heme COW EVENT =
lasstypeCow event ==birth(
alf id : GT.Cow id) jheat jpreg dete
tion(pregnant : Bool) jinsemination(insem
lassif : GT.Insem
lassif) jdeath(
ause : GT.Death
ause) jva

ination(va

ine : GT.Va

ine) jdeparasitation(dep inf : GT.Dep inf) jweigh(weight : GT.Weight) j
ow to group(group : GT.Group id) j
alf to
ru j
alf with mother j
ow sale j
ow dried(d
ause : GT.Dried
ause) jmilking(litres : GT.Litres) jartif breeding(milk repl : GT.Litres, bal : GT.Quantity),Cow event kind ==

C.11 COW EVENT Module 193birth jheat jpreg dete
tion jinsemination jdeath jva

ination jdeparasitation jweigh j
ow to group j
alf to
ru j
alf with mother j
ow sale j
ow dried jmilking jartif breedingvaluekind of : Cow event ! Cow event kindkind of(
ev) �
ase
ev ofbirth() ! birth,heat ! heat,preg dete
tion() ! preg dete
tion,insemination() ! insemination,death() ! death,va

ination() ! va

ination,deparasitation() ! deparasitation,weigh() ! weigh,
ow to group() !
ow to group,
alf to
ru !
alf to
ru,
alf with mother !
alf with mother,
ow sale !
ow sale,
ow dried() !
ow dried,milking() ! milking,artif breeding(,) ! artif breedingend,is va

ination : Cow event ! Boolis va

ination(
ev) �
ase kind of(
ev) ofva

ination ! true,! falseend,is insemination : Cow event ! Boolis insemination(
ev) �

C.11 COW EVENT Module 194
ase kind of(
ev) ofinsemination ! true,! falseend,is on heat : Cow event ! Boolis on heat(
ev) �
ase kind of(
ev) ofheat ! true,! falseend,is deparasitation : Cow event ! Boolis deparasitation(
ev) �
ase kind of(
ev) ofdeparasitation ! true,! falseend,is preg dete
tion : Cow event ! Boolis preg dete
tion(
ev) �
ase kind of(
ev) ofpreg dete
tion ! true,! falseend,is milking : Cow event ! Boolis milking(
ev) �
ase kind of(
ev) ofmilking! true,! falseend,is weigh : Cow event ! Boolis weigh(
ev) �
ase kind of(
ev) ofweigh ! true,! falseend,is birth : Cow event ! Boolis birth(
ev) �
ase kind of(
ev) ofbirth ! true,! falseend,

C.12 FIELDS Module 195is
ow to group : Cow event ! Boolis
ow to group(
ev) �
ase kind of(
ev) of
ow to group ! true,! falseend,is artif breeding : Cow event ! Boolis artif breeding(
ev) �
ase kind of(
ev) ofartif breeding ! true,! falseendendC.12 FIELDS Module
ontext: FIELDs
heme FIELDS =
lassobje
t F : FIELDtype Fields = GT.Field id !m F.Fieldvalueadd �eld :GT.Field id � GT.Lo
ation � GT.Size �GT.Pasture � Fields �!Fieldsadd �eld(�,
o
, fsize, fpast, fs) �fs y [� 7! F.make �eld(
o
, fsize, fpast) ℄pre � 62 fs,exists plot :GT.Plot id � GT.Field id � Fields ! Boolexists plot(pi, �, fs) �� 2 fs ^ F.exists plot(pi, fs(�)),add plot :GT.Plot id � GT.Size � GT.Lo
ation � D.Date �Nat � GT.Field id � Fields �!Fieldsadd plot(pi, si, lo, sd, dn, �, fs) �

C.13 FIELD Module 196fs y [� 7! F.add plot(pi, si, lo, sd, dn, fs(�)) ℄pre �exists plot(pi, �, fs),update past :GT.Field id � GT.Pasture � Fields �! Fieldsupdate past(�, fpast, fs) �let new past = F.
hg pasture(fpast, fs(�)) infs y [� 7! new past ℄endpre � 62 fs,is de�ned :GT.Plot id � GT.Field id � D.Date � Nat � Fields !Boolis de�ned(pi, �, d, dn, fs) �� 2 fs ^ F.is de�ned(fs(�), pi, d, dn),�eld size : GT.Field id � Fields �! GT.Size�eld size(�, fs) � F.size(fs(�)) pre � 2 fs,is past plot :GT.Plot id � GT.Field id � Fields ! Boolis past plot(pi, �, fs) �� 2 fs ^ pi 2 F.past plots(fs(�))endC.13 FIELD Module
ontext: PLOTSs
heme FIELD =
lassobje
t PS : PLOTStypeField ::�eld lo
ation : GT.Lo
ationsize : GT.Sizepasture : GT.Pasture $
hg pastureplots : PS.Plots $
hg plotspast plots : PS.Plots $
hg past plotsvaluemake �eld :GT.Lo
ation � GT.Size � GT.Pasture ! Field

C.14 PLOTS Module 197make �eld(
o
, fsize, fpast) �mk Field(
o
, fsize, fpast, PS.empty, PS.empty),exists plot : GT.Plot id � Field ! Boolexists plot(pi, f) � pi 2 plots(f),is de�ned :Field � GT.Plot id � D.Date � Nat ! Boolis de�ned(f, pi, d, dn) �exists plot(pi, f) ^PS.is de�ned(plots(f), pi, d, dn),add plot :GT.Plot id � GT.Size � GT.Lo
ation � D.Date �Nat � Field �!Fieldadd plot(pi, si, lo, sd, dn, f) �
hg plots(PS.add plot(pi, si, lo, sd, dn, plots(f)), f)pre pi 62 plots(f),delete plot : GT.Plot id � Field �! Fielddelete plot(pi, f) �let(new pps, new ps) =PS.delete plot(pi, plots(f), past plots(f))in
hg plots(new ps,
hg past plots(new pps, f))endpre pi 2 plots(f) ^ pi 62 past plots(f)endC.14 PLOTS Module
ontext: PLOTs
heme PLOTS =
lassobje
t P : PLOTtype Plots = GT.Plot id !m P.Plotvalueempty : Plots = [℄,

C.15 PLOT Module 198add plot :GT.Plot id � GT.Size � GT.Lo
ation � D.Date �Nat � Plots �!Plotsadd plot(pi, lo, si, sd, dn, ps) �ps y [pi 7! P.mk Plot(si, lo, sd, dn) ℄pre pi 62 ps,is de�ned :Plots � GT.Plot id � D.Date � Nat ! Boolis de�ned(ps, pi, d, dn) �pi 2 ps ^ P.is de�ned(ps(pi), d, dn),delete plot :GT.Plot id � Plots � Plots �! Plots � Plotsdelete plot(pi, ps, pps) �(pps y [pi 7! ps(pi) ℄, ps y ps n fpig)pre pi 2 ps ^ pi 62 ppsendC.15 PLOT Module
ontext: GTs
heme PLOT =
lasstypePlot ::plot lo
ation : GT.Lo
ationsize : GT.Sizestarting : D.Datedays : Nat $
hg daysvalueis de�ned : Plot � D.Date � Nat ! Boolis de�ned(pl, d, dn) �D.later(d, starting(pl)) ^D.later(D.add n days(starting(pl), days(pl)),D.add n days(d, dn))end

C.16 BULLS Module 199C.16 BULLS Module
ontext: BULLs
heme BULLS =
lassobje
t B : BULLtype Bulls = GT.Bull id !m B.Bullvalueadd bull :GT.Bull id � D.Date � D.Date � GT.Field id �GT.Features � Bulls �!Bullsadd bull(bi, birthd, pd, �, bf, bs) �bs y[bi 7! B.mk Bull(birthd, pd, �, bf, B.
urrent) ℄pre bi 62 bs,update lo
ation :GT.Bull id � GT.Field id � Bulls �! Bullsupdate lo
ation(bi, �, bs) �let new lo
 = B.
hg lo
ation(�, bs(bi)) inbs y [bi 7! new lo
 ℄endpre bi 2 bs,update features :GT.Bull id � GT.Features � Bulls �! Bullsupdate features(bi, bf, bs) �let new fe = B.
hg features(bf, bs(bi)) inbs y [bi 7! new fe ℄endpre bi 2 bs,
an dis
ard bull : GT.Bull id � Bulls ! Bool
an dis
ard bull(bi, bs) �bi 2 bs ^ �B.is dis
arded bull(bs(bi)),dis
ard bull :GT.Bull id � D.Date � GT.Dis
ard
ause � Bulls �!Bullsdis
ard bull(bi, d, d
, bs) �bs y [bi 7! B.dis
ard bull(d, d
, bs(bi)) ℄pre
an dis
ard bull(bi, bs)

C.17 BULL Module 200endC.17 BULL Module
ontext: GTs
heme BULL =
lasstypeBull status ==
urrent jdis
arded(date : D.Date,
ause : GT.Dis
ard
ause),Bull ::birthday : D.Datepur
hase date : D.Datelo
ation : GT.Field id $
hg lo
ationfeatures : GT.Features $
hg featuresstatus : Bull status $
hg statusvalueis dis
arded bull : Bull ! Boolis dis
arded bull(b) �
ase status(b) ofdis
arded(,) ! true,! falseend,dis
ard bull :D.Date � GT.Dis
ard
ause � Bull �! Bulldis
ard bull(d, d
, b) �
hg status(dis
arded(d, d
), b)pre �is dis
arded bull(b)endC.18 DAIRY FARMERS Module
ontext: DAIRY FARMERs
heme DAIRY FARMERS =
lassobje
t DF : DAIRY FARMERtype

C.19 DAIRY FARMER Module 201Dairy farmers =GT.Dairy farmer id !m DF.Dairy farmervalueadd dfarmer :GT.Dairy farmer id � GT.Salary � Dairy farmers �!Dairy farmersadd dfarmer(d�, sal, dfs) �dfs y [d� 7! DF.mk Dairy farmer(sal, fg) ℄pre d� 62 dfs,update salary :GT.Dairy farmer id � GT.Salary � Dairy farmers �!Dairy farmersupdate salary(d�, sal, dfs) �let new sal = DF.
hg salary(sal, dfs(d�)) indfs y [d� 7! new sal ℄endpre d� 2 dfs,add empl :GT.Dairy farmer id � GT.Employee � Dairy farmers �!Dairy farmersadd empl(d�, empl, dfs) �dfs y [d� 7! DF.add empl(empl, dfs(d�)) ℄pre d� 2 dfs ^ empl 62 DF.employees(dfs(d�)),delete empl :GT.Dairy farmer id � GT.Employee � Dairy farmers �!Dairy farmersdelete empl(d�, empl, dfs) �dfs y [d� 7! DF.delete empl(empl, dfs(d�)) ℄pre d� 2 dfs ^ empl 2 DF.employees(dfs(d�)),delete dfarmer :GT.Dairy farmer id � Dairy farmers �!Dairy farmersdelete dfarmer(d�, dfs) � dfs y dfs n fd�gpre d� 2 dfsendC.19 DAIRY FARMER Module
ontext: GT

C.20 K Module 202s
heme DAIRY FARMER =
lasstypeDairy farmer ::salary : GT.Salary $
hg salaryemployees : GT.Employee-set $
hg employeevalueadd empl :GT.Employee � Dairy farmer �! Dairy farmeradd empl(empl, df) �
hg employee(femplg [employees(df), df)pre empl 62 employees(df),delete empl :GT.Employee � Dairy farmer �! Dairy farmerdelete empl(empl, df) �
hg employee(employees(df) n femplg, df)pre empl 2 employees(df)endC.20 K Module
ontext: CONSTANTSobje
t K : CONSTANTSC.21 CONSTANTS Module
ontext: GTs
heme CONSTANTS =
lasstypeHours toleran
e = fj ht : Nat � ht < D.hours per dayjgvalue
alf weight atbirth : GT.Weight = 40.0,
alf weight 2months : GT.Weight = 60.0,heifer weight : GT.Weight = 350.0,dairy weight : GT.Weight = 550.0,dis
ard weight : GT.Weight = 580.0,

C.21 CONSTANTS Module 203
alves age dif : Nat = 60,
alf min age ration : Nat = 60,
alf max age ration : Nat = 120,
alf middle age : Nat = 180,he weight per : Real = 0.64,weight variation : Real = 0.10,pregnan
y period : Nat = 9,=�in months�=la
t period : Nat = 7,=�in months�=heat period : Nat = 12,=�in hours�=preg dete
t period : Nat = 60,=�in days�=dis
ard age : Nat = 4,=�in years�=insem limit : Nat = 4,insem months : Nat = 3,=�in months�=triple va

 period : Nat = 3,=�in months�=deparas period : Nat = 2,=�in months�=post birth period : Nat = 3,=�in months�=min age
ru : Nat = 5,=�in days�=min age out
ru : Nat = 45,=�in days�=max age out
ru : Nat = 60,=�in days�=max balan
ed : Real = 1.0,min milk
ru : Real = 4.0,max milk
ru : Real = 5.0,ration one : Real = 3.5,ration two : Real = 3.0,ration dry : Real = 2.0,ration dis
ard : Real = 2.0,ration heifer : Real = 3.0,ration
alf min : Real = 2.2,ration
alf max : Real = 2.5,min
orn one : Real = 25.0,max
orn one : Real = 30.0,min hay one : Real = 10.0,max hay one : Real = 15.0,min
on
 one : Real = 30.0,max
on
 one : Real = 35.0,min
orn two : Real = 25.0,max
orn two : Real = 30.0,min hay two : Real = 10.0,max hay two : Real = 15.0,min
on
 two : Real = 15.0,max
on
 two : Real = 20.0,min bal
alf : Real = 35.0,max bal
alf : Real = 45.0,day milkings : Nat,hours toleran
e : Hours toleran
eend

C.22 GT Module 204C.22 GT Module
ontext: GENERAL TYPESobje
t GT : GENERAL TYPESC.23 GENERAL TYPES Module
ontext: Ds
heme GENERAL TYPES =
lasstypeCow
lassif ==
alf(info : Calf info) jheifer(info : Heifer info) jdairy(info : Dairy info),Calf info ::
alf sex : Calf sex $
hg sex,Heifer info :: h info : Text, =�reserved for later development�=Dairy info ::dairy
lassif : Dairy
lassif $
hg dairy
lassif,Dairy
lassif ==dis
ard jdry(dry
lassif : Dry
lassif) jmilking(milking
lassif : Milking
lassif),Dry
lassif == pre birth j non pre birth,Milking
lassif == post birth j early pregnant j empty,Calf lo
ation ==with mother j with group(group : Group id),Calf sex == male
alf j female
alf(photo : Photo),Cow id = Int,Group id ==one jtwo jpre birth
ow jdis
ard
ow jdry
ow jheifer j
alf(min days : Nat, max days : Nat) j
alf rearing unit,Quantity = Real,He
t loading = Real,Weight = fj w : Real � w � 700.0 jg,Litres = fj l : Real � l � 0.0 jg,Indiv prod = Litres,

C.23 GENERAL TYPES Module 205Field id = Nat,Photo = Text, =�reserved for later development�=Plot id = Nat,Bull id = Nat,Dairy farmer id = Nat,Salary = Nat,Employee = Text, =�reserved for later development�=Brand = Text, =�reserved for later development�=Features = Text, =�reserved for later development�=Size = Real,Lo
ation = Text, =�reserved for later development�=Death
ause = Text,Dried
ause = Text,Dis
ard
ause = Text,Substan
e = Text, =�reserved for later development�=Dose = Nat,Va

ine id = Nat,In plot :: �eld id : Field id plot id : Plot id,Dep inf :: substan
e : Substan
e dose : Dose,Va

 type == triple j diarrhoea j bru
ellosis,Va

ine ::va

 id : Va

ine idva

 type : Va

 typeexpiration date : D.Date,Artif info = Nat,Insem
lassif ==artif insem(info : Artif info) jnat insem(bull : Bull id),Gr type = Text,Balan
ed = Quantity,Hay = Quantity,Corn sil = Quantity,Pasture = Quantity,Grain ::gr type : Gr type $
hg gr typegr quantity : Quantity $
hg gr quantity,Con
 ::balan
ed : Balan
ed $
hg bal quantitygrain : Grain $
hg grain,Ration ::pasture : Pasture $
hg pasture
orn sil : Corn sil $
hg
ornhay : Hay $
hg hay
on
 : Con
 $
hg
on
value

C.24 HISTORY Module 206expired : D.Date � Va

ine ! Boolexpired(d, va

) � D.later(expiration date(va

), d),total foods : Ration ! Quantitytotal foods(r) �
orn sil(r) + hay(r) + balan
ed(
on
(r)) +gr quantity(grain(
on
(r)))endC.24 HISTORY Module
ontext: D, EVENT INFOs
heme HISTORY(E : EVENT INFO) =
lasstypeEvent :: date : D.Date event inf : E.Event info,=� the latest event is at the front �=History = fj h : Event� � is ordered(h) jgvalueis ordered : Event� ! Boolis ordered(l) �(8 id1 : Int �id1 2 inds l)(8 id2 : Int �id2 2 inds l)id1 < id2)�D.later(date(l(id2)), date(l(id1))))),empty : History = hi,add event :D.Date � E.Event info � History �! Historyadd event(d, ei, hist) �let event = mk Event(d, ei) in heventi b hist endpre �in history(E.kind of(ei), hist),get �rst event : History �! Eventget �rst event(hist) �if tl hist = empty then hd histelse get �rst event(tl hist)endpre hist 6= empty,

C.24 HISTORY Module 207get last event : E.Event kind � History �! Eventget last event(evkind, history) �if E.kind of(event inf(hd history)) = evkindthen hd historyelse get last event(evkind, tl history)endpre in history(evkind, history),get last ev info :E.Event kind � History �! E.Event infoget last ev info(evkind, history) �event inf(get last event(evkind, history))pre in history(evkind, history),get last ev date : E.Event kind � History �! D.Dateget last ev date(evkind, history) �date(get last event(evkind, history))pre in history(evkind, history),�lter : (E.Event info ! Bool) ! History ! History�lter(f)(h) �if h = hi then hielseif f(event inf(hd h))then hhd hi b �lter(f)(tl h)else �lter(f)(tl h)endend,evs in period : D.Period � History ! Historyevs in period(p, h) �if h = hi then hielsif D.is in period(date(hd h), p)then hhd hi b evs in period(p, tl h)else evs in period(p, tl h)end,in history : E.Event kind � History ! Boolin history(ek, h) �(9 ev : Event �ev 2 h ^ E.kind of(event inf(ev)) = ek),event in period :E.Event kind � D.Period � History ! Boolevent in period(ek, p, h) �(9 ev : Event �

C.25 EVENT INFO Module 208ev 2 h ^ E.kind of(event inf(ev)) = ek ^D.is in period(date(ev), p)),duration : History ! Natduration(h) �if h = hi then 0else D.di�(date(hd (h)), date(h(len (h))))end,
he
k event re
ord : Nat � Nat � History ! Bool
he
k event re
ord(nro ev, hs toleran
e, h) �(duration(h) � D.hours per day + hs toleran
e)len (h) � nro ev) ^(duration(h) � D.hours per day � hs toleran
e)len (h) � nro ev)endC.25 EVENT INFO Modules
heme EVENT INFO =
lasstype Event kind, Event infovaluekind of : Event info ! Event kindendC.26 D Module
ontext: DATEobje
t D : DATEC.27 DATE Modules
heme DATE =
lasstypeYear = Nat,Month = fj m : Nat � m � 1 ^ m � 12 jg,Day = fj d : Nat � d � 1 ^ d � 31 jg,Hour = fj h : Nat � h � 0 ^ h � 23 jg,

C.27 DATE Module 209Date ::year : Yearmonth : Monthday : Dayhour : Hour,Period ==
losed(start : Date, �nish : Date) jsin
e(starting : Date) jupto(ending : Date) jpoint(now : Date)valuehours per day : Nat = 24,later : Date � Date ! Bool =� �rst > se
ond �=later(d1, d2) �year(d1) > year(d2) _year(d1) = year(d2) ^(month(d1) > month(d2) _month(d1) = month(d2) ^(day(d1) > day(d2) _day(d1) = day(d2) ^ hour(d1) > hour(d2))),=� number of months between Date and
urrent Datey1 � y2 � 1�=months sin
e : Date � Date �! Natmonths sin
e(d1, d2) �lety1 = year(d1),m1 = month(d1),y2 = year(d2),m2 = month(d2)in if y1 = y2 then m2 � m1 else 12 � m1 + m2 endendpre �later(d1, d2),is in period : Date � Period ! Boolis in period(d, p) �
ase p of
losed(s, f) ! �(later(d, f) _ later(s, d)),sin
e(s) ! �(later(s, d)),upto(f) ! �(later(d, f)),point(sf) ! �(later(d, sf) _ later(sf, d))end,

C.27 DATE Module 210months ba
k : Date � Nat ! Datemonths ba
k(d, n) �lety = year(d), m = month(d), a = day(d), h = hour(d)in if m � n > 0 then mk Date(y, m � n, a, h)elselety1 =if (n � m) n 12 = 0 then y � (n � m) / 12else y � (n � m) / 12 + 1end,m1 = 12 � (n � m � n � m / 12 � 12)in mk Date(y1, m1, a, h)endendend,days ba
k : Date � Nat ! Datedays ba
k(d, n) �lety = year(d), m = month(d), a = day(d), h = hour(d)in if a � n > 0 then mk Date(y, m, a � n, h)elseletms =if (a � n) n 30 = 0 then (a � n) / 30else (a � n) / 30 + 1end,d1 = months ba
k(d, ms),a1 = 30 � (n � a � n � a / 30 � 30)in mk Date(year(d1), month(d1), a1, h)endendend,=� only to go ba
k up to 24 hours�=hours ba
k : Date � Nat ! Datehours ba
k(d, n) �lety = year(d), m = month(d), a = day(d), h = hour(d)in

C.27 DATE Module 211if h � n > 0 then mk Date(y, m, a, h � n)elseletm1 = if a = 1 then m � 1 else m end,a1 = a � 1,h1 = 24 � (n � (24 � h))in mk Date(y, m1, a1, h1)endendend,last midnight : Date ! Datelast midnight(d) �lety = year(d), m = month(d), a = day(d), h = hour(d)in mk Date(y, m, a, 0)end,last midday : Date ! Datelast midday(d) �lety = year(d), m = month(d), a = day(d), h = hour(d)in mk Date(y, m, a, 12)end,in morning : Date ! Boolin morning(d) �let h = hour(d) in h � 0 ^ h � 12 end,last n months : Nat � Date ! Periodlast n months(n, d) � sin
e(months ba
k(d, n)),last n days : Nat � Date ! Periodlast n days(n, d) � sin
e(days ba
k(d, n)),last n hours : Nat � Date ! Periodlast n hours(n, d) � sin
e(hours ba
k(d, n)),add n months : Date � Nat ! Dateadd n months(d, n) �lety = year(d), m = month(d), a = day(d), h = hour(d)in

C.27 DATE Module 212if m + n � 12thenlet y1 = y + (m + n) / 12, m1 = (m + n) n 12 inmk Date(y1, m1, a, h)endelse mk Date(y, m + n, a, h)endend,add n days : Date � Nat ! Dateadd n days(d, n) �lety = year(d), m = month(d), a = day(d), h = hour(d)in if m + n � 30thenletd1 = add n months(d, (m + n) / 30),a1 = (m + n) n 30in mk Date(y, month(d1), a1, h)endelse mk Date(y, m, a + n, h)endend,is in range : Nat � Nat � Nat ! Boolis in range(sr, er, n) � n � sr ^ n � er,=� both dates in the same year �=days sin
e : Date � Date �! Natdays sin
e(d1, d2) �lety1 = year(d1),m1 = month(d1),a1 = day(d1),y2 = year(d2),m2 = month(d2),a2 = day(d2)in if m2 >m1 +1 =� d1 is at least two months greater than d2�=then (m2 � (m1 + 1)) � 30 + (30 � a1) + a2

C.27 DATE Module 213elsif m2 > m1 then (30 � a1) + a2else a2 � a1endendpre �later(d1, d2),di� : Date � Date ! Natdi�(d1, d2) � 1end

