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ABSTRACT 
Tanenbaum’s MINIX Operating System was extended with a Real-Time microkernel and services 

to conform MINIX4RT, a Real-Time Operating System for academic uses that includes more flexible 

Interprocess Communications facilities supporting basic priority inheritance protocol, a fixed priority 

scheduler, timer and event driven interrupt management, statistics and Real-Time metrics gathering 

keeping backward compatibility with standard MINIX versions. 
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PREFACE 
 

MINIX4RT is the result of fifteen years dedicated to study, to research and to teach about 

Operating Systems. It is a new open-source Real-Time Operating System intended as teaching tool, 

but it can be usable as a serious system on resource-limited computers. 

MINIX4RT is a Real-Time branch of the popular MINIX used in grade level Operating 

Systems courses. This work discuss the modifications that have been made to MINIX that give it the 

ability to support the stringent timing requirements of Real-Time applications, while still giving Non 

Real-Time ones access to the full range of MINIX services without any changes. 

MINIX4RT does not stops with this thesis. It is the authors intention to conform a team of 

developers around the world of people interesting in cooperate with the growth and enhancement of 

MINIX4RT.  
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1. INTRODUCTION 

A Real-Time Operating System (RTOS) supports Real-Time applications. Real-Time 

applications requirements from the Operating System (OS) are much different from those required by 

non-time constrained time-sharing applications. MINIX4RT satifies the constrains of many of the 

applications that impose stringent timing demands on their OS with disastrosous consequences 

resulting from temporal errors.  

To assist Real-Time applications designers, RTOS must facilitate efficient interprocess 

communication and synchronization, a fast interrupt response time, asynchronous Input and Output 

(I/O) and timing related facilities. 

Real-Time applications written to run on RTOS make use of and rely on the following system 

capabilities [1]:  

− A preemptive kernel. 

− Fixed-priority scheduling policies. 

− Real-Time clocks and timers. 

− Asynchronous I/O. 

− Queued Real-Time signals. 

− Process communication facilities. 

Computer science students and professionals working on RTOS need a deep knowledge about 

every software component and the interactions with hardware devices considering timing constraints.  



RTOS instructors can choose among commercial or free licence software to develop their 

laboratory practice. Commercially available RTOSs are too costly and proprietary to be used by 

academic institutions. Free licence and open source RTOSs have been designed with emphasis on 

predictability as a key design feature with complex source code readability. 

The thesis of this work is an academic purpose RTOS designed to present an approach of 

adding Real-Time facilities to a standard time-sharing OS. The proposed architecture defines a way to 

schedule, manage, and execute Real-Time processes. The resulting system will be able to guarantee 

that Real-Time processes will meet their stated deadlines.  

The thesis has been proved by building MINIX4RT, a research prototype implementation of 

that architecture based on MINIX [2], and then testing the implementation by executing periodic and 

non-periodic Real-Time processes using the added Real-Time facilities. 

1.1. Contributions 

This work makes several contributions to the existing body of knowledge of academic purpose 

Operating Systems. 

− Architecture: Adds a Real-Time sub-kernel below a general-purpose 

OS. 

− Interrupt Management: A detailed description of how interrupts are 

managed to support Real-Time processing with minimal priority inversion. 

− Process Management: It presents a new viewpoint of two domains of 

process states, transitions and scheduling. 

− Time Management: An original approach is proposed to deal with the 

execution of actions triggered by time that minimize the priority inversion 

problem. 

− System Calls: A detailed description of how System Calls and Kernel 

Calls are implemented and how new ones can be added.  

− Statistics: The prototype has several methods to collect system states, 

parameters and statistics that are useful for teaching, debugging and system 

verification. 



1.2. Motivation 

The goal of the MINIX4RT project is to provide an educational tool for RTOS courses as 

MINIX [3, 4, 5] and Linux [6] do for OS Design and Implementation courses. 

The decision of adopting MINIX as foundation for this work is based on: 

− Documentation Availability: Tanenbaum and Woodhull book [2] is the 

main MINIX reference, but plentyful documentation can be found on the 

Internet as on http://www.minix3.org, http://minix1.hampshire.edu/, etc. 

−  Hardware Platform: A PC x386 with 16 Mb of RAM and a hard disk of 

100 Mb is enough to run MINIX. These modest hardware requirements 

allow old PCs to be recycled for Real-Time laboratories. Moreover, MINIX 

can run in emulated environments as BOSCH, VMWare, MS Virtual PC, 

QEMU etc. (more information about emulated environments in 

http://minix1.hampshire.edu/hints.html#emul-virt). This feature allows 

sharing laboratories among courses without additional manteinance and 

operational impact. 

− Modular and Elegant Design: MINIX is a small UNIX-like operating 

system, originally developed by Andrew Tanenbaum as a teaching tool for 

operating systems classes. MINIX was designed with a more modular 

internal structure than the monolithic UNIX kernel, and this structure affects 

the way in which new features could be added to MINIX.  

− Existing Applications and Programming Tools: The same project goal 

could be reached  writing a RTOS from scratch but this strategy implies the 

construction of a new user interface to run applications like text editors, 

compilers, linkers, etc. that does not need Real-Time services. Using MINIX 

as the interface between the Real-Time Kernel and User-space applications 

simplifies the development of the system and allows the use of well-known 

tools. 

− Academic Experience: The author teaches about Operating System in 

Facultad Regional Santa Fe of the Universidad Tecnológica Nacional 

(Argentine), where MINIX is used as an academic tool since 1993. 



MINIX4RT implementation focus on source code readability (perhaps sacrificing 

performance) to allow instructors to easily do a multiplicity of grade courses assignments, laboratory 

tests and other academic uses with an open source RTOS. Some interesting projects could be: 

− Adding new functionalities and System Calls to MINIX4RT. 

− Coding and Testing Real-Time scheduling algorithms. 

− Coding Servers to handle Real-Time Aperiodic tasks. 

− Porting hard Real-Time network protocol stacks as RTNET [7] or 

RETHER [8]. 

− Building Remote Device Drivers to control Robots. 

− Build embedded RTOS based on MINIX4RT. 

− Add new features and System calls to MINIX4RT to be compliant with 

the IEEE POSIX 4 standard. 

Plentyful statistics are gathered to make the RTOS more educational about its operation and 

helpful for debbuging applications.  

1.3. Other RTOS Used in Education 

Most RTOS used in education like RTLinux [9], RT-Mach [10], QNX [11], and RT-

MINIX[12, 13] are suitable for Real-Time Systems courses but this fact must not be confused with 

teaching how a RTOS works. Those systems are focused on performance, schedulability, research, 

commecial market, etc. but not for academic purposes. Their source code readability (if they are 

available), complex algorithms and limited documentation do not help for students understanding.   

Until the development of MINIX4RT, RTLinux was the system used in laboratory practice 

and assignments of the Advanced Operating System course in Facultad Regional Santa Fe of the 

Universidad Tecnológica Nacional (Argentine). Even RTLinux is used in education, its kernel source 

code is not well documented and requires a deep knowledge of the constant growing Linux kernel. As 

basic courses of Operating Systems in Facultad Regional Santa Fe are based on MINIX, MINIX4RT 

appears as the natural choice for practice in a RTOS course.  



The major algorithms and data structures used by MINIX4RT were created or adapted trying 

to achieve a balance between efficiency and simplicity inspired in popular OS as: 

− RTLinux [9]: The Virtual Machine (VM) concept limited to interrupt 

emulation.  

− RT-MACH [10]: RT-Inter Process Communications. 

− QNX [11]: Priority queues. 

− Windows NT[14]: Interrupt queues. 

− Linux [15]: Virtual timers. 

− MACH [16]: Message queues. 

1.4. MINIX Time Sharing Features  

MINIX [2] is a complete, time-sharing, multitasking OS developed from scratch by Andrew S. 

Tanenbaum. It is a general-purpose OS broadly used in Computer Science degree courses. 

Though it is copyrighted, the source has become widely available for universities for studying 

and research. Its main features are: 

− Microkernel based: Provides process management and scheduling, basic 

memory management, interprocess communication, interrupt processing and 

low level I/O support. 

− Multilayer system: Allows for modular design and clear implementation 

of new features. 

− Client/Server model: All system services and device drivers are 

implemented as server processes with their own execution environment. 

− Message Transfer Interprocess Communications (IPC): Used for process 

synchronization and data sharing. 

− Interrupt hiding: Interrupts are converted into message transfers. 



1.5. RT-MINIX Features  

Wainer and Rogina [12, 13] changed MINIX OS to support RT-processing and named it "RT-

MINIX". Its main features are: 

− Scheduling Algorithms Selection: Rate Monotonic (RM) and Earliest 

Deadline First (EDF) scheduling were included. These strategies were later 

combined with other traditional strategies, such as Least Laxity First, Least 

Slack First and Deadline Monotonic. 

− Joined Scheduling Queues: Process execution priority was implemented 

using a multiqueue scheme to accommodate Real-Time processes along 

with interactive and CPU-bound tasks. 

− Real-Time Metrics collection: Several variables about the whole 

operation are accessible to the user to provide data for benchmarking and 

testing new developments. 

− Timer Resolution Management: The resolution of the Timer can be 

changed to get better accuracy while scheduling processes. 

Several data structures in the OS were modified to consider processes period, execution time 

and criticality. But RT-MINIX does not have its own architecture, it is like a patch for MINIX in 

order to provide the user with a set of System Calls to create and manage periodic or aperiodic 

processes.  That approach implies some academic and functional limitations because: 

− It does not have its own architecture: The source code of kernel 

functions and fields of data structures that treat with Real-Time issues are 

merged with those that treats with non Real-Time ones.   

− It does not serve hardware interrupts in priority order: This fact could 

produce unbounded priority inversion. While a higher priority interrupt 

handler is running, lower priority interrupts could be attended increasing the 

interference. 

− It has only one level of priority for all Real-Time processes: This fact 

reduces the system schedulability. Even worst, MINIX Tasks and Servers 

have higher priorities than Real-Time processes. While a RT-process is 



running, a standard MINIX Task or Server could preempt it. This is another 

case of unbounded priority inversion. 

− It uses standard MINIX message transfers as its IPC primitives: MINIX 

use FIFO discipline to receive messages from several processes and this 

implies that a priority inversion problem is present. 

− It does not have any protocol against unbounded priority inversion: Its 

utilization in projects that use cooperating processes is limited. 

− Increasing the Timer resolution also increases the system overhead: To 

increase the Timer resolution, RT-MINIX increases the Timer frequency. 

This strategy executes MINIX Timer interrupt handler at higher frequency, 

thus increasing the system overhead. 

− A Real-Time process can use MINIX System Calls: When MINIX 

Server receives a request from a Real-Time process it will be executed on 

behalf of it, but without any Real-Time attributes. 

− MINIX Timer handler was modified to support RT-alarms: As MINIX 

scheduler treats Tasks in FIFO order, other MINIX Tasks could be executed 

before the Timer Task increasing the RT-alarms latency. 

RT-MINIX defines a new set of signals to indicate special situations, such as missed 

deadlines, overload or uncertainty of the schedulability of the set of processes. 

1.6. MINIX4RT Features 

Existing RTOS can be divided in two categories: 

− Systems implemented using somewhat stripped down and optimized (or 

specialized) versions of conventional time-sharing OS. 

− Systems starting from scratch, focusing on predictability as a key design 

feature. 

MINIX4RT design is based on the former category using MINIX as the conventional OS. It 

offers a predictable RT-computing environment at a lower cost than proprietary RTOS used for 

academic purposes. Furthermore, the same applications and tools used to edit text files, compile 



programs, list directories contents, etc, which run on MINIX, run without any change on MINIX4RT. 

This is a important benefit because there is no need to migrate or cross-compile applications. 

The following are desirable characteristics in a RTOS: 

− Small kernel size: This it will enable the operating system to be used on 

embedded systems. 

− Low context-switching overheads: This reduce the process activation 

latency and increase system schedulability.  

− Fast interrupt service:  Often, RTOS respond to external systems 

through an interrupt mechanism, therefore a fast interrupt service make the 

system more responsive.  

− User defined process scheduling: A process could be schedulable 

periodically, or triggered by an event, or at specified time, etc. It is desirable 

that the user could select the process scheduling that best fit for his 

application.   

− Provision for user definable priorities: The schedulability of a RTOS 

increase with higher numbers of priority levels that the user can define into 

his applications. 

− Provision for specification of deadlines: The deadline is an important 

processing parameter of Real-Time applications. Some scheduling 

algorithms use processes’ deadlines to assign priorities (i.e. Deadline 

Monotonic Scheduling). The deadline is used in critical situations where a 

watchdog monitoring process must be activated when the process could not 

meet it deadline.    

Most of the characteristics described above are fulfilled by MINIX4RT considered in a 

academic environment.  

The major features of MINIX4RT are summarized as follows: 

− Layered Architecture: As it is explained in Chapter 2, MINIX4RT has a 

layered architecture that helps to change a component without affecting the 

others.  



− Real-Time Sub-kernel: A Real-Time micro-kernel that deals with 

interrupts, IPC, time management and scheduling is installed below MINIX 

kernel. The advantage of using a microkernel for RTOS is that the 

preemptability is better, the size of the kernel becomes much smaller, and 

the addition/removal of services is easier. 

− Timer/Event Driven Interrupt Management: Device Driver writers can 

choice among two strategies of Real-Time Interrupt management.   

− Fixed Priority Hardware Interrupt Processing: A priority can be 

assigned to each hardware interrupt that let service then in priority order. 

− Two Stages Interrupt Handling: Interrupt can be serviced in two stages. 

The hardware interrupt handler (inside interrupt time) performs the first part 

of the needed work and a software Interrupt handler (outside interrupt time) 

does the remaining work.  

− Fixed Priority Real-Time Scheduling: Each process has an assigned 

priority. The RT-kernel schedules them in priority order with preemption. 

− Periodic and Non-Periodic RT-processing: A period can be specified 

for a periodic process; the Real-Time kernel schedules it on period 

expiration. 

− Synchronous/Asynchronous Message Transfer using Message Queues: 

The added RT-kernel offers a new set of Real-Time IPC primitives based on 

Message Queues.  

− Priority Based Message Queue Discipline: A priority based discipline 

could be specified on each Message Queue for message dequeueing.  

− IPC with Basic Priority Inheritance Protocol support: To avoid the 

unbounded priority inversion problem among communicating processes 

(explained in Chapter 5).   

− Receive and Synchronous Send Timeout Support: To avoid deadlocks 

and detect dead processes  



− Timer Resolution Management Detached from MINIX Timer: A Timer 

interrupt of 50 Hz is emulated for the MINIX kernel eventhough the 

hardware Timer interrupt has a higher frequency. 

− Process and Interrupt Handlers Deadline Expiration Watchdogs: The 

use of watchdog processes is a common use strategy to deal with 

malfunctioning RT-processes. When a process does not perform its regular 

function in a specified time (deadline) another process (watchdog)  is 

signaled to take corrective actions. 

− Software Timers:  They are system facilities used for time related 

purposes as alarms, timeouts and periodic processing, etc. One particular 

feature of MINIX4RT is that it handles software timer actions in priority 

order. 

− Statistics and Real-Time Metrics: There are several facilities to gather 

information about the system status and performance (detailled in Chapter 

7).   

It is widely believed that microkernel based systems are inherently inefficient and a multilayer 

message transfer kernel has a performance disadvantage when compared with monolithic kernel. But 

[17] presents evidence that inefficiency is not inherited from the basic idea but from improper 

implementation. 

MINIX4RT provides the capability of running Real-Time processes and MINIX processes on 

the same machine. These Real-Time processes are executed when necessary no matter what MINIX is 

doing.  

The Real-Time microkernel works by treating the MINIX OS kernel as a task been executed 

under a small RTOS based on software emulation of interrupt control hardware. In fact, MINIX is like 

the idle process for the Real-Time microkernel been executed only when there are no Real-Time 

processes to run. When MINIX tells the hardware to disable interrupts, the Real-Time microkernel 

intercepts the request, records it, and returns to MINIX. If one of these “disabled” interrupts occurs, 

the Real-Time microkernel records its occurrence and returns without executing the MINIX interrupt 

handler. Later, when MINIX enables interrupts, all handlers of the recorded interrupts are executed. 

MINIX4RT can handle devices in two ways: 



− Event Driven (ED): An ED-interrupt handler is executed when the 

Hardware Interrupt occurs or its execution is delayed until its priority will 

be greater than the priority of the current process. 

− Timer Driven (TD): A TD-interrupt handler is executed only on the 

expirations of its specified period.  

The current version of MINIX4RT is based on version 2.0.2 for 32 bits INTEL [18] 

processors of MINIX; and thus it requires the same hardware platform. 

1.7. Organization 

The thesis is organized as follows. Chapter 2 describes Architecture and Interrupt Handling 

topics on MINIX, RT-MINIX, and MINIX4RT. Chapter 3 present details of Real-Time Process 

Management and Scheduling. Chapter 4 contains a discussion about Time Management. Chapter 5 is 

describes Real-Time Interprocess Communication (RT-IPC),  priority inversion and the priority 

inheritance protocol. Chapter 6 provides a detailled explanation of Real-Time System Calls, Kernel 

Calls and Kernel Functions. Chapter 7 is devoted to Real-Time Processing Related Statistics. Chapter 

8 describes future works and summarizes the results of this work. 

At the end of this document, a reference of MINIX4RT System Calls and Kernel Calls can be 

found in Appendix A. Appendix B presents several sample programs. Appendix C describes the set of 

tests carried out on the Real-Time system and shows its results and Appendix D shows main system 

data structures. 

This thesis does not cover neither topics about Memory Management, File System 

Management nor Network Managment because MINIX services are used for these issues.  

1.8. Terminology and Notation 

In Real-Time terminology, a Task is the term often used for a process, but in MINIX 

terminology, a Task refers to a special process type used in the implementation of MINIX device 

drivers.  

Other confusing term in computer science is the IBM-compatible Personal Computer (PC) 

device that can produce interrupts at regular periods (ticks). MINIX routines refer to it as the Clock, 

but Timer is the correct term for that device.  



From here, Real-Time related words will be preceded by "RT-" prefix and Non Real-Time 

related words will be preceded by “NRT-“ prefix. 

Additional terms used in this document are included in the Glossary to clarify terminology 

and notation. 



2. ARCHITECTURE AND INTERRUPT HANDLING 

This chapter reviews some MINIX background information, its architecture and interrupt 

processing needed to understand the MINIX4RT design approch. Also, it give the details of the 

MINIX4RT architecture, how interrupt virtualization is accomplished, the type of interrupt handling 

that systems programmers could choose to attend devices, and some considerations about priority 

inversion, a common problem presents in the design of RT-systems. 

2.1. MINIX System Architecture and Interrupt Processing 

MINIX is a collection of processes that communicate with each other and with User-level 

processes using message passing. This design results on a modular and flexible architecture, making it 

easy to replace one component without having even to recompile other modules[2]. 

MINIX is structured in four layers as it can see in Figure 2.1.  

− Layer 1: The kernel that provides context switching, process scheduling, 

interrupt handling, basic memory management and IPC. 

− Layer 2: Tasks that handle low level I/O operations. 

− Layer 3: Server processes that handle System Call services with a 

Memory Manager server (MM) and a File System server (FS) (other servers 

could be added). 

− Layer 4: The User-level processes such init, shells, compilers, editors, 

etc. 

Each layer only communicates with the ones immediately above and below through the 

message passing primitives that scale very easily to distributed systems. Therefore, There is not 



difficult to modify or to add new components without breaking what already works making it a good 

choice for teaching the design and implementation of an OS. 

                      

Figure 2.1: MINIX Architecture. 

MINIX message passing primitives have some constraints: 

− All messages have fixed and small sizes.  

− The queue of waiting processes is in the process table. 

− User processes can only communicate with Servers, which in turn 

communicate with I/O Tasks. 

− Usually, an application does not construct messages by itself, this is 

accomplished by the System Calls library code. 

Message passing is also used by the kernel to hide hardware interrupts. An interrupt is usually 

defined as an event that alters the sequence of instructions executed by a processor [15]. In MINIX, 

when a hardware device interrupts the CPU, an interrupt handler is called, but if more time is needed 

to complete the job, the handler sends a message to the device Task calling the scheduler on exit. As 

the scheduler gives I/O Tasks greater priority than User-level processes and Servers, the device Task 



is executed to resume the interrupt service out of interrupt time. This approach is often called two 

stages interrupt handling. 

An I/O Task is like a kernel thread that share kernel address space but it has its own 

processing attributes. The use of an I/O Task to complete the interrupt processing performs well 

enough in a time sharing environment but can introduce unbounded delay in RT-processing. Two 

factors affects the interrupt service response time: 

1. MINIX scheduler uses three priority queues, one for I/O Tasks, one for 

Server processes and one for User-level processes. As each queue is 

arranged in FIFO order, it is not suitable to be used in time constrained 

systems where a priority order is needed. 

2. MINIX hides interrupts using message transfers. It is very common that on 

each hardware interrupt the kernel sends a message to an I/O Task. This 

fact forces a context switch before running the Task increasing the system 

latency and reducing the schedulability of RT-processes. 

A key component in the Intel x86 hardware architecture is the Interrupt Descriptor Table 

(IDT) [18].  The IDT associates each interrupt or exception vector with the address of the 

corresponding interrupt or exception handler. The IDT must be properly initialized before the kernel 

enables interrupts. The IDT is an array of 8 byte interrupt descriptors in memory devoted to 

specifying (at most) 256 interrupt service routines. The first 32 entries are reserved for processor 

exceptions and Non-Maskable Interrupts (NMI), the following 16 are assigned to maskable interrupts, 

that is, to interrupts caused by Interrupt Requests of hardware devices (IRQs). The remaining entries 

are available for processor traps, that INTEL designates as "software interrupts". MINIX defines a 

table called irq_table[] that has function pointers to interrupt handlers codified using the C 

programming language. 

2.2. MINIX4RT System Architecture 

As MINIX4RT intends to be used in an academic environment, its design has been done to be 

as least intrusive as possible in the standard MINIX source code. Yodaiken and Barabanov [9] have 

proposed a separate, small, RT-kernel between the hardware and Linux (often called a sub-kernel) for 

RTLinux. The key idea is how interrupt management is done. As result, one RTOS hosts a standard 

time sharing OS . Those OSs have their own sets of System Calls.  



MINIX4RT follows RTLinux approach where MINIX4RT hosts the standard MINIX time 

sharing OS. The left side of Figure 2.2 shows the MINIX OS framed by a dotted line, supported by 

the MINIX4RT kernel. At the right side of Figure 2.2 shows RT-handlers, RT-tasks and RT-processes 

also supported by the RT-kernel. At the center of  Figure 2.2, there is a Task named MRTTASK that 

function as a glue among MINIX applications and the RT-kernel (explained in Chapter 6).  

Figure 2.2: MINIX4RT Architecture. 

It can be consider a RTOS to comprise two distinct classes of executable entities [19]:  

1. Processes 

2. Interrupt Handlers 

Therefore, there is a need of two types of schedulers, one for processes and other for interrupt 

handlers. MINIX4RT effectively puts in place a new process scheduler that treats the MINIX kernel 

as the lowest priority process executing under the RT-kernel, and an interrupt handler scheduler to 

control the order of execution of interrupt handlers. 

As NRT-interrupt handlers could block RT-processes or RT-interrupt handlers, the RT-kernel 

installs an interrupt dispatcher that executes the handler only if its priority is greater than the priority 

of the running RT-process or RT-handler. But, in spite of this fact that the handler could not be 



executed, the interrupt is accepted and a RT-kernel code is executed consuming processor time that 

produce an interference to the running RT-process or RT-handler. 

Under that design, MINIX only executes when there are no RT-process to run, and the RT-

kernel is inactive. Thus, a MINIX process can never disable hardware interrupts or prevents itself 

from being preempted, yielding all resources to a RT-process. MINIX kernel may be preempted by a 

RT-process even during a System Call, so no MINIX routine can be safely called from a RT-process. 

To carry out with the functionalities described in the previous paragraph, the following issues 

must be solved: 

− Interrupts must be captured by the RT-kernel. 

− RT-scheduler and RT-services must be implemented.  

− RT-applications need an interface layer to interact with the RT-kernel. 

− RT-applications may need transfer data and synchronize with NRT-

applications. 

− Full process and interrupt handler preemptability is needed. 

2.3. Interrupt Handling 

As RTLinux does, MINIX4RT uses the Virtual Machine (VM) concept limited to interrupt 

emulation or virtualization. Its microkernel is underneath of MINIX and it runs NRT-processes only 

when there are not any RT-process ready to run. 

Since interrupts can come at any time, the kernel might be handling one of them while another 

one (of a different type) occurs. This should be allowed as much as possible since it keeps the I/O 

devices busy. As a result, the interrupt handlers must be coded to run in a nested way. 

When each interrupt handler terminates, the kernel must be able to resume execution of the 

interrupted process or switch to another process if the interrupt signal has caused a rescheduling 

activity or executes another lower priority interrupt handler. 

Although the kernel may accept a new interrupt signal while handling a previous one, some 

critical regions exist inside the kernel code where interrupts must be disabled. Such critical regions 



must be limited as much as possible since, the kernel, and in particular the interrupt handlers, should 

run most of the time with the interrupts enabled. 

MINIX4RT avoids disabling interrupts for extended periods to improve the system response 

time. In spite of that, the RT-kernel disables interrupts (by intervals as short as possible) to protect 

data structures that are also accessed by interrupt handlers avoiding race condition. The coarse time 

granularity among disabling and enabling interrupts could inflict unpredictable interrupt dispatch 

latency. 

RT-interrupt handlers can easily be replaced with NRT-handlers without recompiling the 

kernel. This feature is especially useful in certain debugging situations. 

MINIX4RT operates in two processing modes, that will be explained in Chapter 3: 

− Non Real-Time Mode: In this mode, only standard MINIX interrupt 

handlers and NRT-processes are executed and a limited number of RT-

System Calls are allowed (i.e. a System Call that enables switching to Real-

Time Mode). The RT-kernel functions are disabled. 

− Real-Time Mode: In this mode, the system is controlled by the RT-

kernel and all kind of interrupt handlers and processes can be executed. 

When an interrupt occurs, the RT-handler is invoked for a RT-defined 

interrupt, otherwise its NRT-handler is called. 

The system starts in Non Real-Time Mode. To start the Real-Time Mode a NRT-process must 

invoke the mrt_RTstart() System Call.  

2.3.1. Interrupt Handling Virtualization 

The MINIX kernel disable interrupts for synchronization when it enters into critical 

sections avoiding that MINIX could be preempted when a RT-interrupt occurs. 

MINIX4RT modifies some functions (and emulate its original behaviour) to avoid 

that the MINIX kernel could disable interrupts and could not be preempted by the RT-

kernel. The trick is quite simple because MINIX uses the following functions for interrupt 

handling: 

− lock(): Disables CPU maskable interrupts (CLI for Intel x86).  

− unlock(): Enables CPU maskable interrupts  (STI for Intel x86).  



− put_irq_handler():  Registers an interrupt handler. 

− disable_irq(): Disables a Programmable Interrupt Controller (PIC) 

Interrupt ReQuest (IRQ)  line specified as a parameter. 

− enable_irq(): Enables a PIC IRQ line specified as a parameter. 

The exposed operation is guaranteed only is all device drivers and interrupt handler 

use those functions to handle interrupts without using assembler instructions or own code. 

2.3.2. Hardware Interrupts Emulation 

The RT-kernel installs a layer of emulation software between the MINIX kernel and 

the interrupt controller hardware. On RT-Mode, the emulator catches all hardware interrupts 

and redirects them to either standard MINIX handlers or to RT-kernel handlers. The RT-

kernel provides a framework onto which MINIX4RT is mounted with the ability to fully 

preempt MINIX. 

Whenever a NRT-interrupt happens during the execution of a higher priority RT-

process, a bit in a bitmap is set by the MRT_IRQ_dispatch() function as it will be explained 

in Section 2.3.7. On returns of interrupts or on returns from System Calls the function 

MRT_flush_int() is called. This function is devoted to execute all pending interrupt handlers, 

but if MINIX has disabled interrupts using the emulated lock() function or the PIC IRQ line 

for this interrupt has been disabled with the emulated disable_irq(), the NRT-handler will 

not be executed. Later, when the MINIX kernel (virtually) re-enables interrupts, using the 

emulated unlock() function, all pending interrupts are executed. 

A drawback of this approach is that the MINIX kernel suffers a slight performance 

loss when MINIX4RT VM is added due to processing time consumed by: 

− The redirection of  interrupt handlers to a common interrupt dispatcher. 

− The interrupt mask/unmask functions. 

− The search of pending interrupts in the interrupt descriptor queues 

(explained in Section 2.3.12) 

− The deferred execution of interrupt handlers. 



− The status and statistical information gathering as part of interrupt 

handling. 

In consideration of both strengths and weaknesses, this strategy has shown itself to 

be flexible because it removes none of the capability of standard MINIX, yet it provides 

guaranteed scheduling and response time for critical processes. 

The changes to standard MINIX are minimal with the VM approach. This low level 

of intrusion on the standard MINIX kernel improves the code maintainability to keep the 

RT-related code up-to-date with the latest release of the MINIX kernel. 

2.3.3. User and Kernel Stacks 

The stack is a LIFO list. Stacks are very useful for passing parameters between 

subprograms and for storage of variables or identifiers for recursive programs and languages 

with scope-limited variables, such as in "C". Stacks are ideal data structures for an OS 

process manager to track the status of processes in various states. In MINIX (and 

MINIX4RT) each process has two stacks: 

− User-Mode stack: In User-Mode processing, only this stack can be used. 

− Kernel-Mode stack: When entering the Kernel-Mode processing, the 

system switches to this stack.  

On interrupts and system calls, the User-Mode stack is changed to the Kernel-Mode 

stack. If new interrupts occur during the service of other interrupts (nested interrupts),  the 

stack remains in Kernel-Mode. 

The variable k_reenter counts the level of reentrancy in the kernel: 

− k_reenter = (-1): When the system is in User-Mode. 

− k_reenter = 0: When one kernel control path is running. That can be a 

system call, an exception/fault handler or an interrupt service routine. 

− k_reenter >  0:  When more than one kernel control path is running. 

This occurs on nested hardware interrupts. 



To monitor the Kernel-Mode stack use, each interrupt descriptor (described in 

Section 2.3.6)  has a field named reenter that keeps the maximum kernel reentrancy level 

(k_reenter) for each IRQ. It helps to size the Kernel-Mode stack for specific uses. 

As it is expected that a RTOS will receive much more interrupts than a time-sharing 

OS, by default, the RT-kernel stack doubles in size MINIX's kernel stack. 

2.3.4. Interrupt Handler Types 

Not all interrupts have the same urgency. In fact, the interrupt handler itself is not a 

suitable place for all kind of actions. Long non-critical operations should be deferred, since 

while an interrupt handler is running, the signals on the corresponding IRQ line are ignored.  

MINIX4RT defines the following kinds of  hardware interrupt handlers: 

− Non RT-handler: When the system is in  NRT-mode, only NRT-

handlers are executed. When the system is in RT-Mode, the NRT-handler is 

executed only if there are not any running RT-process or RT-handler; 

otherwise it is marked as triggered for later processing. The execution 

priority of NRT-handler is MRT_PRILOWEST. 

− RT Event-Driven (ED) handler: When the system is in RT-Mode the RT 

ED-handler is executed only if its priority is greater than the priority of the 

interrupted RT-process or RT-handler, otherwise it is is marked as triggered 

for later processing. 

− RT Timer-Driven (TD) handler: This type of handlers does not execute 

when the device interrupt occurs. They are executed on Timer Interrupts 

defined by a period. On each device interrupt, the handler is marked as 

triggered and it will be processed once it reaches its period following a 

Timer Interrupt. 

The Timer interrupt handling differs from other IRQs; some actions are executed on 

interrupt time, but other are delayed to handle time related software facilities named Virtual 

Timers (VT) (explained in Chapter 4).  



2.3.5. Interrupt Service Routines 

At startup, the RT-kernel initializes the IDT  (Interrupt Descriptor Table) pointing 

each entries of master PIC hardware interrupts to a code generated by the macro 

hwint_master(irq). The entries for the slave PIC hardware interrupts are filled with the 

address of a code generated by the macro hwint_slave(irq).  

In RT-Mode, all interrupt service routines perform the same basic actions: 

− Save the registers contents in the Kernel-Mode stack. 

− Increase the kernel variable k_reenter (initialized in -1). 

− If k_reenter = 0, the state of the User-Mode process is saved, otherwise 

the system is already in Kernel-Mode.  

− Send an acknowledgment to the PIC that is servicing the IRQ line, thus 

allowing it to issue further interrupts. 

− Execute the interrupt handler dispatcher MRT_IRQ_dispatch(). 

− Terminate by jumping to the restart label if the k_reenter = 0 or to 

restart1 label for k_reenter > 0. More details in Section 2.3.11. 

2.3.6. Interrupt Descriptor Data Structure 

This section explains the data structures that supports interrupt handling and how 

they are laid out in various descriptors used to store information on the state, statistics and 

behavior of interrupt handlers. 

The RT-kernel has its own interrupt descriptor table (other than INTEL's IDT) 

named MRT_si.irqtab[]. It is an array of MRT_irqd_t data structures that has one descriptor 

for each hardware and software interrupt (explained in Section 2.3.10.). 

The MRT_irqd_t data structure has the following functional fields (see Appendix D): 

− nrthandler: A pointer to a function that is the NRT-handler. 

− rthandler:  A pointer to a function that is the RT-handler. 



− period:  The processing period of a TD-interrupt handler in RT-ticks 

units. 

− task: The RT-handler will not execute, instead a MT_INTERRUPT 

message will be sent to the speciried task when an interrupt occurs.  

− watchdog: The RT-PID (RT process ID defined by mrtpid_t data type) 

of a RT-process that will take corrective actions against RT-handler missed 

deadlines. When a handler does not complete it’s work before it’s deadline, 

the RT-kernel sends a MT_DEADLINE message to the specified watchdog 

process. 

− priority: Specifies the handler priority. 

− irqtype: Specifies type of handler. It is a logical-OR of the following 

attributes: 

� MRT_RTIRQ: Real-Time handler (otherwise it will be NRT-IRQ). 

� MRT_TDIRQ: Timer-Driven handler (otherwise it will be ED-IRQ). 

� MRT_SOFTIRQ: Software interrupt handler, explained in Section 

2.3.10. (Otherwise it will be a hardware interrupt handler). 

The MRT_irqd_t data structure has the following fields for kernel internal use: 

− irq:  The IRQ number. 

− harmonic: It is the harmonic frequency of the MINIX Timer interrupt 

frequency (stored in a system variable named MRT_sv.harmonic) when RT-

processing Mode starts. It is only used for Timer-Driven Interrupt 

descriptors to convert the period of a TD-interrupt handler when the user has 

changed the Timer interrupt frequency. More details in Chapter 4. 

− pvt: A pointer to an assigned VT for TD-interrupt descriptors. 

− flags:  Some interrupt descriptor status and configuration flags that 

determines its behavior. 

− shower: A counter for TD-interrupts in the last period (explained in 

Section 2.3.20 ). 



− latency: The estimated interrupt handler latency in Timer Hz. 

− before: An auxiliary field that stores the Timer-2 latch counter of the 

Programmable Interrupt Timer (PIT) in Hz on MRT_IRQ_dispatch() entry. 

− next:  A pointer to the next interrupt descriptor in the queue. 

− prev: A pointer to the previous interrupt descriptor in the queue. 

− name: The name of the handler. 

The MRT_irqd_t data structure has the following statistical use fields: 

− count: An interrupt counter for statistics. 

− mdl: A missed deadlines counter. 

− maxshower: Stores the maximum value of shower. 

− timestamp: The last interrupt timestamp. 

− maxlat: The maximum value of latency. 

− reenter: Stores the maximum value of k_reenter. (Explained in Section 

2.3.3). 

2.3.7. Interrupt Handler Dispatching 

MINIX4RT VM sets all Hardware Interrupt Service Routines (ISR) labeled as 

HWINTxx to call an interrupt dispatcher function named MRT_IRQ_dispatch(). This 

function base its decisions to process interrupts based on the interrupt descriptor table 

MRT_si.irqtab[](see Figure 2.3). 

A RT-kernel variable called MRT_sv.prtylvl stores the current system priority level 

of execution. This variable is set to the current process priority or to the running interrupt 

handler's priority. It is used to reduce the unbounded priority inversion problem deciding on 

the execution of an interrupt handler or to defer it. 

If MINIX4RT is running in NRT-mode, the standard interrupt handlers 

(irq_table[irq](irq) in Figure 2.3) are executed without any interception, deferring and 

statistics gathering. 



In RT-Mode, the function MRT_IRQ_dispatch() performs the following actions (see 

Figure 2.3 and Figure 2.4): 

− Some statistics-related variables are updated as: 

� The system wide interrupt counter named MRT_sv.counter.interrupts.  

� The descriptor interrupt counter named MRT_si.irqtab[irq].count. 

� The kernel reentrancy level named MRT_si.irqtab[irq].reenter. 

Figure 2.3: Hardware Interrupt Handling. 



− If the bit MRT_LATENCY for latency computation has been set in the 

descriptor, the timer-2 of the PIT is read before running the handler and its 

value is stored in the before descriptor field. 

− If a Timer interrupt has occurred: 

� The system tick counter MRT_sv.counter.ticks is increased. 

� The interrupt descriptor timestamp field is set. 

� The Timer interrupt descriptor is marked for deferred processing only 

if it has some additional work to do controlled by Virtual Timers (more 

in Chapter 4). 

� Returns from Interrupt and reenable the IRQ0 of the PIC. 

− For interrupts other than the Timer, the interrupt descriptor timestamp 

field MRT_si.irqtab[irq].timestamp is set to MRT_sv.counter.ticks. 

− If an Event-Driven (ED) interrupt has occurred with its priority greater 

than or equal to MRT_sv.prtylvl, the handler is called (Note: higher priority 

means a lower value in the priority field). The handler can signal the kernel 

to run the RT-scheduler on exit setting a bit (MRT_SCHEDULE) in the 

kernel variable MRT_sv.flags. 

− If an ED-interrupt has occurred with its priority lower than 

MRT_sv.prtylvl, the descriptor is marked for deferred processing. 

− If a NRT-interrupt has occurred with its priority greater or equal than 

MRT_sv.prtylvl, the handler is called and then exits. 

− If a NRT-interrupt has occurred with its priority lower than 

MRT_sv.prtylvl, its descriptor is marked for deferred processing. 

− If a TD-interrupt has occurred, the bit MRT_TDTRIGGER in flag field 

of the interrupt descriptor is set. This bit signals the interrupt associated VT 

that the TD-handler must be executed on the next period. The operation of 

TD-interrupts using VTs is explained in Chapter 4. 



 

Figure 2.4: Interrupt Handler Dispatching. 

2.3.8. Interrupt Handler's Priority 

The PIC treats interrupts according to their priority level that are directly tied to the 

IRQ number. Higher-priority IRQs may improve the performance of the devices that use 

them. 

The standard PC hardware has assigned priorities for standard interrupts related to 

IRQ number as shown in Figure 2.5. A lower IRQ number implies higher priority. Newer 

Advanced Programmable Interrupt Controllers (APICs) allow programmers to change the 



priority of each IRQ line. The RT-kernel attends IRQs based on the priority field of their 

descriptors. 

If a lower priority interrupt occurs during the execution of a running process or 

handler, its interrupt descriptor is marked as triggered and its processing is delayed. Later, 

after a context switch, a System Call or a Return from Interrupt, the RT-kernel calls 

MRT_flush_int() function that scans the queues for interrupt descriptors that has been 

triggered and runs their handlers. 

MRT_flush_int() alternatively calls MRT_irqd_flush() that scans for triggered 

interrupt descriptors and MRT_vtimer_flush()  that runs actions of expired VTs (see Section 

4.8.3) in priority order. 

The following pending interrupt handlers are not executed by MRT_irqd_flush(): 

− NRT-interrupts once MINIX has (virtually) disabled processor 

interrupts using the emulated lock() function. 

− All pending interrupt handlers with lower priority than the current 

system priority level of execution MRT_sv.prtylvl.  

Figure 2.5: IRQ Priorities (from [2]). 

Each RT-handler must notify the RT-kernel setting the bit MRT_SCHEDULE in 

MRT_sv.flags if it needs to run the RT-scheduler on exit  



2.3.9. Real-Time Input/Output Tasks  

In MINIX, as in other OSs, each kind of input/output device has a related device 

driver. MINIX device drivers have two components: 

− An Interrupt Service Routine (ISR) that catchs device interrupts. 

− An I/O Task for delayed interrupt processing and to accept requests 

from server processes. 

A was explained in Chapter 1, Task is a special kind of MINIX process that has its 

own state and stack, but shares the kernel address space with the kernel and other Tasks 

(explained in Section 2.1). Server processes requests services to Tasks using standard 

message transfers. When a Hardware interrupt occurs, the kernel signals the I/O Task 

sending it a message, but this fact usually involves a context switch because the Task 

preempts the running process when receives the message causing a performance penalty. 

MINIX4RT allows device driver writers to adopt the use of RT-Tasks for their 

design. As any RT-process, a RT-Task has an assigned priority and any RT-processes could 

request services to it using RT-Interprocess Communications (explained in Chapter 5). 

The interrupt descriptor associated with that RT-Task can be a defined as a TD-

interrupt or an ED-interrupt setting or clearing the MRT_TDINT bit of the irqtype field of 

the interrupt descriptor.  

2.3.10. Software Interrupts 

One of the main problems with interrupt handling is how to perform longish tasks 

within a handler. Often a substantial amount of work must be done in response to a device 

interrupt, but interrupt handlers need to finish up quickly and not keep interrupts blocked for 

long. These two needs (work and speed) conflict with each other, leaving the driver writer in 

a bit of a bind. Therefore it is desirable that the interrupt handlers could delay the execution 

of some tasks so that they do not block the system for too long. 

As it is explained above, MINIX uses a two stages interrupt management where an 

interrupt handler partially process the interrupt and then sends a message to an I/O Task to 

resume the interrupt processing. This approach implies at least a context switch to restore 

the state of the task.  



Linux kernel resolves this problem by splitting the interrupt handler into two halves. 

The so-called top half is the routine that actually responds to the interrupt. The bottom half 

is a routine that is scheduled by the top half to be executed later, at a safer time.  

Programmers have at least three approaches to design Device Drivers: 

A. Complete interrupt processing into the handler. 

B. Two stages interrupt management like MINIX using RT-Tasks and 

message transfers. 

C. Two stages interrupt management using Software interrupts as Linux does 

with bottom halves. 

Triggered Software interrupts are kernel routines that are invoked by 

MRT_flush_int() as it do with pending hardware interrupts. 

Software interrupt descriptors have the same data structure MRT_irqd_t than 

Hardware interrupts descriptors, therefore they have priority, counters, timestamps and other 

fields. 

The motivation for introducing software interrupt is to allow a limited number of 

functions related to interrupt handling to be executed in a deferred manner. This approach 

increases the system responsiveness because some work is executed out of interrupt time. 

Moreover, the processing overhead is lower than using the I/O Task model because it avoids 

the context switch among the interrupted process and the I/O Task. Software interrupts can 

be used as kernel threads triggered by time using Virtual Timers. 

2.3.11. Returning from System Calls and Interrupts Service Routines 

The main purpose of the termination phase of interrupt/exception handlers and 

System Calls is to execute the highest priority process, but several issues must be considered 

before doing it. The system needs to execute: 

− Pending Event Driven Interrupt handlers.   

− Pending Software interrupt handlers.  

− Virtual Timer Actions (explained in Chapter 4).    



− Pending Standard MINIX interrupt handlers 

The RT-kernel will execute only those pending issues that have greater priorities 

(lower priority field) than the MRT_sv.prtylvl. 

Before returning the CPU to User-level Mode those interrupt handlers that has been 

deferred must be executed. The RT-kernel scans the interrupt descriptor queue for hardware 

and software pending interrupt handlers and invokes only those handlers with priorities 

greater than the current process priority. The kernel function that accomplishes with these 

issues is MRT_flush_int() (see Figure 2.3). 

2.3.12. Flushing Deferred Interrupts 

MINIX4RT uses a system of interrupt descriptors queues and a bitmap named 

MRT_si.iQ.bitmap to process deferred interrupts. A bit set in the i-th position of the bitmap 

implies that at least one descriptor in the i-th interrupt descriptor queue has been triggered 

for deferred processing (see Figure 2.6). 

An interrupt descriptor is inserted into the queue using the kernel function 

MRT_irqQ_ins() (explained in Section 2.3.15), and it remains in the queue even once the 

interrupt has been serviced. Those enqueued interrupt descriptors that need service have a 

bit (named MRT_TRIGGERED) of the flag field set. 

Some test performed by the author during the implementation, proved that inserting 

a descriptor when the interrupt occurs and removing it once the interrupt has been serviced, 

has less perfomance that keep the descriptors enqueued. Moreover, the processing time 

required with the CPU interrupts disabled is reduced  improving kernel preemptability. 

MRT_flush_int() scans for bits set in two bitmaps, the MRT_si.iQ.bitmap for 

deferred interrupts and the MRT_st.tQ.bitmap for expired VTs actions to execute. The scan 

stops when the priority of the represented by the bit position is lower than MRT_sv.prtylvl 

(see Figure 2.7). 

For each bit set in MRT_st.tQ.bitmap, MRT_flush_int() calls MRT_vtimer_flush() 

that executes expired VTs actions. This operation is explainded in Section 4.8.2. 

For each bit set in MRT_si.iQ.bitmap,  MRT_flush_int() calls RMT_irqd_flush() that 

scans the interrupt descriptor queue for hardware and software interrupt handlers triggered 

to run. A handler is executed only if its descriptor status flags has the MRT_TRIGGERED 



bit set and has not been disabled (MRT_DISABLED) by software. Once all triggered 

interrupt descriptors in the same queue has been serviced, the bit in MRT_si.iQ.bitmap is 

cleared.  

Figure 2.6: Interrupt Bitmap and Interrupt Queues. 

If one of the handlers has set the MRT_SCHEDULE bit of the system variable 

MRT_sv.flags, the scheduler (lock_pick_proc() function) is invoked. 

Each interrupt queue descriptor has two counter fields: 

− inQ: Records the number of descriptors enqueued. It is  increased by the 

MRT_irqQ_ins() and decreased by MRT_irqQ_rmv() kernel functions.  

− pending: Records the number of triggered interrupts in the queue. It is 

increased when some descriptor is triggered by the MRT_irqd_trigger() 

kernel function and is decreased by the MRT_irqd_serviced(). 



Figure 2.7: Flushing Interrupts and Virtual Timers. 

Only that queues with (inQ > 1) will be scanned to find the triggered descriptors. 

The scanning will stop when (pending = 0). 

As during the execution MRT_flush_int(), new interrupts can occur, a lock bit 

(MRT_FLUSHLCK) in the kernel variable MRT_sv.flags is set to avoid that MRT_flush_int() 

could be called again returning from a nested hardware interrupt. If the nested interrupt has 

greater priority than the interrupted handler, another bit named MRT_NEWINT in 

MRT_sv.flags is set to notify MRT_flush_int() that it needs to restart the scan again from the 

highest priority interrupt queue to find the new triggered interrupt descriptor. 

2.3.13.  Executing Interrupt Handlers 

Before running interrupt handlers, the RT-kernel must (see Fig 2.8): 

− Save the current system priority level of execution MRT_sv.prtylvl. 

− Set MRT_sv.prtylvl to the Interrupt handler’s priority. 



− Restore CPU flags to its previous state. 

 

Figure 2.8: Running Interrupt Handlers. 

If the interrupt descriptor flag field has the bit MRT_ISTMSG set, instead of 

executing a handler, the RT-kernel sends a MT_INTERRUPT message to the RT-Task 

specified in the task field of the interrupt descriptor. 

Once the handler exits the CPU flags are saved in the stack and the interrupts are 

disabled and an estimation of the handler processing time could be computed (see Section 

2.3.16). 



The value returned by a hardware interrupt handler notifies the kernel if the PIC IRQ 

line must be enabled or not. 

2.3.14. Interrupt Descriptor Timestamp Field 

MINIX4RT includes a timestamp field in the interrupt descriptor data structure 

MRT_irqd_t. For hardware interrupts this field is set by MRT_IRQ_dispatch() to the value 

stored in MRT_sv.counter.ticks. For software interrupts timestamp field is filled after the 

handler was executed  into the MRT_do_handler() function. 

The units of the timestamp field are RT-ticks since the last execution of the 

mrt_RTstart() or mrt_restart() System Calls. 

2.3.15. Kernel Functions for Interrupt Handling and Synchronization 

Interrupt disabling is one of the key mechanisms used to ensure that a sequence of 

kernel statements is treated as a critical section. It allows a kernel control path to continue 

executing even when hardware devices issue IRQ signals, thus providing an effective way to 

protect data structures that are also accessed by interrupt handlers [15]. 

On Intel x86 architecture, when the kernel enters a critical section, it clears the IF 

flag of the EFLAGS register to disable interrupts. But, at the end of the critical section, often 

the kernel can not simply set the flag again. As interrupts can execute in nested fashion, the 

kernel does not necessarily know what the IF flag was before the current control path 

executed. In these cases, the control path must save the old setting of the flag and restore 

that setting at the end [15]. 

The RT-microkernel has the following functions to control interrupts: 

− MRT_lock(): Disables interrupts at the CPU (CLI assembler instruction 

on INTEL).  

− MRT_unlock(): Enables interrupts at the CPU (STI assembler instruction 

on INTEL). 

− MRT_saveFlock(&CPUflags): Saves the current CPU Flag Register into 

the stack and then clears the IF (interrupt flag) using the CLI assembler 

instruction to disable interrupts.  



− MRT_restoreF(&CPUflags): Restores the CPU EFLAGS Register from 

the stack. 

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to 

disable IRQ lines. That is, the PIC can be told to stop issuing interrupts that refer to a given 

IRQ line, or to enable them. Disabled interrupts are not lost; the PIC sends them to the CPU 

as soon as they are enabled again. This feature is used by most interrupt handlers since it 

allows them to process IRQs of the same type serially. 

Selective enabling/disabling of IRQs is more efficient than global 

masking/unmasking of maskable interrupts but they are more time consuming. 

The RT-microkernel has the following functions to handle IRQs at PIC level: 

− MRT_disable_irq(): Disables an IRQ line at PIC level. 

− MRT_enable_irq(): Enables an IRQ line at PIC level. 

− MRT_get_PIC(): Reads the PIC mask. 

− MRT_set_PIC(): Sets the PIC with a specified mask. 

Interrupt descriptors are used to store information on the state, statistics and 

behavior of interrupt handlers. The RT-kernel has the following functions to handle interrupt 

descriptors: 

− MRT_irqd_set(): Sets all fields of an interrupt descriptor.  

− MRT_irqd_free(): Removes an interrupt descriptor from its interrupt 

descriptor queue. It resets all fields of an interrupt descriptor. The RT-

handler and NRT-handler points to the spurious_irq() handler.   

− MRT_softirq_set(): Assigns a new interrupt descriptor from the software 

interrupt descriptor pool, then sets the descriptor using MRT_set_irq().  

− MRT_softirq_free(): Removes the descriptor from the interrupt 

descriptor queue using MRT_irqd_free() and frees the descriptor to the 

software interrupt descriptor pool. 

− MRT_irqQ_ins(): Inserts an interrupt descriptor into an interrupt 

descriptor queue. 



− MRT_irqQ_rmv(): Removes an interrupt descriptor from an interrupt 

descriptor queue. 

Two kernel macros can be used to disable/enable descriptors: 

− MRT_disable_irqd(): disables an interrupt descriptor in such a way that 

it will not be executed by the kernel even if triggered. 

− MRT_enable_irqd(): enables an interrupt descriptor to be executed by 

the kernel if triggered. 

Those macros set/clear the bit MRT_DISABLED in the flag field of the interrupt 

descriptor that is checked before running the handler. 

2.3.16. Estimating Interrupt Handler Processing Time 

A vital characteristic of a RTOS is how responsive is in servicing internal and 

external events. These events include external hardware interrupts, internal software signals, 

and internal Timer interrupts. One measure of responsiveness is latency, the time between 

the occurrence of an event and the execution of the first instruction in the interrupt code. A 

second measure is jitter, the variation in the period of nominally constant-period events.  

One of the most common measurements requested to RTOSs is the Interrupt Service 

Time[20]. It is used to measure the effectiveness of a RT-kernel at dealing with extremely 

high-priority interrupts or emergency interrupts. Often a peripheral must be serviced within 

a certain time limit after an event. For example, a packet must be read from a network port 

before the next on arrives. 

The Interrupt Service Time (Tist) is the maximum time taken to respond to an 

interrupt request. It includes the time it takes for the current instruction to complete, the time 

for the CPU to respond to the interrupt (Til) and the interrupt handler processing time (Tint) 

(see Figure 2.9). 

Tist = Til + Tint  

Understanding the relative size of delays is important to the design of the RT-

system. Most sources of delay in a RT-kernel are due to either code execution or context 



switches. Virtually all of these delays are fixed in length and repeatable. Bounded and 

repeatable is the fundamental characteristic desired of a RT-kernel. 

Interrupt Service Time are not fixed in length. Because an interrupt is, by definition, 

an asynchronous event, an Interrupt Service Time depends on the state of the machine when 

the interrupt occurred. This state is a function of both the hardware and the software used in 

the system. 

MINIX4RT uses the Timer-2 of the Programmable Interrupt Timer (PIT) to 

estimates the interrupt handler processing time (Tint). The PIT is programmed in 

SQUARE_WAVE mode and the divisor latch is set to 0 (to get a 65536 latch value) and its 

frequency is 1193182 [Hz], therefore its period is 65536/1193182 = 0.0549 [s].  

At the start of MRT_IRQ_dispatch() kernel function,  the value of the counter of the 

Timer-2 latch of the PIT is stored in the before field of the interrupt descriptor. On handler 

return, the counter is read again and the handler processing time could be estimated as the 

difference between those two values. The time units of the estimated value are PIT Hz or 

(1193182)
-1
 [s] =  8,38x10

-7
 [s] = 0.838 [µs].  

Figure 2.9: Interrupt Service Time (from [11]). 

While the estimated interrupt handler  processing time is not so useful as the 

Interrupt Service time (Tist), it can be used to compare performance among several handler 

algorithms. 



The PIT Timer-0 is programmed in SQUARE_WAVE mode as Timer-2. The PIT 

signals the Timer Interrupt once the Timer-0 counter reaches zero. As the Timer-0 remains 

decreasing the counters, during the execution of the Timer handler, the value of the Timer-0 

counter lets compute the latency of the Timer handler. The estimated value by this method 

represents the Interrupt Latency (Til ) of the Timer interrupt. 

2.3.17. Nested Interrupts 

As has been mentioned above, MINIX4RT supports nested interrupts. Worst-case 

timing considerations for unmasked interrupts must be included in the computation of the 

service time for all interrupts currently being processed. 

The following criteria is established for nested interrupts: 

− A higher or equal priority interrupt will preempt a running handler. The 

computation time of the higher priority handler must be added to the Service 

Time as a Blocking Time.  

− A lower priority interrupt will not preempt a running handler. The 

execution of the new interrupt handler will be deferred for later processing 

and the function MRT_flush_int() will not be invoked on exit to reduce the 

Blocking Time. This blocking time is a priority inversion that must be added 

to the running handler service time. It must be consider only once because 

the lower priority interrupt will be disable at PIC level until the handler will 

re-enable it. 

Once the handler exits, the RT-scheduler could be invoked and another process 

preempts the former as Process B and Process C preempts Process A in Figure 2.10. 

Next MINIX4RT releases will include an interrupt mask array named 

MRT_sv.mask[] used to change the PIC mask before running a handler/process to avoid that 

could be interrupted by a lower priority interrupt. The array items are filled by the 

MRT_irqd_set() kernel function based on the interrupt descriptor's priority. When a new 

interrupt descriptor is set, all items of the MRT_sv.mask[] array are recomputed with PIC 

masks that consider the new descriptor's priority and the IRQ lines that must be disabled 

when the process/handler with this priority will run.  

 



Figure 2.10: Nested Interrupts  (from [11]). 

2.3.18. Real-Time Interrupt Processing 

The following categories of real-time implementations are proposed in [21]: 

− Event Driven Implementation 

� Integrated Interrupt Event Driven Scheduling: Is integrated in the 

sense that hardware interrupt priorities are matched with the software 

process priorities. All processes are initiated by external interrupts. 

� Non-Integrated Interrupt Event Driven Scheduling: The priority of 

the interrupt associated with process arrival has no correspondence to the 

software priority of the process, and is thus non-integrated. 

− Timer Driver Implementation 

� Timer Driven Scheduling: A timer expires every Ttic seconds causing 

a non-maskable interrupt that force a scheduling point. The scheduler 

moves all processes that have next scheduling points greater or equal 

than the current time to the ready queue. 

� Timer Driven Scheduling with counter: The Timer handler 

decrements a counter on every timer interrupt and will only invoke the 

scheduler when the counter expires. The counter limits the scheduler to 

run only on Timer interrupts that correspond to process arrivals. 



MINIX4RT does not match strictly in any of these categories but it depends on the set 

of processes running on the system and the type of hardware where it runs. 

MINIX4RT could be considered as an Event Driven with Non-Integrated Interrupts 

Scheduling and Timer Driven with counter system. 

− Event Driven: On ED-interrupts the handlers are called without delay. 

− Non-Integrated Interrupts: Hardware interrupt priorities could no match 

with process priorities. 

− Timer Driven with counter: The RT-Timer interrupt handler (VT really) 

invokes the scheduler only when a TD-process must be scheduled or when a 

TD-interrupt has occured in the last timer period. 

2.3.19. Standard MINIX Non Real-Time interrupts  

In RT-mode, NRT-handler are executed only if there are not a RT-process or RT-

handler running when the NRT-interrupt occurs. The handler execution is delayed until 

MRT_flush_int() invokes it. 

2.3.20. Real-Time Timer-Driven Interrupts  

Some devices will raise interrupts at high rates but the interrupt processing can be 

delayed to be managed by a periodic process in the next schedule (Timer Driven). 

Other devices do not raise interrupts, and a periodic process can be created to poll 

the devices checking their status and taking appropriated action.  

This kind of interrupt processing lets that more than one interrupt occur in a time 

period without running the handler. The handler only is executed at a specified period 

reducing the system overload. MINIX4RT assigns a VT for the TD-interrupt descriptor.  

The processing of a TD-interrupt handler has the following stages (see Figure 2.11): 

− The TD-interrupt occurs and MRT_IRQ_dispatch() sets the 

MRT_TDTRIGGER bit in the flag interrupt descriptor field to signal the 

descriptor for later processing when its assigned VT reaches its period. The 



shower field (counts the number of TD-interrupts since the last period) is 

increased. 

− On each Timer interrupt, MRT_IRQ_dispatch() checks for expired VTs. 

If any VT has expired, the Timer handler is triggered and it will run in the 

next call to MRT_flush_int(). 

− MRT_flush_int() runs the Timer handler that enqueues expired VTs for 

later processing of their actions. More details in Chapter 4. 

− MRT_flush_int() calls MRT_vtimer_flush() that runs actions of those 

expired VTs. The action of a VT assigned to a TD-interrupt handler is 

MRT_ACT_IRQTRIG, that triggers the descriptor using MRT_irqd_trigger() 

function.  

− MRT_flush_int() runs the handler of the TD-handler, afterwards resets 

the shower field and the MRT_TDTRIGGER bit in the flag fields of the TD-

descriptor. 

Figure 2.11: Timer Driven Interrupts. 

Some devices must be serviced by polling. A software TD-interrupt descriptor can be 

set associated to a VT with a MRT_ACT_IRQTRIG action type and the period that the device 

needs. 



The following is a stage of the operations executed: 

− On each Timer Interrupt, MRT_IRQ_dispatch() checks for expired VTs. 

If a VT has expired, the Timer handler is triggered and it will run in the next 

call to MRT_flush_int(). 

− MRT_flush_int() runs the Timer handler that enqueues expired VTs for 

later processing of their actions. More details in Chapter 4. 

− MRT_flush_int() calls MRT_vtimer_flush() that runs actions of those 

expired VTs. The action of a VT assigned to a TD-interrupt handler is 

MRT_ACT_IRQTRIG, that triggers the descriptor using MRT_irqd_trigger() 

function. 

− MRT_flush_int() runs the TD-handler that polls the device to check if it 

needs attention. 

2.3.21. Real-Time Event-Driven Interrupts 

When MRT_IRQ_dispatch() is invoked by a ED-interrupt, it checks if the priority of 

the interrupted process/handler (MRT_sv.prtylvl) is greater than the priority of the interrupt. 

If it is not, the MRT_IRQ_dispatch() triggers the interrupt descriptor for later processing 

using the kernel function MRT_irqd_trigger(). Next, when in the next running of 

MRT_flush_int(), all triggered interrupt descriptors are flushed in priority order.  

If the interrupt's priority is greater than MRT_sv.prtylvl, the interrupt descriptor RT-

handler is invoked with minimal delay.  

2.4. Preventing Interrupt Priority Inversion 

In RTOS unpredictability is introduced by interrupts from some devices. A type of unbounded 

priority invertion is produced when a higher priority process is executing and lower priority hardware 

devices produce an interrupt shower. That showers could only be generated by asynchronous devices 

like network, USB, parallel or serial port interfaces. Timer interrupts are periodic and the period is set 

by the kernel. Disks,  diskettes and CD-ROMs generate interrupts once they finish with commands 

commended by the kernel,  when the user inserts or removes a removable media,  or on error 

conditions, but never cause a shower. 



MINIX4RT handles interrupts on a preemptive basis; when an interrupt occurs, every 

execution at lower interrupt levels is suspended and execution begins immediately on the highest-

level request. Processing continues until the highest-level interrupt processing has been completed. 

This places a responsibility on device drivers writers in that system responsiveness is directly related 

to how quickly a device driver exits its interrupt routine [22]. 

Future realeases of MINIX4RT will offer Prioritized Interrupt Disabling. With this feature the 

kernel changes the PIC mask raising the interrupt level to avoid that equal and lower level interrupts 

could use system resources delaying higher priority processing [23].  

When a device triggers an interrupt of a given priority, the PIC masks from the CPU all 

interrupts of priority less than or equal to the device interrupt's priority. They become pending. When 

the interrupt level on the PIC drops below an interrupt's priority, the PIC lets the interrupt proceed to 

the CPU. 

Priorized Interrupt Disable will be implemented using the MRT_sv.mask[] array as was 

described in Section 2.3.17. Before running interrupt handlers or processes, the RT-kernel checks 

their priorities and will change the PIC mask to the value stored in MRT_sv.mask[priority]. The 

MRT_sv.mask[] array is filled by the MRT_irqd_set() kernel function. 

2.5. RT-Process Dispatch Latency 

It is very often that a RT-process is scheduled by an IRQ related with an external event. The 

RT-Process Dispatch Latency is an important measurament in RTOS and in MINIX4RT is composed 

by ( see Figure 2.12): 

Figure 2.12: RT-Process Dispatch Latency (from [24]). 



− Hardware Delay: Not controlled by the RTOS. 

−  Finish Current CPU Instruction: Not controlled by the RTOS. 

− Interrupt Latency: It is affected by the granularity of the Interrupt 

Disabling-Interrupt Enabling periods that the RT-kernel use as a mutual 

exclusion mechanism. 

− Preprocessing Time: Includes the processing costs of 

MRT_IRQ_dispatch() and the top half of HWINTxx functions. 

− Interrupt Servicing Time: It is the time consumed by the 

MRT_do_handler() function that includes the handler itself. 

− Post Processing Time: It includes the time consumed by the RT-

scheduler, and the processing costs of the bottom half of HWINTxx function 

that makes the context switch. 



3. RT-PROCESS MANAGEMENT AND SCHEDULING 

There are several identifiable approaches to marrying RT and NRT technologies such as the 

ones listed below [25]: 

1. A general purpose OS with added RT-features such as periodic processing 

and priority-inversion-free IPC mechanisms.  

2. A general purpose OS with a dynamically configurable kernel that is 

capable of accommodating user or application specific process, scheduling, 

and memory management modules. 

3. A subkernel that support coresident OSs partitioning the CPU into two 

virtual machines running an unmodified general purpose OS and a RT-

kernel.  

Yodaiken [26] proposes a variant of the last approch, where a RT-microkernel threats a time-

sharing OS as the lower priority task that executes only if there are not any RT-process ready to run. 

This proposal was adopted for the MINIX4RT kernel and it has the following advantages: 

− A clean separation exists between NRT and RT-services. 

− The RT-kernel executes in a predictable manner, so it is possible to 

analyze the conditions under which RT-processes will be guaranteed to be 

feasible. 

− The time sharing OS can function correctly with few modifications. 

This chapter describes the composition of RT-processes, their states and transitions, 

introduces RT-process creation and termination, and gives details about RT-process scheduling. 



3.1. MINIX4RT Execution Modes 

MINIX4RT starts with the same functionalities as MINIX, therefore it can not run RT-

processes. There must be a NRT-process that invokes a System Call that switches the behavior of the 

RT-kernel to allow the execution of RT-processes. 

As it was introduced in Chapter 2, MINIX4RT has two execution modes:  

− NRT-mode: Any RT-processes neither RT-interrupt handlers can not run 

in this mode, therefore the system runs as MINIX does. 

− RT-mode: The system runs under the RT-kernel control and RT-

processes and RT-interrupt handlers can be executed sharing the system 

with NRT-processes and NRT-interrupt handlers. 

To switch between those execution modes the mrt_RTstart() and mrt_RTstop() System Calls 

are provided. They use the services of a new Task named MRTTASK (presented in Chapter 2 and 

detailled in Chapter 6) that is RT-kernel agent that function as glue among processes and the RT-

kernel. 

3.2. Real-Time Process Creation 

Only NRT-process can be created and terminated under MINIX4RT. The RT-kernel does not 

add new System Calls to create RT-processes. On the other hand a NRT-process is converted into a 

RT-process using the mrt_set2rt() System Call. Before converting a process, several parameters (as  

priority, period, watchdog, etc.) must be passed to the RT-kernel using the mrt_setproc() System Call.     

A RT-process must be converted back into a NRT-process (explained in Section 3.8) ,using 

the mrt_set2nrt() System Call, before it can be terminated. When the system runs in NRT-mode, any 

process that calls mrt_set2rt() trying to convert itself into a RT-process, receives an error return code. 

As there are two kernels with a shared set of processes with their own process states and 

transitions each, the bit named MRT_P_REALTIME in the process descriptor status flags 

(proc[].p_flags) is set for RT-processes.  

The MINIX ready() function enqueues a process descriptor into one of the MINIX Ready 

queues only if all bits of proc[].p_flags are cleared (0x00). With the MRT_P_REALTIME bit set, a 

RT-process can not be in the READY state, therefore it will be ineligible for the MINIX scheduler.  



As is described by Tanenbaum [2], a MINIX process have 3 basic states (see Figure 3.1): 

− READY: The process is ready to run and waiting to be selected by the 

MINIX process scheduler. 

− BLOCKED: The process is blocked because it has done a MINIX 

System Call using sendrec() kernel function. 

− RUNNING: The process is running under the MINIX kernel control. 

 

Figure 3.1: NRT-Process States and Transitions. 

The following are the process states transitions under MINIX: 

1. READY to RUNNING: The process has been selected to run by the 

scheduler.   

2. RUNNING to BLOCKED: The process has done a blocking System Call. 

3. BLOCKED to READY: The process has returned from a System Call. 

4. RUNNING to READY: The running process has run for its entire alloted 

timeslice or it has been preempted by other process with higher priority. 

When MINIX runs under the RT-kernel control, a fourth process state named REALTIME is 

added. This state is reached when the NRT-process is converted into a RT-process. The ready() 

MINIX function is inhibit of inserting the process into the Ready queue, therefore it will be ineligible 

for the MINIX sheduler.  



Consecuently, the following NRT-process states transitions are the added under MINIX4RT: 

5. BLOCKED to REALTIME: The NRT-process has done a mrt_set2rt() 

System Call converting itself into a RT-process. 

6. REALTIME to READY: The RT-process has done a mrt_set2nrt() System 

Call converting itself into a NRT-process. This transition also occurs when 

the RT-process calls exit() or when it receives a NRT-signal sent by a 

NRT-process. 

3.3. RT-Process States and Transitions 

After a NRT-process is converted into a RT-process, it changes from one state to another. The 

states recognized by the RT-kernel are (Figure 3.2): 

  

Figure 3.2: RT-Process States and Transitions. 

− RT-READY:  The RT-process is ready to run and waiting to be selected 

by the RT-process scheduler. 

− RT-BLOCKED: The RT-process is suspended because it has done a 

blocking RT-System Call to the RT-kernel. 

− RT-RUNNING: The RT-process is running under RT-kernel control. 



− STANDARD: The RT-process has been converted into a NRT-process 

and must be ignored by the RT-kernel. 

The RT-process state transitions are: 

A. RT-READY to RT-RUNNING: The RT-process has been selected to run 

by the RT-scheduler.  

B. RT-RUNNING to RT-BLOCKED: The RT-process has done a blocking 

RT-System Call. 

C. RT-BLOCKED to RT-READY:  The process has returned from a RT-

System Call. 

D. RT-RUNNING to RT-READY: The running RT-process has been 

preempted by other RT-process with higher priority.  

E. RT-BLOCKED to STANDARD: The RT-process has done a 

mrt_set2nrt() System Call to convert itself into a NRT-process. This 

transition also occurs when the RT-process calls exit() or when it receives a 

NRT-signal from another NRT-process. 

F. STANDARD to RT-READY: The NRT-process has done a mrt_set2rt() 

System Call to convert it into a RT-process. 

Really,  STANDARD and REALTIME are compound states. REALTIME is the set of 

MINIX4RT process states and STANDARD is the set of  MINIX process states as it shows in Figure 

3.3. 



Figure 3.3: RT and NRT Process States and Transitions. 

3.4. Process Descriptor Real-Time fields 

MINIX uses a process descriptor table to keep the description and status information of every 

process in the system. Each process descriptor has a field named p_flags to indicate the reason why a 

process is blocked. If  p_flags = 0, the process can be scheduled by the MINIX process scheduler. 

New fields were added to the process data structure for RT-process management and statistics 

collection (see Figure 3.4). The data structure of a RT-process is presented in Appendix D. 

 Figure 3.4: Process Descriptor Real-Time Fields. 



The RT-process attributes fields are (as part of the rt data structure): 

− flags: To keep the RT-process status flags. It has a bit named 

MRT_P_REALTIME to distinguish among RT and NRT-processes. The RT-

kernel accepts RT-System Calls from processes with this bit set (with the 

exception of mrt_set2rt() System Call). It has  another bit named 

MRT_P_PERIODIC to distinguish among periodic and non-periodic RT-

processes. A periodic RT-process performs computation at a regular time 

interval (period). 

− priority: The  effective scheduling priority used by the RT-scheduler to 

select the next RT-process to run. It usage is explained in Section 3.6. 

− baseprty: The priority assigned to the process when it is converted to 

RT. It is used by the Basic Priority Inheritance Protocol (BPIP) to restore 

the efective priority (explained in Chapter 5). 

− period: The scheduling period of a RT-periodic process. It is specified 

in RT-timer ticks (explained in Chapter 4). 

− limit: A limit for the number of RT-schedulings for the process 

(explained in Section 3.5). 

− deadline: The RT-process deadline. It is specified in RT-timer ticks. 

− watchdog: The RT-PID (RT process ID defined by mrtpid_t data type) 

of a RT-process that provides services to protect the RT-process against 

deadline expiration. The watchdog  process can be programmed to perform 

several actions on the occurrence of a RT-process overrun. When a RT-

process does not complete its work before its deadline expiration, the RT-

kernel sends a MT_DEADLINE message to the watchdog RT-process 

specified in the process descriptor.  

Other RT-process resource management fields are: 

− pmq: A pointer to a message queue assigned to the RT-process 

(detailled in Chapter 5). 

− pvt: A pointer to a VT assigned to the RT-process (only for periodic 

processes). 



− getfrom: The RT-PID of a RT-process from which the process is waiting 

to receive a RT-message.  

− sendto: The RT-PID of a RT-process to which the process is waiting to 

send a synchronous message. 

− pmsg: A pointer to the message received. 

− pmhdr: A pointer to the header of the message received. 

− pnextrdy: A pointer to the next ready RT-process descriptor in the RT-

ready queue (explained in Section 3.7). 

− pprevrdy: A pointer to the previous ready process descriptor in the RT-

ready queue (explained in Section 3.7). 

The RT-process statistical fields (st in Figure 3.4) are explained in Chapter 7. 

3.5. The RT-Process Scheduler 

The process scheduler is the component of the kernel that selects which process to run next. 

The scheduler can be viewed as the OS component that divides, using a defined policy, the finite 

resource of CPU time between the runnable processes on a system. 

The set of rules used to determine when and how to select which process to run next is called 

scheduling policy[15]. A scheduler's policy often determines the overall feel of a system and is 

responsible for optimally utilizing CPU time. The policy behind a RT-scheduler is simple: 

“A priority scheduled Real-Time system must ensure that the highest priority runnable 

process can start to run in a bounded time—and the bound needs to be small.” [27]. 

The first and most common scheduling method in RTOS is preemptive priority-based 

scheduling, where a lower priority process is preempted by a higher priority process when it becomes 

ready to run. The RT-scheduler always selects the highest priority runnable RT-process for execution. 

All unvoluntary context switches are triggered by interrupts. Timer interrupts can cause preemption 

due to Timer-Driven RT-process activation. If the priority of the activated RT-process is higher than 

the priority of the currently running process, the execution of current is interrupted and the RT-

scheduler is invoked to select another RT-process to run.  



The MINIX scheduler is implemented in the pick_proc() kernel function. MINIX4RT 

modifies its code calling the RT-scheduler (MRT_pick_proc() function) at first. As consecuence, 

when the MINIX scheduler is invoked, the RT-schedulers runs first. MRT_pick_proc() tries to find the 

RT-READY process with the highest priority, returning the pointer to the RT-process descriptor. If 

there are not such RT-process, the pick_proc() stills running its original code trying to find the highest 

priority NRT-process. 

MRT_pick_proc() also updates system and RT-process scheduling statistics and controls that 

the number of schedulings of a RT-process does not reach the specified limit. Once the limit is 

reached, the RT-process is removed from its RT-READY queue. Also, the bit into the flag field 

named MRT_STOP is set to avoid that the process could run allowing gathering of RT-process 

statistical information. 

The RT-scheduler uses an optimized process-selection algorithm, based on a set of ready 

queues and a bitmap [28]. Each bit in the bitmap represents a RT-READY queue. If a bit is set, it 

means that at least one process is RT-READY in that queue. Typically, the bitmap is scanned for the 

highest priority non-empty queue, and the first process in that queue is selected to run.  

The RT-scheduler implements fully O(1) scheduling. The algorithm completes in constant-

time, regardless of the number of RT-READY processes. 

In MINIX (and other time-sharing OSs), the timeslice is the numeric value that represents how 

long a process can run until it is preempted. MINIX4RT does not use a timeslice for preempt a RT-

process. Only a higher priority process can  preempt the running process or it must relinquish the CPU 

by itself. 

When a higher priority process enters the RT-READY state, the RT-kernel calls the RT-

scheduler to find the highest priority RT-READY process to execute (presumably the process that just 

became runnable).  

3.6. Process Priority 

A common type of scheduling algorithm is priority-based scheduling. The idea is to rank 

processes based on their worth and need for processor time. Processes with a higher priority will run 

before those with a lower priority, while processes with the same priority are scheduled round-robin 

(one after the next, repeating). 



3.6.1. NRT-Process Priorities 

MINIX uses three Ready queues to schedule processes as it is shown in Figure 3.5: 

− TASK_Q: Assigned for I/O Tasks. 

− SERVER_Q: Assigned for Servers like Memory Manager (MM) and File 

System Manager (FS). 

− USER_Q: Assigned for User-level  processes. 

The MINIX scheduling algorithm is simple. It looks up for a process into the READY 

queues starting with the TASK_Q, next continues with the SERVER_Q, and finally with the 

USER_Q. The scheduler selects the first process it finds in the non-empty highest priority 

queue. If all queues are empty, the IDLE process (detailled in Chapter 7) is scheduled. 

Figure 3.5: MINIX READY Queues (from [2]). 

3.6.2. RT-Process Priorities 

Each RT-process has a base priority (the baseprty field) and an effective priority (the 

priority field), and is scheduled in accordance with the latter. The base priority of a RT-

process is stablished using the mrt_setproc() System Call before calling mrt_set2rt() System 

Call that convert the NRT-process into a RT-process. Both, the baseprty and the priority field 

can have a value ranging from MRT_PRIHIGHEST (0x00) to MRT_PRILOWEST (0x0F). 

Normally, the effective priority of a RT-process equals its base priority but, it may be 

changed by the BPIP (more details in Chapter 5) or the scheduling policy.  



The set of RT-ready queues is actually implemented as 16 (MRT_NR_PRTY) separate 

queues, assigning one queue for each priority. A ready RT-process could be inserted into the 

RT-queue corresponding to its effective priority field in FIFO or LIFO order. The first 

process descriptor in the highest RT-ready queue will be selected to run by the RT-scheduler. 

The priority field is also used by the RT-kernel to minimize the Interrupt Blocking 

time. Only those RT-interrupt handlers with higher priorities are executed while the current 

RT-process is running. 

3.7. RT-Ready Queues Management 

To manage RT-ready queues the RT-kernel have the following data structures: 

A set of RT-ready queues, one queue for each priority level (RTM_sp.rdyQ.procL[]). 

A bitmap that have one bit assigned for each priority. Initially, all the bits are cleared 

indicating that all queues are empty (RTM_sp.rdyQ.bitmap). 

When a RT-process becomes runnable (that is, its state becomes RT-READY), the 

corresponding bit to the process priority is set in RTM_sp.rdyQ.bitmap, and the process descriptor is 

appended to the RT-ready queue in accordance with its priority field. 

Finding the highest priority RT-process on the system is therefore only a matter of finding the 

first bit set in RTM_sp.rdyQ.bitmap. Because the number of priorities is fixed, the time to complete a 

search is constant and unaffected by the number of running processes on the system. 

Each ready queue descriptor (MRT_procL_t) have one pointer to the first process descriptor 

and other pointer to the last process descriptor in the queue (see Figure 3.6).  

A process descriptor can be inserted into a queue in FIFO or LIFO order. Processes of the 

same priority will be managed under a FIFO policy, but sometimes a process that inherits its priority 

by the BPIP must be inserted into a queue in LIFO order (explained in Chapter 5).  

Each queue descriptor also contains a field named inQ that counts the current number of 

runnable RT-processes in the queue and a field named maxinQ that keeps the highest value of the inQ 

field for statistics. 

The following kernel functions help to manage RT-ready queues:  



− MRT_rdyQ_app(): Appends a process descriptor at the tail of a RT-

ready queue. 

− MRT_rdyQ_ins(): Inserts a process descriptor at the head of a RT-ready 

queue. 

− MRT_rdyQ_rmv(): Removes a process descriptor from a RT-ready 

queue. 

Several kernel functions operate on RT-ready queues: 

− MRT_pick_proc(): The RT-scheduler searchs for the highest priority 

ready-to-run RT-process. 

− MRT_inherit(): RT-IPC could change the priority of the destination 

process of a message. This function removes a process descriptor from its 

current RT-ready queue, inserting it into its inherited RT-ready queue using 

MRT_rdyQ_rmv() and  MRT_rdyQ_ins() RT-kernel functions. 

− MRT_disinherit(): Used to change the priority of a RT-process on 

mrt_reply() System Call. This function removes the processs descriptor 

from the its current RT-ready queue (MRT_rdyQ_rmv()), and inserts the 

descriptor into its inherited or base priority RT-ready queue in accordance to 

the BPIP (MRT_rdyQ_ins()). 



Figure 3.6: RT-kernel Priority Queues. 

As it can be seen, there are similarities between interrupt descriptors queues and  process 

descriptors RT-ready queues, but there are considerable differences in the queue usage. As it was 

described in Chapter 2, once an interrupt descriptor is set, it is inserted into an interrupt descriptor 

queue. The queue keeps the descriptor even though it has been triggered and its has been serviced. 

The interrupt descriptor can only be removed by the programmer using the MRT_free_irqd() RT-

kernel function. RT-ready queues keep only process descriptors in RT-READY and RT-RUNNING 

states. Process descriptors in other states are removed. As the BPIP could change the process priority, 

a descriptor could be removed from one RT-ready queue and inserted into other. 

MINIX4RT does not have a policy to assign process priorities, but it is easy to create a System 

Call that set a Rate Monotonic[29] priority schema using the period field of process descriptors or a 

Deadline Monotonic [30] using the deadline field of process descriptors. Dynamic priority algorithms 

as Earliest Deadline First (EDF) [31] or Least Laxity First (LLF) [32] requires more complex 

changes. 



3.8. RT-process Termination 

MINIX has four ways to terminate a running process: 

− Normal Exit: Invoking the exit() System Call by the process itself 

(voluntary). 

− Error Exit: The process discovers a fatal error and invokes the exit() 

System Call (voluntary). 

− Fatal Error: The OS discovers a process fatal error (often a program 

bug) and terminates the process using the do_kill() kernel function 

(unvoluntary). 

− Killed: Other process sends an uncached signal to the process 

(unvoluntary). 

When MINIX4RT runs in RT-mode, a RT-process must be converted into a NRT-process 

before it can be terminated. 

3.8.1. RT-process Termination Using the exit() System Call 

As it will be explained in Chapter 5, RT-processes can not send/receive messages 

using standard send()/receive() MINIX primitives. If a RT-process calls send() or receive() 

funcions, it receives an error code on function return.  

The exit() System Call uses sendrec(),a single function for doing a send() followed 

by a receive(). If a RT-process invokes exit(), it should return with an error, but the exit() 

System Call must not return to the calling process. To overcome this issue, two functions 

were modified in MINIX4RT as it described below: 

− The _exit() Library function invokes mrt_set2nrt() before doing its 

standard work. The RT-kernel converts the RT-process into a NRT-process, 

and releases the  resources owned by the terminanting process (VTs and a 

message queue (MQ) (explained in Chapter 5)). 

− The exit() function of the MM Server that requests the MRTTASK to 

release the VTs and the MQ owned by the RT-process. 



3.8.2. RT-process Termination Using the signal() System Call 

If a NRT-process sends a signal to a RT-process, the target is converted into a NRT-

process before it can receive the signal. That conversion is accomplished by the modified 

sig_proc() function of the MM. The MM sends a MRT_STDSIGNAL message to MRTTASK 

returning without any action if the target is a NRT-process or converting the target into a 

NRT-process before return. 

If the signal sent is uncached by the process, the process will exit releasing RT-

resources before. 

3.8.3. Releasing RT-process Resourses and Housecleaning 

To keep the system concistency, the RT-kernel (MRT_proc_stop() function) carry 

out some housecleaning tasks during the the conversion of a RT-process into a NRT one. It 

releases RT-resources owned by the converted process as is described below: 

− Any RT-process with pending requests to the converted process will 

return with E_MRT_EXITING error code. 

− A MT_SIGNAL message is sent to the watchdog RT-process of the 

converted process. 

− A MT_SIGNAL message is sent to all RT-process with their watchdog 

field equals to the converted process. The watchdog fields of that RT-

processes are reset. 

− All watchdog fields of RT-interrupt descriptors that equals to the 

converted process are reset. 

− All pending asynchronous messages sent by the converted process to 

other RT-processes are removed from their MQs. 

− The VT owned by the process related to a converted periodic process is 

stopped (but not released).  

− The VT owned by the process related to IPC timeout management is 

stopped (but not released).  



4. TIME MANAGEMENT 

4.1. Timing Mechanisms 

Timers are mechanisms that are able to notify the kernel or user programs that a certain 

interval of time has elapsed [15], they play an integral role in RT-systems [33, 34].  

RT-applications must be able to operate on data within strict timing constraints in order to 

schedule application or system events. Timing requirements can be in response to the need for either 

high system throughput or fast response time. Applications requiring high throughput may process 

large amounts of data and use a continuous stream of data points equally spaced in time. 

The following types of timing mechanisms are often used: 

− A pause() function: A function pause() is used to suspend the active 

process for a specified time. As is explained in [33], an inaccuracy could 

occur because the pause function use the Timer interrupt as its time base, 

and it depends on the Timer resolution.  

− Recovering from Message Loss: Usually a timer is kept while awaiting 

for a message. If the message is received, timer is stopped. If the timer 

expires, message loss is registered. In such a case, a retry logic is 

implemented by restarting the timer and awaiting for the message again. If 

the number of retries reaches a threshold, the activity is aborted and 

appropriate recovery action is initiated. 

− Recovering from Software Faults: Whenever a feature is initiated, a 

feature wide timer is kept to ensure feature success. If some software or 

hardware module involved in the feature hits recovery, the feature will fail 

and the timer expiry will be the only method to detect the feature failure. On 



expiry of the timer, the feature may be reinitiated or recovery action might 

be taken. 

− Sequencing Operations: Timers are used for sequencing time based state 

transitions. 

− Polling: A timer is kept and the system polls for a condition on every 

timeout. 

− Periodic Operations: For implementing audits, periodic timers are kept. 

On each timer expiry, software audit is initiated.  

− Failure Detection: For monitoring the health of other modules, a 

module runs a timer. It expects a sanity message periodically from all the 

other modules before the expire of the timer. If certain number of sanity 

messages are missed in succession from a module, module failure is 

declared as failed. 

− Inactivity Detection: Timers are also used for detecting the inactivity in 

a session.  

4.2. MINIX4RT Timer Interrupts 

MINIX use three software components to handle time related tasks. 

− The Clock ISR: increments de real time counter, decrements the 

quantum of the running process and checks it for zero, makes CPU 

accounting, and decrements an alarm counter. 

− The Clock Task: It is a Task that is scheduled when a Timer interrupt 

occurs and there is work to do, such as when an alarm must be sent or a 

process has run too long. 

− The Synchronous Alarm Task: It is a Task to send messages 

(synchronous events) directly to the server that requested the synchronous 

alarm, which must be waiting for the message. Synchronous alarms can only 

be requested by servers, for example, the network server wanting to time out 

if an acknowledgement packet does not arrive in a certain amount of time.  



 

MINIX4RT need to enhance Timer operations accuracy, resolution and predictability needed 

by a hard Real-Time OS, therefore it does not use any of the described components because they 

implies several context switches. This approach also facilitates software updates when new versions 

of MINIX will be realeased because the added source code is less intrusive. 

Several time-keeping activities are triggered by interrupts raised by the Programmable Interval 

Timer (PIT) on IRQ line 0. Some of these activities need to be executed as soon as possible after the 

interrupt is raised, while the other are delayed out of interrupt time [15]. 

The RT-kernel carry on the following actions related to time: 

− Updates the tick count since the RT-mode startup. 

− Checks whether the interval of time associated with each timer has 

elapsed. 

− Executes actions related to expired timers. 

− Emulates a Timer interrupt for the MINIX kernel. 

− Keeps updated an ordered timer list. 

− Inserts and removes timers from free and expired lists. 

The following RT-kernel functions deal with important Timer interrupts related activities: 

− MRT_irq_dispatch(): As was explained in Chapter 2, this function is 

executed on each hardware interrupt. On each Timer interrupt it takes the 

following actions: 

� It updates the counter MRT_sv.counter.ticks (explained in Section 

4.4). 

� It copies the MRT_sv.counter.ticks in the Timer interrupt descriptor 

timestamp field. 

� It checks for VT expirations. 

� If  the Active VT queue is empty or any VT has expired, it reenables 

the Timer IRQ line before returns. 



� If at least one VT has expired, it triggers the Timer interrupt 

descriptor (its handler is MRT_clock_BH()) for delayed processing, and 

reenables the Timer IRQ before returns. 

− MRT_clock_BH(): It is the Timer interrupt (Clock in MINIX 

terminology) Botton Half. It is executed only if a VT has expired outside 

interrupt time called by MRT_flush_int() and it has the PRI_HIGHEST 

priority. Its purpose is to change expired VTs from the Active Queue to the 

Expired Queue (explained in Section 4.8.2). 

− MRT_vtimer_flush(): This function, also called by MRT_flush_int(), 

executes Virtual Timer asociated actions (explained in Section 4.8.3). 

It is important to note that the Timer ISR merely indicates that at least a VT has expired. 

Before the RT-kernel returns from interrupt, the Active VT queue will be checked for expired VTs 

and the their actions will be executed. 

4.3. MINIX Virtual Timer Interrupts  

One important use of VTs is the emulation of Timer interrupts for the MINIX kernel. After 

executing mrt_RTstart() System Call, a VT and a software interrupt are assigned to emulate Timer 

interrupts for MINIX.  The RT-handler field of the software interrupt descriptor points to the original 

clock_handler() function of MINIX kernel.  

IBM-compatible PCs include a device called 8253/4 Programmable Interval Timer (PIT). The 

PIT is programmed by the kernel so that they issue interrupts at a fixed, predefined frequency. These 

periodic interrupts are colled Timer ticks and are crucial for implementing the timers used by the 

kernel and user´s programs. This device issues a special interrupt on IRQ0 called Timer interrupt, 

which notifies the kernel that a time interval has elapsed. Modern CPUs have timers in the local 

APICs. 

As the frequency of Timer interrupts of MINIX4RT could be greater than in MINIX, the RT-

kernel emulates MINIX Timer interrupts invoking the standard timer handler (the clock_handler() 

function) at lower or equal frequency than the PIT. 

The Timer interrupt rate of standard MINIX is defined as a constant  in HZ as follow: 

#define HZ           60    /* clock freq (software settable on IBM-PC) */ 



MINIX4RT redefines HZ as follow to make more easy the use of integer decimal periods: 

#define HZ           50    /* clock freq (software settable on IBM-PC) */ 

The Timer interrupt rate of MINIX4RT is established by the MRT_sv.tickrate system global 

variable. HZ and MRT_sv.tickrate must be harmonic frequencies to virtualize Timer interrupts for the 

MINIX kernel only when Timer interrupts occur, therefore they are related by an integer value: 

MRT_sv.tickrate = MRT_sv.harmonic * HZ; /* MRT_sv.harmonic = 1,2,3,.....N */ 

 To preserve the illusion of the standard MINIX tick rate HZ, the MINIX interrupt handler  

clock_handler() is called after MRT_sv.harmonic timer interrupts. This interrupt rate is emulated 

using a VT with period = MRT_sv.harmonic and MRT_ACT_IRQTRIG action type (See Figure 4.1). 

A software interrupt related to the VT is used to defer the processing of the MINIX Timer 

interrupt handler with a MRT_PRILOWEST priority. On each VT expiration, the software interrupt is 

triggered and its handler is executed by RTM_flush_int() function. 

Figure 4.1: MINIX Virtual Timer Interrupt. 

4.4. Timer Resolution  

The 8253/4 PIT uses an internal oscillator frequency (TIMER_FREQ) at 1,193,180 Hz. It has 

a 16 bits LATCH register to set the ratio between the oscillator frequency and the number of interrupts 

per second (tick_rate = 1193180/LATCH). 



Only some values of LATCH issues integer values of tick_rate as it is show in Table 4.1. 

Therefore,  other values of LATCH  result in accuracy error. 

Table 4.1: Integer Values of tick_rate. 

LATCH tick_rate 

1 1193180 

2 596590 

4 298295 

5 238636 

10 119318 

20 59659 

59659 20 

  

The value of the PIT LATCH is stored in a system global variable named MRT_sv.PIT_latch 

and it is initilized as: 

MRT_sv.PIT_latch = TIMER_FREQ/MRT_sv.tickrate. 

An example illustrates the accuracy error. For a tick rate of 100 [interrupts/s]: 

MRT_sv.PIT_latch = 1193180/100 =11931 and a a  reminder of 80 Hz 

The reminder represents an additional Timer interrupt every  (11931*100/80) = 15000 Timer 

ticks or 150[s]. The RT-Timer interrupt frequency is 100.0067052217 [Hz] and the RT-Timer period 

is 0.009999329522788 [s] resulting in an error in time accuracy of  0.0000670478. Table 4.2 shows 

some RT-interrupt frequencies, RT-Timer periods and resulting errors. 

As MRT_sv.tickrate is a multiple of HZ, it could be changed setting MRT_sv.harmonic using 

mrt_restart(). This System Call can only be used before running any RT-process or when there are not 

any RT-process running, otherwise all system time reference (in Timer ticks units) would be 

erroneous (i.e. periods, timestamps, tick counters, etc.). 

MINIX kernel keeps tracks of the number of elapsed (virtual) Timer ticks since the system 

was started in the global system variable named realtime. It is set to 0 during kernel initialization.  

MINIX4RT kernel keeps tracks of elapsed (real) Timer ticks since the last mrt_RTstart() or 

mrt_restart() System Call invocation in the global system variable named MRT_sv.counter.ticks. It is 

set to 0 during RT-system initialization and incremented by one unit when a Timer interrupt occurs, 

that is on every Timer tick. Since MRT_sv.counter.ticks is an unsigned 32 bits integer, the time that 

makes it overflow depends on the tick rate. However, the RT-kernel handles the overflow using 

another kernel variable named MRT_sv.counter.highticks. 



Note that since the system updates MRT_sv.counter.ticks and MRT_sv.counter.highticks, only 

the former is loaded in the timestamp field of descriptors (interrupt descriptors, process descriptors, 

message descriptors, etc). The next versions of MINIX4RT will include the extension of the 

timestamp field. 

Table 4.2: Period Errors. 

Configured 

TickRate 

[int/s] 

Configured 

Specified 

Period 

[s] 

Latch Reminder 

[Hz] 

Real Tick 

Rate 

[int/s] 

Real Period 

[s] 

Period  

Error 

100 0.010000000 11931 80 100.006705 0.009999330 0.000067048 

200 0.005000000 5965 180 200.030176 0.004999246 0.000150857 

500 0.002000000 2386 180 500.075440 0.001999698 0.000150857 

1000 0.001000000 1193 180 1000.15088 0.000999849 0.000150857 

1500 0.000666667 795 680 1500.85535 0.000666287 0.000569906 

2000 0.000500000 596 1180 2001.97987 0.000499506 0.000988954 

3000 0.000333333 397 2180 3005.49118 0.000332724 0.001827050 

4000 0.000250000 298 1180 4003.95973 0.000249753 0.000988954 

5000 0.000200000 238 3180 5013.36134 0.000199467 0.002665147 

7500 0.000133333 159 680 7504.27673 0.000133257 0.000569906 

10000 0.000100000 119 3180 10026.7227 0.000099733 0.002665147 

Table 4.3 shows some wrap around time (in days) of MRT_sv.counter.ticks for some Timer 

interrupt frequencies. 

Table 4.3: MRT_sv.counter.ticks Overflow Time. 

MRT_sv.tickrate 

[interrupt/s] 

MRT_sv.counter.ticks  

Days to Overflow 

50 994 

100 497 

200 249 

500 99 

1000 50 

1500 33 

2000 25 

3000 17 

4000 12 

5000 10 

7500 7 

10000 5 

4.5.  8253/4 Programmable Interval Timer Programming 

The 8253/4 Programmable Timer provides three independent 16-bit counters called Timer 

channels that can count in binary or BCD. It can run in one of the six programmable modes: 



− Mode 0: Interrupt on Terminal Count. 

− Mode 1: Programmable One-shot. 

− Mode 2: Rate Generator. 

− Mode 3: Square Wave Rate Generator. 

− Mode 4: Software Triggered Strobe. 

− Mode 5: Hardware Trigger Strobe. 

The programming of a Timer channel is initiated by writing a control word into the control 

register port at 43H. The control word has the format shown in Figure 4.2: 

Figure 4.2: PIT Control Word Format. 

Since the counters are 16 bits long but the I/O port through which data is transferred is only 8 

bits long, two data transfer operations to fill the whole counter. 

 Setting the bits D5 and D4 to 11 in order to load first the LSB then the MSB as the preset 16-

bit word count for the corresponding counter. Here are some relevant I/O port addresses: 

− 40H Timer Channel 0 Counter 

− 41H Timer Channel 1 Counter 



− 42H Timer Channel 2 Counter 

− 43H Timer Control Register 

Two RT-kernel functions operates on the PIT Channel 0:  

− MRT_set_timer(): Sets the Timer interrupt rate with a frequency of (HZ 

*harmonic). The function argument is the harmonic frequency of  the 

MINIX Timer frequency.  

− MRT_read_timer(): Reads the current value of the PIT counter.  

4.6. Estimating the Timer Interrupt Latency 

When the PIT counter reachs zero, the PIT raise IRQ 0 and resets the counter to the value in 

the LATCH. As the PIT remains decrementing the counter, during the execution of the Timer 

interrupt handler, the value of the counter lets compute the latency of the handler (See Figure 4.3). 

Timer_Handler_Latency = MRT_sv.PIT_latch - MRT_read_timer() 

To consider the overhead of executing MRT_read_timer(), the kernel estimates its value at 

initialization time and stores the result (in PIT Hz units) into the system variable 

MRT_sv.PIT_latency. 

Figure 4.3: Estimating Timer Interrupt Latency. 



 Applications can get the estimated Timer Interrupt Latency using the mrt_getistat() System 

Call for IRQ 0, and the value of MRT_sv.PIT_latency using mrt_getsval() System Call (more details 

in Appendix A).   

4.7. Real-Time and Non Real-Time Timer Handlers 

At startup, the system is not ready for RT-processing (described in Chapter 3). All interrupt 

handlers used by the kernel are MINIX NRT-handlers, including the Timer handler that is the 

function clock_handler(). When the RT-mode starts, the system enables the use of RT-handlers for 

those interrupt descriptors defined as Real-Time (the bit MRT_RTIRQ set in the flag field), including 

the RT-Timer handler named MRT_clock_BH(). 

Sometimes, it is necesary to reconfigure the system to change some parameters without 

recompilation and restarting it. The mrt_restart() System Call can be used to change RT-processing 

parameters and reset system statistics. One of this parameters is the Timer interrupt frequency, and it 

could be changed using the harmonic argument of mrt_restart(). All statistical fields of data structures 

are reset because changing the Timer period causes that they will be erroneous as it was explained in 

Section 4.4. 

4.8. Virtual Timers  

A Virtual Timer (VT) is a software facility that allows to take an action at some future 

moment, after a given time interval has elapsed; a time-out denotes a moment at which the time 

interval associated with a timer has elapsed [15]. 

Some systems use VTs to handle periodic processing. Once the period of the VT has elapsed, 

the periodic process is scheduled,  the VT is removed from a queue and inserted in other position of 

the queue depending on the period. This approach presents significant overhead to the periodic 

process and particulary in those that have small periods.  

MINIX4RT uses VTs to manage periodic processing and other related activities. It has 

NR_VTIMERS  Virtual Timers descriptors data structures defined in kernel space. 

A VT descriptor has the MRT_vtimer_t data structure (see Appendix D) with the following 

fields: 

− period: The period of the VT in RT-ticks. 



− nextexp: The number of RT-ticks for the next VT expiration in the 

queue (explained in Section 4.8.2). 

− limit: The number of expirations until free the VT. A limit of 0 means 

that the VT has no expiration limit. 

− action: The code of the action to execute on expiration (explained in 

Section 4.8.1). 

− param: A generic integer used as a parameter for the action on VT 

expirations. The param field enables to define a single general-purpose 

function that handles the time-outs of several device drivers; the param field 

could store the device ID or other meaningful data that could be used by the 

function to differentiate the device. 

− index: The VT identification number. 

− owner: The VT RT-process owner. 

− priority: The VT owner's priority. This field is used on VT expirations 

to run actions in priority order. 

− timestamp: The last expiration timestamp. 

− expired:  Counts the number of VT expirations. 

− next:  A pointer to the next VT in the queue. 

− prev:  A pointer to the previous VT in the queue. 

4.8.1. Virtual Timers Handling Functions 

The RT-kernel functions that handle VTs are: 

− MRT_vtimer_flush(): Searches for expired VTs with equal or greater 

priorities than the MRT_sv.prtylvl and runs their actions as was explained in 

Chapter 2. 

− MRT_vtimer_alloc(): Allocates a VT with the parameters passed as 

arguments. 



− MRT_vtimer_free(): Reset all parameters of a VT and inserts it into the 

VT Free queue.  

− MRT_vtimer_ins(): Inserts an VT into the Active/Expired/Free queue. 

− MRT_vtimer_rmv(): Removes a VT from the Active/Expired/Free 

queue. 

− MRT_vtimer_search(): Searches for a VT in a queue. 

− MRT_vtimer_run(): Executes a VT action. Once the action has been 

executed, the VT is reescheduled for the next period (if expired >= limit) or 

it is released to the Free VT queue. The VT actions could be: 

� MRT_ACT_NONE: No action is executed.  

� MRT_ACT_PERIODIC: Used for periodic processes. This action 

wakes up the VT owner process.  

� MRT_ACT_MSGOWN: Sends a MT_TIMEOUT message to the VT 

owner process.   

� MRT_ACT_MSGWDOG: Sends a MT_TIMEOUT message to the VT 

owner’s watchdog process.  

� MRT_ACT_IRQTRIG: Trigger an IRQ descriptor specified in the 

param field. 

� MRT_ACT_SNDTO: A send type timeout has expired (see Chapter 5). 

� MRT_ACT_RCVTO: A receive timeout has expired (see Chapter 5). 

� MRT_ACT_WAKEUP: This action wakes up the VT owner process if 

it has called the mrt_sleep() System Call that put the process into the RT-

BLOCKED state.  

� MRT_ACT_SCHED: This action wakes up the process specified in 

the param field. 

� MRT_ACT_DEBUG: Used for debugging purposes. Its prints the 

param field in console.   



4.8.2. Virtual Timers Queues 

The RT-kernel uses several queues for handling VTs. The queues are: 

− MRT_st.timerQ: It is the queue for Active VTs ordered by expiration 

time (see Figure 4.4). The firstexp field of the queue counts the number of 

RT-ticks for the expiration of the first VT. Each VT has a field named 

nextexp that counts the number of RT-timer ticks for the expiration of the 

next VT in the queue. Once a VT has expired, it is removed from this queue. 

− MRT_st.freeQ: It is the queue for Free VTs. 

− MRT_st.exp.expiredQ[]: It is an array of queues of expired VTs with 

pending actions. There is one queue for each system priority. Once the 

action of a VT is executed, the VT is removed from this queue (see Figure 

4.5). 

Figure 4.4: Active Virtual Timers Queue. 

The data structure of a VT queue descriptors (MRT_timerQ_t) has the following 

fields: 

− first: A pointer to the first VT in the queue. 

− last:  A pointer to the last  VT in the queue. 



− firstexp: It counts the number of RT-ticks to the first VT expiration. 

− maxper:  It is the total amount of nextexp fields of all VTs in the queue. 

(only used in the Active queue). 

− inQ: The current number of VTs enqueued. 

− maxinQ: The maximun number of VTs enqueued. 

Figure 4.5: Virtual Timer Expired Queues. 

4.8.3. Executing Virtual Timers Actions 

Executing VT actions in the Timer handler could produce unpredictable latencies on 

high priority processes. As the Timer interrupt descriptor has the highest priority, all VT 

actions execute at the highest system priority including those actions of VTs that belongs to 

processes with lower priorities. This is another type of unbounded priority inversion. 



Executing VT actions in Bottom Halves routines does not help much, because the 

VT actions are executed before returning the system to user-mode, therefore the priority 

inversion persists. 

As it is illustrated in Figure 4.6, the execution of actions of all expired VTs preempt 

the execution of a higher priority process. 

 Figure 4.6: VT Actions with Unbounded Priority Inversion. 

To avoid this problem, the RT-kernel runs expired VT actions in priority order only 

if they have higher or equal priorities than MRT_sv.prtylvl (see Figure 4.7). 

Figure 4.7: VT Actions Priority Ordered Execution. 



Only the execution of actions of all expired VTs with higher or equal priority than 

MRT_sv.prtylvl could preempt the execution of a running process or IRQ handler. VT 

actions with lower priorities will be executed later when the MRT_sv.prtylvl decline. The 

flow diagram is shown in Figure 4.8. 

Figure 4.8: Flushing Expired VTs and Triggerd IRQ Descriptors. 

4.9. Virtual Timers Handling: Other Tested Approaches 

This section dicusses other approaches tested during the development and implementation of 

VTs on MINIX4RT.  

Varghese and Lauck [34] suggest the use of  Timer Wheels to handle a lots of VTs in an 

efficient way. This approach has been tested but the coding complexity, larger memory requirements 

and its minimal performance improvement on a reduced VT environment move further away the 

educational aims of the MINIX4RT project. In spite of that, that approach could be considered for 

custom versions or for coding laboratory practice. 

When the PIT is used in SQUARE_WAVE mode, increasing Timer resolution implies 

increasing the PIT frequency rising the system overhead because the Timer ISR is executed more 

frequently.  



A better approach [35] to increase the Timer resolution without increasing the PIT frequency 

is to execute the Timer handler only in those moments that is needed. Instead of producing interrupts 

at higher rates (SQUARE_WAVE mode), the PIT is programmed in ONE-SHOT mode. This means 

that on every Timer interrupt, the PIT is programmed to generate an interrupt as soon as the earliest 

scheduled VT action. In spite of this feature is not available in the current version of MINIX4RT, it 

will be included in the next as an optional operation mode. 

 



5. REAL-TIME INTERPROCESS COMUNICATION (RT-IPC) 

5.1. Introduction 

The key difference between time sharing OS and RTOS is the need for deterministic timing 

behavior in the RTOS. Deterministic timing means that OS services consume only known and 

expected amounts of time. Inter-process communication (IPC) by message passing is one of the 

central paradigms of most kernel-based and other Client/Server architectures. It helps to increase 

modularity, extendibility, security and scalability, and it is the key feature for distributed systems and 

applications [36]. Therefore, IPC primitives of a RTOS need to have deterministic execution and 

blocking times. 

Messages are units of information that pass from the sender to the receiver. Two methods can 

be used to message transferences:  

− With buffering: The message is sent to a data structure like RT-Mach 

ports[10] or Message Queues that stores it until a process receives it.  

− Without buffering: The message is sent to a process and the sender must 

wait to tranfer the message. This method is known as rendezvous. 

Tanenbaum selects the rendezvous approach for MINIX. It has the following semantics: 

− When a sender calls send() but the receiver is not waiting that message, 

the sender is blocked until the receiver calls receive() for that message. 

− When a receiver wants to receive a message but it has not been sent, the 

receiver is blocked until the sender calls send() for that message.  



Rendezvous approach is fine in a time-sharing environment because it is very rare that two or 

more messages are queued into a Message Queue and the avarage queue length would be less than 

one but it can not be used for asynchronous communications among processes. 

MINIX’s kernel hides interrupts turning them into messages, but interrupts are asynchronous 

events. When a I/O device raice an interrupt, its handler traps it, and will try to send() a message to an 

I/O Task. If the I/O Task is not waiting for that message, the handler must register this fact and will 

try to send the message latter because the kernel can not be blocked. This approach does not help to 

much for the implementation of communications protocols where messages can flow from down to 

top triggered by interrupts. 

In a RT-environment, several messages can be sent to a queue waiting to be received. They 

must be treated according the senders´ priorities and must guarantee message delivery in a timely 

fashion[10]. 

MINIX4RT IPC uses unidirectional communication channels called Message Queues (MQ) 

consisting of a list that holds messages in kernel space. The number of messages that a MQ can store 

can be specified for each RT-process at creation time. Messages have fixed sizes and strict copy to 

value semantics. 

5.2.   MINIX IPC Primitives 

MINIX has the following IPC kernel functions: 

− mini_send(caller, dest, m_ptr): A message is copied from the caller’s 

message buffer pointed by m_ptr to the dest’s message buffer if dest process 

it is blocked waiting for that message, otherwise the caller process is 

blocked. 

− mini_rec(caller, src, m_ptr): If the sender process src is blocked trying 

to send a message to the caller process, the message is copied from the src’s 

buffer to the buffer pointed by m_ptr and the src process is unblocked, 

otherwise the caller process is blocked. 

MINIX offers the following primitives in the libc.a library for higher layers: 



− send(dest, m_ptr): A message is copied from the sender’s message 

buffer pointed by m_ptr to the dest’s message buffer if dest process is 

blocked waiting for that message, otherwise the caller process is blocked. 

− receive(src, m_ptr): If the src process is blocked trying to send a 

message to the receiver, the message is received and src process is 

unblocked, otherwise the receiver process is blocked. 

− sendrec (dest_src, m_ptr): A send() followed by a receive() to/from the 

same process in a single function. It is used for system calls avoiding to 

make two transitions from User-mode to Kernel-mode. 

5.3. MINIX4RT IPC Primitives Features 

Sometimes there are needs to use some type of policy to control the system behavior on 

message transfers. That policy may differ for messages sent to request services from those messages 

used by Servers to reply that requests. MINIX uses the same mini_send() primitive for both operations 

without distinguish among them. 

The use of the same function for service requests, for service replies, to signal interrupts, etc. 

does not help for the apply a policy for each type of action. 

A RT-process can not use MINIX IPC primitives because: 

− mini_send() and mini_rec() kernel funcions could change the RT-

process status to READY, and therefore the RT-process would be selected to 

execute by MINIX scheduler loosing all its RT-execution attributes. 

− As MINIX IPC does not support different behaviors for mini_send(), 

any priority inversion avoidance protocols can be applied. 

− If a RT-process make a request  to a a NRT-process using mini_send(), 

the RT-process must wait for the reply until NRT-process will run at NRT-

priority. This is another case of Unbounded Priority Invesion (detailled in 

Section 5.17)  

As a RT-process can not use MINIX IPC primitives, it is inhibited of making any MINIX 

System Calls (except exit() as was explained in Chapter 3). 



MINIX4RT offers a variety of new Kernel Calls that let apply different policies depending on 

the message transfer use. The term Kernel Calls is used to distinguish the way that they operate 

against System Calls. A more detailed explanation will be find in Chapter 6.   

RT-IPC Kernel Calls have the following features: 

− Synchronous/Asynchronous message transfer using Message Queues. 

− Configurable Message Queue size. 

− Different beahavior of send operations for requests, replies, signals and 

interrupts.  

− Timeout support for synchronous primitives. 

− Configurable dequeuing policy (Priority order or FIFO order). 

− Priority Hand-Off to avoid unbounded priority inversion. 

− Basic Priority Inheritance Protocol [37] support to avoid unbounded 

priority inversion. 

− Sending timestamps and message IDs can be retrieved by the receiver. 

− Senders process’s attributes are stored with the message header 

(priority, process type, process deadline, etc). 

The RT-kernel has a message pool named MRT_sm.pool that has NR_MESSAGES message 

queue entries in kernel space. Each message queue entry includes space for the message itself and its 

header. 

When a NRT-process is prepared to be converted into a RT-process using the mrt_setproc() 

System Call a MQ is assigned to it. A MQ has a bounded capacity that quantifies its ability to store 

messages. The size requested of the MQ is a field of the mrt_pattr_t data structure passed as function 

parameter of mrt_setproc(). The pmq field of the process descriptor is filled with a pointer to the 

message queue assigned to the process. 



5.4. Message Descriptor Data Structure 

A Message Descriptor Data Structure (mrt_msgd_t) is composed by the Message Payload 

Data Structure and the Message Header Data Structure described in the next sections (see Appendix 

D). 

5.4.1. Message Payload Data Structure 

MINIX kernel defines six messages types (see Figure 5.1). The sizes of message elements will 

vary, depending upon the architecture of the machine; this diagram illustrates sizes on a machine with 

32-bit pointers. 

MINIX4RT keeps the message formats but without the first two fields ( m_source and 

m_type) in the Message Payload Data Structure ( MRT_msg_t). 

Figure 5.1: MINIX Message Types (From [2]). 



5.4.2. Message Header Data Structure 

As the RT-kernel needs more information to describe a message, a Message Header Data 

Structure ( MRT_msg_hdr_t) with the following fields is defined: 

− source: RT-PID of the process who sent the message. 

− dest: RT-PID of the destination process. 

− mtype: What kind of message is it. 

− mid: A message ID set by the kernel. 

− seqno: A message sequence number. It is the number of message sent by 

the sender RT-process.   

− tstamp: The value of the system counter RTM_sv.counter.ticks when the 

message was inserted into the MQ. 

− priority: The message priority that equals the sender's priority (see 

Section 5.18). 

5.5. The Message Queue Entry Descriptor 

A Message Queue Entry Descriptor (MQE) can store one Message Descriptor (mrt_msgd_t) 

and other fields that are needed to conform MQs and handling message timeouts. The fields of the 

MRT_mqe_t data structures are (see Appendix D): 

− msgd: A Message Descriptor. 

− index: A Message Queue Entry ID. 

− pvt: A pointer to a VT that handle the message timeouts. 

− next: A forward pointer. 

− prev: A backward pointer. 



5.6. The Message Queue Descriptor 

A Message Queue Descriptor (MRT_msgq_t) let the RT-kernel organize MQEs. Each MQ 

descriptor have the following fields: 

− index: The message queue ID used for quick searches. 

− size: The message queue size.  

− flags: The message queue policy flags: 

− MRT_PRTYORDER: Priority Order Policy 

− MRT_FIFOORDER: First In First Out Order Policy 

− inQ: It counts the number of messages enqueued. 

− maxinQ: It counts the highest number of message enqueued. 

− owner: The message queue owner. 

− delivered: The total number of messages delivered. 

− enqueued: The total number of messages enqueued. 

− pvt: A pointer for the VT related with the MQ. It is used to handle the 

timeout of the mrt_rcv() Kernel Call. 

− mQ: An  array of queues to handle the messages in priority or FIFO 

order. 

5.7. The RT-System Message Pool 

The memory space where messages are stored is called the System Message Pool. It is 

allocated in kernel memory space before communications to eliminate the buffer allocation delay (see 

Figure 5.2).  

The list that keeps the free Message Queue Entries is RTM_sm.mfreeQ. It has the same data 

structure type MRT_msgq_t than other MQs. 



Figure 5.2: System Message Pool. 

5.8. Message Queues  Management 

To manage the MQs the RT-kernel uses the MRT_mQ_t data structure that is composed by: 

A set of MQE queues, one queue assigned for each priority level.  

A bitmap with one bit assigned for each priority. A bit set means that the related queue has at 

least one message. Initially, all the bits are cleared indicating that all queues are empty. 

When a MQE is enqueued, the related bit to its priority is set in bitmap, and the MQE is 

appended to the queue in accordance with its priority field. 

Finding the highest priority MQE in the MQ is therefore only a matter of finding the first bit 

set in bitmap. Because the number of priorities is fixed, the time to complete a search is constant and 

unaffected by the number of enqueued MQE in the queues. 

Each queue have two pointers, one for the first message descriptor and one for the last 

message descriptor enqueued (see Figure 5.3). The insertions in the queue can be in FIFO or LIFO 

order. MQE of the same priority will be managed under a FIFO policy. 

The following kernel functions help to manage MQs and MQEs:  

− MRT_msgQ_rst(): Resets all MQ fields. 



− MRT_msgQ_alloc(): Allocs a MQ for a RT-process. 

− MRT_mqe_rst(): Resets all MQE fields. 

− MRT_mqe_alloc(): Allocs a MQE from the Free queue for a MQ.  

− MRT_mqe_free(): Releases a MQE returning it to the system Free 

queue. 

− MRT_mqe_app(): Appends a MQE at the tail of a MQ. 

− MRT_mqe_rmv(): Removes a MQE from a MQ. 

− MRT_mqe_pick(): Selects the highest priority (Priority Ordering) or the 

oldest (FIFO Ordering) MQE sent by a specified source from a MQ. 

As it can be seen, that the same design pattern was employed in the management of interrupt 

descriptor queues, ready process queues, expired timer queues and message queues. 

  Figure 5.3: Message Queue Management. 



5.9. The mrt_rqst() Kernel Call 

The mrt_rqst() Kernel Call sends a request message to a RT-process through a MQ in a 

synchronous manner specifying a timeout.  

The Kernel Call prototype is: 

int mrt_rqst( dest, m_ptr, timeout) 

Where: 

−  dest: It is the RT-PID of the destination process. 

−  m_ptr: It is a pointer to the message buffer. 

−  timeout: It is the time to wait that the request message could be sent. 

If the dest proccess is waiting for the message, it is copied from the caller’s message buffer 

pointed by m_ptr to the dest’s process message buffer. The dest process inherits the caller's priority if 

it is higher than its owns.  

If dest process is not waiting for the message, the request is enqueued in the MQ owned by the 

dest process, and the caller is blocked until the message is received. The dest process and all other 

processes requested directly and indirectly by the dest process inherit the caller's priority if it is higher 

than they own. 

A timeout in Timer ticks can be specified to wait for the request message could be sent. A 

special value of MRT_NOWAIT can be specified to return without waiting if the dest process is not 

blocked receiving the message. To wait until the dest process will receive the message, 

MRT_FOREVER must be specified as a timeout. If the timeout expired: 

− The message is removed from the dest’s MQ. 

− The caller process is unblocked returning and E_MRT_TIMEOUT error 

code. 

− The dest’s process priority is set to the highest priority message in it’s 

MQ. 



5.10. The mrt_arqst() Kernel Call 

The mrt_arqst() Kernel Call sends a request message to a process through a MQ in an 

asynchronous manner. 

The Kernel Call prototype is: 

int mrt_arqst( dest, m_ptr) 

Where: 

−  dest: is the RT-PID of the destination process. 

−  m_ptr: is a pointer to the message buffer. 

If the dest proccess is waiting for the message, it is copied from the caller’s message buffer 

pointed by m_ptr to the dest’s process message buffer. The dest process inherits the caller's priority if 

it is higher than its owns.  

If dest process is not waiting for the message, the request is enqueued in the dest’s MQ, and 

the caller returns without waiting for the message will be received. The dest process and all other 

processes requested directly and indirectly by the dest process inherit the caller's priority if it is higher 

than they own. 

5.11. The mrt_reply() Kernel Call 

The mrt_reply() Kernel Call sends a message to a process through a MQ in an asynchronous 

manner. It can be used for replies in a botton-up way (i.e. Server to Client). 

The Kernel Call prototype is: 

int MRT_reply(dest, m_ptr) 

Where: 

− dest: is the RT-PID of the destination process. 

− m_ptr: is a pointer to the message buffer. 



If the dest process is blocked waiting for the reply, the message is copied from the caller’s 

memory m_ptr to the dest process message buffer and dest is unblocked.  

If the dest process is not blocked waiting for the message, the reply is enqueued in the dest 

process MQ.  

At last, the caller’s priority is set to the highest priority message in it’s MQ or to its base 

priority baseprty if its MQ is empty.  

5.12. The mrt_uprqst() Kernel Call 

The mrt_uprqst() Kernel Call sends a message to a process through a MQ in an asynchronous 

manner. It can be used by the Tasks to make requests coming from remote processes in a botton-up 

way. 

The Kernel Call prototype is: 

int mrt_uprqst(dest, m_ptr, priority)  

Where: 

− dest: is the RT-PID of the destination process. 

− m_ptr: is a pointer to the message buffer. 

− priority: is the priority of the message. 

If the dest proccess is waiting for the message, it is copied from the caller’s message buffer 

m_ptr to dest’s process message buffer.  

If the dest process is not waiting the message, it is enqueued into the dest process MQ. 

In both cases, the priority of the dest process will be changed if and only if its current priority 

is lower than the specified priority function argument. 

5.13. The mrt_sign() Kernel Call 

The mrt_sign() Kernel Call sends a message to a process through a MQ in an asynchronous 

manner. It can be used by the Tasks to sign processes in a botton-up way. 



The Kernel Call prototype is: 

int mrt_sign(dest, m_ptr)  

Where: 

− dest: is the RT-PID of the destination process 

− m_ptr: is a pointer to the message buffer 

If the dest process is blocked waiting for the message, it is copied from the caller’s memory 

m_ptr to the dest’s process message buffer.  

If the dest process is not waiting the message, the message is enqueued into the dest’s process 

MQ. 

5.14. The MRT_send() Kernel Function 

The MRT_send() Kernel Function sends a message to a process through a MQ in 

asynchronous manner. It can be used by ISRs to send messages to Tasks in a botton-up way. 

The Kernel Call prototype is: 

int MRT_send(dest, prty, mtype) 

Where: 

− dest: The RT-PID of the destination process. 

− prty: The message priority. 

− mtype: The message type. 

If the dest process is blocked waiting for the message, the message header is copied into the 

dest’s process message buffer.  

If the dest process is not blocked waiting the message, the message header is copied into the 

dest’s process MQ, the field st.mdl (Missed DeadLines) of the dest process’s descriptor is increased 

and a MT_SIGNAL message is sent to the watchdog process of the dest process.  



5.15. The mrt_rcv() kernel Call 

The mrt_rcv() Kernel Call is used to receive a message. 

The Kernel Call prototype is: 

int mrt_rcv( source, hdr_ptr, m_ptr, timeout) 

Where: 

− source: specify the RT-PID of the message sender from which the caller 

wants to receive a message. A special value of MRT_ANYPROC can be 

specified to receive a message from any source. 

− hdr_ptr: specify the caller’s buffer for the message header. 

− m_ptr: specify the caller’s buffer for the message payload. 

− timeout: specify a timeout to wait for the message. Two special values 

can be specified: 

� MRT_NOWAIT: The process returns with o without receiving the 

message. If the message has been received, the function return code is 

OK else returns E_TRY_AGAIN.  

� MRT_FOREVER: The process waits until the message is receive. 

The caller searches for a message from the specified source into it’s MQ with the retrieving 

policy of the MQ (Priority or FIFO order). 

If there are no message from the source process, the caller is blocked. 

If the source process is blocked trying to send the message in a synchronous manner it is 

unblocked. 

The caller process can specify a timeout to unblock itself. If no message from the specified 

source is received in the specified period it returns E_MRT_TIMEOUT error code. 

If a message is received, the hdr_ptr buffer is filled with the header fields of the message 

received. 



5.16. The mrt_rqrcv() kernel Call 

The mrt_rqrcv() Kernel Call optimize the performance of the common operations of send a 

request message to a server process and waits for the reply message.  It saves one context switch for 

the caller process. 

The Kernel Call prototype is: 

int mrt_rqrcv( dest, rqst, rply, hdr, timeout) 

Where: 

− dest: Specifies the RT-PID of the destination processs. 

− rqst: Specifies the caller’s buffer for the request message. 

− rply: Specifies the caller’s buffer for the reply message payload. 

− hdr: Specifies the caller’s buffer for the message header. 

− timeout: specify a timeout to wait for the message. A special value of 

MRT_FOREVER can be specified to wait until the reply message is 

received. 

5.17. Using MINIX4RT IPC Kernel Calls 

Table 5.1 resumes the uses of send-type RT-Kernel Calls. Table 5.2 resumes the uses of the 

mrt_rcv() RT-Kernel Call. 

Table 5.1: Send-type Kernel Calls Uses. 

Use Kernel Call Caller’s Process 

Priority 

Destination’s Process 

Priority  

Caller waits until 

Synchronous Request mrt_rqst() It is not changed It is set to the caller's 

priority if it is higher 

than it’s current 

priority 

The message is received or a 

timeout expire. 

Asynchronous Request 

(used by non blocking 

Servers ) 

mrt_arqst() It is not changed It is set to the caller's 

priority if it is higher 

than it’s current 

priority 

It does not wait 

 

 



Table 5.1: Send-type Kernel Calls Uses (cont.) 

Use Kernel Call Caller’s Process 

Priority 

Destination’s Process 

Priority  

Caller waits until 

Reply mrt_reply() It is set to the value 

of the highest 

priority message in 

its MQ or to its base 

priority  

It is not changed It does not wait 

 

Up request message mrt_uprqst() It is not changed It is set to speficied 

priority if it is higher 

than its current priority 

It does not wait 

 

Signal message mrt_sign() It is not changed It is not changed It does not wait 

 

Request & Receive mrt_rqrcv() It is not changed It is set to the caller's 

priority if it is higher 

than it’s current 

priority 

The reply message is received 

or a timeout expire. 

Send a message 

(used by ISR)  

 

MRT_send() It is not changed It is set to speficied 

priority if it is higher 

than its current priority 

It does not wait if the 

destination process is waiting 

the message or enqueue the 

message and increase de 

missed deadline of the 

destination process 

 

Table 5.2: mrt_rcv() Kernel Calls Uses. 

mrt_rcv use source timeout 

To receive a reply.  RT-PID of the requested process MRT_NOWAIT < timeout < MRT_FOREVER 

To receive requests.  MRT_ANYSRC MRT_FOREVER 

5.18. Priority Invertion  

In many RT-applications, there are resources that must be shared among processes in a way 

that prevents more than one process from using the resource at any moment (mutual exclusion). 

Priority inversion is the term used to describe a situation where a process is waiting for a lower 

priority process to free a shared, exclusive use resource. Clearly, a priority based RT-system cannot 

tolerate significant periods of priority inversion. A sample helps to illustrate the problem. See Figure 

5.4, where: 

TH: Highest Priority Process. 



TM: Medium Priority Process. 

TL: Lowest Priority Process. 

S: Server Process. 

Figure 5.4: Priority Inversion. 

The sequence of events are: 

t1: TL requests a service to S. 

t2: S is preempted by TH. 

t3: TH requests a service to S. 

t4: S stills working on TL request. 

t5: TM preempts S. 

t6: TM exits and S stills working on TL request. 

t7: S replies to TL and starts working on TH request. 



The time interval between t3 and t6 is a Priority Inversion, but the interval between t4 and t5 

may be unbounded. 

The unbounded priority inversion is one serious problem in RT-systems. There has been 

developed many mechanisms to avoid it. The priority inversion problem in Client/Server 

communication is more serious one, since the length of priority inversion tends to be much longer 

than that of synchronization.  

5.19. Basic Priority Inheritance Protocol (BPIP) 

Sha, Rajkumar and Lehosky [38] have proposed two protocols to avoid the priority inversion 

problem. One is the Basic Priority Inheritance Protocol (BPIP), the other is the Priority Ceiling 

Protocol (PCP). 

Priority inheritance mechanisms are intended to prevent unbounded priority inversion by 

adjusting the effective priority of a lower priority process TL whenever a higher priority process TH is 

suspended waiting to be served.  

A Server process S is said to be executing on behalf of a Client process P if S is executing a 

P’s request or another process request that is executing a P’s request. 

A process S is said to be blocking process P if P (or a Server executing on behalf of P) has 

made a request to S, but S is executing other process request. 

The BPIP consists of the following rules [37]: 

− A Server process S executes at its runtime assigned priority when it 

does not block any process or when it is not executing on behalf of a Client. 

− If a Server process S is executing on behalf of a Client process P or is 

blocking one or more process, S executes at either the priority of P or the 

priority of the highest priority process (if any) that S blocks, whichever is 

higher. 

− Process requesting services of other process are served in priority order. 

Under the BPIP, a Client process can be blocked in two ways: 



− Directly: when the called process either has a queued request or is 

executing other process request.  

− Indirectly or push-through: when a process inherits a higher priority.  

The BPIP potentially requires priorities to be modified when processes make requests. A 

Server process may inherit the priority of a higher priority Client process even though the Server is 

not executing that Client request. Thus, each Server has an assigned base priority (the baseprty field) 

and an effective priority (the priority field).  

The behavior of BPIP in a Client/Server application is illustrated in Figure 5.5. 

Figure 5.5: Basic Priority Inheritance Protocol Sample. 

Asumptions:  

- HIGH, MEDIUM, LOW, BASE are process priorities. 

- HIGH > MEDIUM > LOW > BASE. 

- S’s priority = BASE. 

- TL‘s priority = LOW. 



- TM´s priority = MEDIUM. 

- TH‘s priority = HIGH. 

- TL  priority = LOW. 

The sequence of events is described below: 

− TL sends a request message to S. 

− S executes on behalf of TL with TL‘s priority.  

− While S is processing TL’s request, TM preempts S and sends a new 

request message to it. As S has not finished with TL’s request, it is still 

running but at TM’s priority because it is blocking TM. 

− While S is processing TL’s request, TH preempts S and sends a new 

request message to it. As S has not finished with TL’s request, it is still 

running but at TH’s priority because it is blocking TH. 

− Afterward S finishs with TL’s request and sends a reply message to 

TL’s. Then, it gets the highest priority message from it MQ (TH’s request), 

and starts to process it. 

− When S finishs with TH’s request, it sends a reply message to TH and 

it’s priority is changed to the highest priority message from it MQ (TM’s 

request) waiting to be received.  

− When S finishs with TM’s request, it sends a reply message to TM and 

it’s priority is changed to the highest priority message waiting to be received 

but as the MQ is empty, it’s efective priority is reset it’s base priority. 

In the previous sample, the higher priority process TH must wait that S finishs with the lower 

priority process (TL) request. It is a bounded priority inversion limited to the time consumed by S 

when it was executing on behalf of TL.  

To achieve the correct behavior and be compliance with BPIP, priority inheritance needs to be 

a transitive operation. Therefore, the RT-kernel must search across the chain of requested processes to 

apply the priority inheritance until it finds the process that has no pending requests. To search across 

the chain of a requested process, the RT-kernel uses mrt_sendto and mrt_getfrom fields of process 

descriptors. 



5.20. The Priority Ceiling Protocol (PCP) 

One drawback of the BPIP is that it not prevents deadlocks and chained blocking. Dutertre 

[39] shows this behaviour on a BPIP implementation based on semaphores. MINIX4RT is a systen 

based on message transfer and its IPC primitives are based on  the proposal of Borger and Rajkumar 

[37].  

The kinds of deadlocks exposed by Dutertre can not occur in MINIX4RT top-down 

Client/Server programming model because all request goes down and replies goes up. It has the same 

behavior that imposing a total ordering on resource use. System programmers must consider this 

programming model to avoid deadlocks. 

A necessary conditions for deadlocks is the use of blocking primitives, but MINIX4RT offers 

blocking and non-blocking Kernel calls with and without timeouts.  

Chained blocking occurs when the system uses semaphores and a higher priority process TH is 

blocked by several processes of lower priorities in succession. For example, a process TM locks a 

semaphore S1 and a process TL locks a semaphore S2. When TH tries to lock S1 it fails and TM inherits 

TH ´s priority. When TM tries to lock S2  it fails and TL inherits TM ´s priority. TH must wait until TL 

release S2 and TM releases S1 although TH  does not use S2  directly. 

Chained blocking could occurs in a system with message transfers as MINIX4RT. For 

example, a process TM sends a request message to Server S1 and a process TL sends a request message 

to Server S2.  If TH sends a request message to Server S1, it must wait and S1 inherits TH´s priority. If 

S1 sends a request message to Server S2 to process TM´s request, it must wait and S2 inherit TH´s 

priority (transitive). TH is blocked waiting for: 

− The reply of S2 to TL. 

− The reply of S2 to and S1. 

− The reply of S1 to TM . 

− The reply of S1 to TH . 

If PCP would be developed for MINIX4RT, it will need to set a priority ceiling for each 

process. As Server and Task processes could be requested by any User-level processes, the priority 

ceiling of all Servers and Tasks must be set to the highest User-level process priority. If a process 

request a service and the Server is blocked waiting a synchronous I/O, any other User-level process 

that requests another non related service to other Server will be blocked, because the Priority Ceiling 



is equal to the highest priority, disabling that any other request be treated until the former will finish. 

Therefore, the systems has the same behaviour than a monolitic non reentrant kernel. 

If Server’s Priority Ceiling is greater than or equal to any other User-level processes’s priority, 

the use of PCP slows down the system performance because only one process could be attended by 

the RTOS at once. 

5.21. Complete Priority Inheritance 

Both, the BPIP and the PCP use the priority inheritance as a method to avoid the unbounded 

priority inversion problem. Those protocols require process priorities to be modified, but changing the 

priority of a process if one of the operations needed to implement priority inheritance. A RT-process 

has resources as VTs and messages sent to other processes that are handled according to their 

priorities, therefore they must change their priorities too. 

To achieve a correct behavior of IPC primitives a Complete Priority Inheritance needs the 

following actions on processes and resources: 

− If the process is in the RT-ready state, it must be removed from its 

current RT-ready Queue and inserted it into other RT-ready Queue 

according to its inherit priority. 

− All process's expired VTs must be removed from their current Expired 

VT Queues and inserted into other Expired VT Queues according to the 

inherit priority of their owner. 

− All messages sent to other processes must be removed from their current 

MQE lists and inserted into other MQE list according to the inherit priority 

of the sender. 

If a request message sent by a lower priority process TL does not change its priority when TL  

inherits a higher priority, TL request may be (unbounded) delayed by other medium priority requests 

sent to the same destination process. Therefore a Client with higher priority that request a service 

from TL  will be delayed too. 

As it can be seen, the Complete Priority Inheritance could implies a performance penalty to 

IPC and increases the inversion delays produced by the OS itself [27]. The current version of 

MINIX4RT only changes the priority of the first process in the inheritance chain. 



6. RT-SYSTEM CALLS, KERNEL CALLS AND FUNCTIONS 

6.1. MINIX System Calls Implementation 

MINIX offers mini_send() and mini_rec() basic kernel primitives as was explained in Chapter 

5. At higher levels send(), receive() and sendrec() are used. All System Calls are implemented using 

sendrec() to send the request to a server process and to wait the reply from it. The standard servers are 

Memory Manager (MM) and File Sytem manager (FS). These interactions are deeply explained by 

Ashton [3]. 

An example illustrates the  implementation of a MINIX System Call (see Figure6.1). 

Figure 6.1: MINIX System Calls Implementation. 

When a User-level process wants to get its user time consumed it calls utime(), the call is 

converted by the system library (libc.a) into a sendrec() Call to the FS server. As the FS server does 

not have the information requested,  it must transfer the request to a Task named SYSTASK using a 



Task Call (with _taskcall() function). A Task Call is like a System Call used by servers to request 

services to Tasks. Task Calls use send()/receive() primitives too.  

As Tasks share the kernel memory space and data structures, the SYSTASK is like a kernel 

representative that can get process accounting times from kernel tables to reply to the FS server that 

can reply to the User-level process. 

6.2. MINIX4RT System Calls Implementation 

MINIX4RT offers a set of System Calls that operates in a similar way as MINIX System Calls 

does.  Unlike MINIX, it does not use the SYSTASK for source code readability. 

For those time constrained services MINIX4RT offers Kernel Calls that are not inplemented 

using message transfers. They call RT-kernel services through a processor Trap. 

The following sections describe how MINIX4RT implements System Calls and Kernel Calls 

and Appendix D is the reference of data structures used by them.  

6.2.1. RT-System Calls with Message Transfers 

Some RT-services do not need be requested by RT-processes. Examples of these 

services are the start of the Real-Time Processing Mode, stops it, gets system statistics, etc. 

They are not used for time constrained functions and they use MINIX send()/receive() 

primitives. Therefore, the RT-kernel could preempt the requesting process during the Sytem 

Call if a RT-process is ready to run. These type of  RT-related System Calls are 

implemented using the MM server that interacts with a new task called MRTTASK (see 

Figure 6.2) 

MRTTASK is like a RT-kernel representative that can access to RT-kernel data 

structures to reply to the MM server that can reply to the User-level process. 

 



Figure 6.2: RT-System Calls with Message Transfers. 

6.2.2. RT-Kernel Calls without Message Transfers 

 For time constrained services the MINIX4RT offers RT-kernel Calls. They interact 

with the RT-kernel directly without message transfers as in a monolitic OS using a processor 

Trap. (see Figure 6.3). 

Figure 6.3: RT-Kernel Calls without Message Transfers. 

This approach does not generate a sequence of context switches but implies a change 

from User-mode to Kernel-mode and viceversa.    

6.2.3. The RT-PID  

Every process in the system has an assigned unique identifier named the process 

identifier (PID). PIDs are the common mechanism used by applications to reference 



processes. Inside the MINIX kernel the p_nr field of the process descriptor is used for its 

IPC primitives instead of the PID. 

As is was described in Chapter 5, the IPC Kernel Calls use the RT-PID to identify 

senders and receivers RT-processes. The RT-PID is a data structure of type mrtpid_t with 

the following fields: 

− pid: The process ID assigned by MINIX when the process was created. 

− p_nr: The process number assigned by the MINIX kernel when the 

process was created. It is related with the slot number of the kernel process 

table. 

The IPC RT-Kernel Calls could be implemented using only the process PID to 

identify the RT-process. This strategy implies that the RT-kernel must scan all the process 

table until it finds the process that matches the specified PID. Once it find the process, the 

RT-kernel could get its p_nr field of the process descriptor needed for carry out the Kernel 

Call. This approach impose an unacceptable performance penalty for a RTOS. 

 The IPC Kernel Calls could be implemented using only the process p_nr to identify 

a RT-process, but if the RT-process terminates and other process gets the same slot number 

in the kernel process table, all related processes that reference to the ended process (p_nr) 

will refer to the new process with the same p_nr. Therefore, both related field are needed to 

identify univocally a RT-process and to avoid an unacceptable delay.  

6.3. Adding New RT-System Calls using MRTTASK 

As MINIX4RT was designed for an academic environment, it is useful to know how to 

enhance its functionalities to make laboratory and coding practice. The following sections guide 

instructors into the steps of adding new System Calls.  

To add a new RT-System Call it is appropriate to follow some system naming conventions. 

For a new System Call that will be named mrt_newcall: 

− mrt_newcall(): RT-system call to be used by User-level programs.

  

− rtt_newcall(): The name of the function used by de MM Server to 

invoke MRTTASK. 



− MRT_newcall() : The name of the function executed by MRTTASK that 

makes the work.  

− MRT_NEWCALL: RT-System Call number. 

To link each RT-System Call number with its service routine, the MM server uses a System 

Call dispatch table (defined in /src/mm/table.c), which is stored in the call_vec[] array and has 

NCALLS entries. The nth entry contains the service routine address of the System Call number n.  

To associate each function number with its corresponding service routine, the MRTTASK uses 

a dispatch table which is stored in the MRT_vector[] array. The nth entry contains the service routine 

address of the System Call having number (MRT_FIRSTCALL + n).  

The Table 6.1 shows some steps to add a new RT-System Call (i.e. newcall) using MRTTASK. 

Table 6.1: Steps to Add a New RT-System Call. 

Directory Action File Description 

create mrtnewcall.s It is an Assembler source code file. Create a label named 

_mrt_newcall to jump to a C function named 

__mrt_newcall. /usr/src/lib/syscall/ 

modify Makefile Add the mrtnewcall.s compilation 

create _mrtnewcall.c Create a function named _mrt_newcall() that sends a 

message to the MM server using _syscall(MM, 

MRTCALL, &m) 

The message m must have the MRTTASK operation code 

(MRT_NEWCALL) in the field m.m1_i1, m.m2_i1 or 

m.m3_i1. The other message fields can be used for the 

MRTTASK function parameters.     

/usr/src/lib/posix/ 

modify Makefile Add the mrtnewcall.c compilation. 

create rtt_newcall.c Create a function named rtt_newcall() that sends a 

message to the MRTTASK  using _taskcall(MRTTASK, 

MRT_NEWCALL, &m). The message m have the 

MRTTASK function parameters.    
/usr/src/lib/syslib/ 

modify Makefile Add the rtt_newcall.c compilation. 

modify syslib.h Change MRT_NCALLS and define MRT_NEWCALL 

Declare the function rtt_newcall() that the MM server 

invokes to request a service from MRTTASK. 
/usr /include/minix/ 

 com.h Add some #define of message fields used in mrttask.c 

modify unistd.h Add the function mrt_newcall() prototype and define 

data structures if needed. 
/usr /include/ 

modify errno.h Add new error types i.e. E_MRT_NEWERROR 



Table 6.1: Steps to Add a New RT-System Call (cont). 

Directory Action File Description 

modify getset.c Change the function do_getset() To add the case 

MRT_NEWCALL and the invocation to MRTTASK 
/usr/src/mm 

modify param.h Add message fields aliases  

modify mrttask.c Add the new functions of MRTTASK. The array of 

function pointer MRT_vector[] must be changed to point 

to the new function MRT_newcall(). 
/usr /src/kernel/ 

# make clean; 

make install 

 Library compilation. 

/usr/src/tools # make hdboot   Kernel compilation. 

6.4. Adding RT-Kernel Calls without Message Transfers 

Only RT-processes can make RT-System Calls direct to the RT-kernel (RT-kernel Calls) with 

the exception of mrt_set2rt().  

The Table 6.2 shows some steps to add a new RT-Kernel Call (i.e. newkrn). 

Table 6.2: Steps to Add a New RT-Kernel Call. 

Directory Action File Description 

create mrtnewkrn.s It is an Assembler source code file. Create a label named 

_mrt_newkrn to jump to a C function named 

__mrt_newkrn /usr/src/lib/syscall/ 

modify Makefile Add the mrtnewkrn.s compilation 

create _mrtnewkrn.c Create a function named _mrt_newkrn() to make a direct 

RT-Kernel Call using rtkrncall(MRTNEWKRN, 

parm_ptr); 

MRTNEWKRN is the number of the RT-Kernel Call 

The parm_ptr is a pointer to the RT-Kernel Call 

parameters.  

/usr/src/lib/posix/ 

modify Makefile Add the mrtnewkrn.c compilation. 

/usr /include/minix/ 
 com.h Update the NRTKCALLS constant and define 

MRTNEWKRN constant. 

modify unistd.h Add the function mrt_newkrn() prototype and define 

data structures if needed. 
/usr /include/ 

modify errno.h Add new error types E_MRT_NEWERROR. 

 



Table 6.2: Steps to Add a New RT-Kernel Call (cont). 

Directory Action File Description 

modify mrtproc.c  Add the new function MRT_newkrn(). 

modify mrtipc.c Add the new function MRT_newkrn(). /usr /src/kernel/ 

modify proto.h Add the new function MRT_newkrn() declaration. 

/usr /src/lib 
# make clean; 

make install 

 Library compilation. 

/usr/src/tools # make hdboot   Kernel compilation. 

 

As it was explained in the previous section, it is appropriate to follow some system naming 

conventions to add a new RT-Kernel Call that will be named mrt_newkrn: 

− mrt_newkrn(): The RT-Kernel Call to be used by user space programs 

− MRT_newkrn(): The name of the function executed by RT-kernel that 

do the work.  

− MRTNEWKRN: RT-kernel call number 

6.5. RT-Kernel Functions 

RT-kernel functions can only be used from programs linked with the RT-kernel code. They 

can be used in RT-Device Drivers, RT-ISRs and RT-tasks.  Table 6.3 shows a summary of RT-kernel 

functions.  

Table 6.3: RT-Kernel Functions. 

Synchronization Primitives 

void MRT_lock(void)    Disables maskable interrupts. 

void MRT_unlock(void) Enables maskable interrupts. 

void MRT_saveFunlock(long *flags) Saves CPU Flags Register into a local static variable flags and 

enable interrupts. 

void MRT_saveFlock(long *flags) Saves CPU Flags Register into a local static variable flags and 

disables interrupts. 

void MRT_restoreF(long *flags)  Restores CPU Flags Register from a local static variable flags. 



Table 6.3: RT-Kernel Functions (cont.). 

Synchronization Primitives 

void MRT_enable_irq(unsigned irq) Enables an IRQ line at the PIC 8259 controller. 

void MRT_disable_irq(unsigned irq) Disables an IRQ line at the PIC 8259 controller. 

unsigned MRT_get_PIC(void) Gets the PIC 8259 mask. 

void MRT_disable_irq(unsigned mask) Sets  the PIC 8259 to a specified mask. 

Interrupt Management 

void MRT_irqd_trigger(MRT_irqd_t  *irqd) Sets the interrupt descriptor for running in the next returning from 

an IRQ or System Call.   

MRT_irqd_t *MRT_irqd_serviced(MRT_irqd_t  *irqd) Unsets the interrupt descriptor for running in the next returning 

from an IRQ or System Call. It must not be used after running the 

interrupt handler because the RT-kernel do that.   

void MRT_irqQ_ins(MRT_irqd_t  *irqd)  Inserts an interrupt descriptor into an interrupt queue. 

void MRT_irqQ_rmv(MRT_irqd_t  *irqd) Removes an interrupt descriptor from an interrupt queue. 

int MRT_softirq_alloc(void) Allocates a software interrupt descriptor. Returns the descriptor 

number (the index of the MRT_si.irqtab[] array). 

void MRT_softirq_free(int irq_nbr) Frees a software interrupt descriptor. 

void MRT_irqd_set(int irq, MRT_irqd_t *irqd) Sets the parameters of an interrupt descriptor (hardware and 

software interrupts). 

void MRT_irqd_free(MRT_irqd_t *irqd)  Removes a interrupt descriptor from the interrupt queue and resets 

the descriptor fields. 

void MRT_irqd_rst(MRT_irqd_t  *irqd) Reset all fields of an interrupt descriptor. 

Process Management 

void MRT_rdyQ_ins(MRT_proc_t *rp) Inserts a process descriptor at the head of a RT-ready Queue.  

void MRT_rdyQ_app(MRT_proc_t *rp) Appends a Process Descriptor at the tail of a RT-Ready Queue. 

There is a macro defined in proc.h named MRT_ready() that is 

assigned to MRT_rdyQ_app(). 

void MRT_rdyQ_rmv (MRT_proc_t *rp) Removes a process descriptor from a RT-ready Queue. There is a 

macro defined in proc.h named MRT_unready() that is assigned to 

MRT_rdyQ_rmv(). 

void lock_pick_proc(void) It is the scheduler. Its searches the RT-ready Queues for the highest 

priority RT-process. If the queues are empty, it runs the MINIX 

scheduler algorithm. The global variable proc_ptr is set to selected 

process descriptor.  It resets the MRT_NEEDSCHED in the global 

system variable MRT_sv.flags.  

void MRT_proc_rst (int p_nr) Resets all RT parameters and statistics of a process specified in the 

p_nr argument. 



Table 6.3: RT-Kernel Functions (cont.). 

Process Management 

int MRT_set2rt(MRT_proc_t *rp) Converts a NRT-process into a RT-process. Before call this 

function, fill all process descriptors fields.  

int MRT_set2nrt(MRT_proc_t *rp) Converts a RT-process into a NRT-process.  

int MRT_sleep(struct proc *rp,long int timeout) Sets the MRT_P_SLEEP state flag of a process and calls 

MRT_unready(). A timeout could be specified to wakeup the 

process at its expiration. 

int MRT_wakeup(struct proc *rp) Clears the MRT_P_SLEEP state flag of a process and calls 

MRT_ready(). 

Time Management 

void MRT_set_timer(unsigned int Harmonic ) Initializes channel 0 of the 8253A timer to generate Harmonic * HZ 

interrupts by second. 

unsigned int MRT_read_timer2(void) Reads the channel 2 counter of the PIT. Used for latency 

calculation. 

void MRT_vtimer_free(MRT_vtimer_t *vt) Resets all fields of a VT descriptor. 

MRT_vtimer_t *MRT_vtimer_alloc (MRT_vtimer_t *vt) Allocates a VT with the parameters passed by the function 

argument. 

void MRT_vtimer_ins(MRT_vtimer_t *vt,MRT_vtQ_t *ptq) Inserts a VT into a VT queue. 

void MRT_vtimer_rmv(MRT_vtimer_t *vt,MRT_vtQ_t 

*ptq) 

Removes a VT from a VT queue. 

Message Transfer 

int MRT_send(int dest,int prty,int mtype) Sends an mtype message to a process identified by its  process 

number dest. The message priority will be prty. 

 

 



7. REAL-TIME PROCESSING RELATED STATISTICS 

Tools for monitoring the behavior of an operating system are invaluable in performance 

tuning and debugging. MINIX4RT, as a RTOS for academic uses, provides several interfaces to 

system and process statistics which might be used for performance analysis.  

This chapter describe multiple ways of gather statistics, Appendix A is a reference that 

includes statistics related System Call and Kernel Call, and Appendix B gives short examples of using 

statistics related programming interfaces. In all cases, however, the man pages are the definitive 

references. 

7.1. System-wide Statistics 

The mrt_getstat() System Call let gather system-wide statistics. The address of a data structure 

named mrt_sysstat_s must be passed as a parameter. On return, the RT-kernel fills the following fields 

with statistics since the last call to mrt_RTstart() or mrt_RTrestart() System Calls: 

− scheds: It counts the number of RT-schedulings. 

− messages: It counts the number of messages sent (received an not). 

− interrupts: It counts the number of Hardware interrupts. 

− ticks: It counts the number of Timer interrupts. 

− highticks: It counts the number of ticks overruns. 

− idlemax: It is the highest value counted by kernel idlecount variable. 

(explained in Section 7.4). 



− idlelast: It is the last value counted by kernel idlecount variable. 

(explained in Section 7.4). 

7.2. Interrupts Service Routines Statistics 

The mrt_getistat() System Call let gather interrupt statistics. The interrupt number and the 

address of a data structure named mrt_istat_s must be passed as parameters. On return, the RT-kernel 

fills the following fields with statistics since the last call to mrt_RTstart() or mrt_RTrestart() for the 

specified interrupt descriptor number: 

− count: It counts the the number of interrupts. 

− maxshower: It is the highest number of TD-interrupts in a period. 

− mdl: It counts the the number of Missed Deadlines. 

− timestamp: It is the timestamp of the last interrupt. 

− maxlat: It is the highest interrupt latency in PIT Hz units. 

− reenter: It is the highest kernel reentrancy level. 

7.3. Process Statistics 

The mrt_getpstat() System Call let gather process statistics. The process RT-PID and the 

address of a data structure named mrt_pstat_s must be passed as parameters. On return, the RT-kernel 

fills the following fields with statistics for the specified process since it was converted into a RT-

process: 

− scheds: The number times that the RT-process was scheduled. 

− mdl: The number of Missed Deadlines. 

− timestamp: The last schedule timestamp in PIT ticks. 

− maxlat: The maximun latency to dispatch the process (not implemented 

yet). 

− minlax: The minimun laxity for the process (not implemented yet). 



− msgsent: The number of RT-messages sent by the process. 

− msgrcvd: The number of RT-messages received by the process. 

Those fields match with the rtstats_t data structure of the proc data structure. 

7.4. The IDLE Process 

MINIX4RT CPU load estimation is based on the IDLE process. The IDLE process is executed 

when there are not any process ready to run.  As more time is used by IDLE in a specified period, 

lower is the CPU used by the system and the other processes. IDLE is a funcion called idle_task() that 

jumps to MRT_idle(). 

IDLE process uses five global variables to do its works. They are initialized  by 

MRT_idle_init() Kernel Function and by the mrt_RTstart() System Call. The variables used by IDLE 

are: 

− MRT_sv.idlecount: When the IDLE process is running, increments the 

value of this variable in an infinite loop. (function MRT_idle()) 

− MRT_sv.counter.idlelast: The last value of MRT_sv.idlecount before the 

RT-kernel resets it.  

− MRT_sv.counter.idlemax: The highest value of MRT_sv.idlelast since 

the last execution of mrt_RTstart() or mrt_RTrestart() System Calls. 

− MRT_sv.idlerefresh: A counter that is decreased on each PIT tick to 

control the reset action of the MRT_sv.idlecount variable. Once it is reaches 

zero, the RT-kernel copies MRT_sv.idlecount to MRT_sv.counter.idlelast, 

compares its value against MRT_sv.counter.idlemax and replaces it with the 

highest. Then, the RT-kernel resets MRT_sv.idlecount and copies 

MRT_sv.refresh to  MRT_sv.idlerefresh. 

− MRT_sv.refresh:  The period to refresh IDLE counters in PIT ticks. It is 

specified as an argument of  the mrt_RTstart() System Call. 



7.5. The Fx Keys 

MINIX4RT as MINIX, use de Fx Keys to show statistics, attributes and status information 

about the system behavior. Several variables of interrupts, processes, MQs, and VTs  are accessible to 

the user to provide data for benchmarking and testing new developments. When the user press an Fx 

key, the information is shown in the system console. 

The F1, F2, F3 and F5 keys are used by MINIX. F1 shows MINIX processes attributes, F2 

shows MINIX processes memory map, F3 Toggle scrolling mode and F5 shows Ethernet statistics. 

7.5.1. The Shift-F1 Hot-Key 

The Shift-F1 Hot-Key displays the RT-attributes of all running processes. In the last 

line of Figure 7.1 the process named mrttest8c that has the PID 27 is a RT-process 

(FLAGS=4002) waiting to receive a message from process 6 (RCVF=6). Its efective priority 

is 4 (PRTY=4) and its base priority is 4 too (BASE=4). 

 

Figure 7.1: RT-Process Attributes. 

The columns displayed have the following meanings: 

− PROC: The process number.  



− PID: The Process Identifier. 

− FLAGS: The process' RT-status flags. 

− PRTY: The process' effective priority. 

− BASE: The process' base priority. 

− PERIOD: The process' period specified in PIT ticks (only for 

MRT_P_PERIODIC). 

− LIMIT: The limit for the number of RT-schedulings. 

− DEAD: The process deadline specified in PIT ticks. 

− WDOG: The process' watchdog process. 

− RCVF: The process from which the process wants to receive a RT-

message. 

− SNDT: The process to which the process wants to send a RT-message. 

− NAME: The name of the process. 

7.5.2. The Ctrl-F1 Key 

The Ctrl-F1 Hot-Key displays the RT-statistics of all running processes. In the last 

line of Figure 7.2 a process named mrttest8c was scheduled 10 times (SCHEDS=10), the 

last was at time 32753 ticks (TSTAMP=32753) since the last mrt_RTstart()/mrt_restart() 

system call invocation. The columns displayed have the following meanings: 

− PROC: The process number. The first process is (-NR_TASKS). 

− PID: The Process Identifier. 

− SCHED: Counts how many times the process has been selected by the 

RT-scheduler. 

− MDL: The number of Missed Deadlines. 

− TSTAMP: The last schedule timestamp in PIT ticks. 



− MAXLAT: The maximun latency to dispatch the process (not 

implemented yet). 

− MINLAX: The minimun laxity for the process (not implemented yet). 

− SENT: The number of RT-messages sent by the process. 

− RCVD: The number of RT-messages received by the process. 

− VT: The VT assigned to a Periodic process. 

− MQ: The MQ assigned to a RT-processes. 

 

Figure7.2: RT-Processes Statistics. 

7.5.3. The Shift-F2 Hot-Key 

PIT Latency between 2 reads: is the time in PIT Hz, between two sequencial reads of 

the PIT LATCH counter. It is useful to estimate the time consumed by a read operation of 

the PIT LATCH used as was explained in Chapter 4. 

The other system status, counters and statistics are simple to understand that not 

need further explanation (see Figure7.3). 

 



 

Figure 7.3: RT-System Wide Attributes and Statistics. 

7.5.4. The F4 Key 

The F4 Key displays the RT-attributes, status and statistics of all RT-Hardware 

interrupt descriptors as is shown in Figure 7.4. The columns displayed have the following 

meanings: 

− IRQ: The interrupt descriptor number. 

− TSK: The RT-Task number related with the interrupt. 

− WDG: The watchdog process number. 

− COUNT: It counts the number of interrupts. 

− MLAT: Maximun Latency of the interrupt handler. 

− LAT: The last latency of the interrupt handler. 

− RE: The interrupt descriptor reenter field. 

− PY: The interrupt priority. 

− TY: The interrupt type. 



− VT: The VT assigned to the interrupt descriptor (only for TD-interrupts). 

− TSTAMP: The timestamp of the last handler execution. 

 Figure 7.4: Hardware Interrupt Descriptors. 

− MS:  The  maximun value of shower field of the interrupt descriptor. 

− MDL: The number of missed deadlines. 

− PER: The period of the interrupt (only for TD-interrupts). 

− FLAG: The status flags of the interrupt descriptor. 

− NAME: The name of the interrupt descriptor. 

Figure 7.4 shows that IRQ 4 is a Timer Driven RT-interrupt descriptor (TY=1) 

named RT-RS232 with a priority of 7 (PY=7) and a period of 1 (PER=1) tick. The handler 

was executed 26 times, the last at 49006 ticks since the last mrt_RTstart()/mrt_restart() 

system call invocation. 

7.5.5. The Shift-F4 Hot-Key 

The Shift-F4 Hot-Key displays the RT-attributes, status and statistics of all Software 

interrupt descriptors.  The attributes, status and statistics displayed are the same as for the F4 



key. Figure 7.5 shows the sofware IRQ 16 dedicated to manage the MINIX clock (timer) 

virtualization. The handler was executed 31215 times since the last 

mrt_RTstart()/mrt_restart() system call invocation.  

 Figure 7.5: Software Interrupt Descriptors. 

7.5.6. The Ctrl-F4 Hot-Key 

The Ctrl-F4 Hot-Key displays the interrupt descriptors queues and the bitmap of 

Interrupt Queues as is shown in Figure 7.6. The columns displayed have the following 

meanings: 

− PRI: The priority of the interrupt descriptor. 

− INQ: The current number of descriptors enqueued. 

− PEND: The number of pending interrupt descriptors. 

− Enqueued Interrupt Descriptors: The list of Interrupt descriptors for 

each queue. 



 

Figure 7.6: Interrupt Descriptors Queues. 

7.5.7. The Shift-F5 Hot-Key 

The Shift-F5 Hot-Key displays the RT-ready processes queues and MINIX ready 

processes queues and the RT-ready queue bitmap.  

 

Figure 7.7: RT-Ready Queues and MINIX Ready Queues. 



Figure 7.7 shows process number 7 as  the only process in the RT-ready queue of 

priority 4. This queue has got 2 process enqueued.   

The columns displayed have the following meanings: 

− PRI: The priority of RT-ready processes queue. 

− MAXINQ: The maximun number of descriptors enqueued. 

− INQ: The current number of descriptors enqueued. 

− PROC-LIST: The current list of RT-ready processes in each queue. 

− MINIX-PROC-LIST: The current list of MINIX ready processes in each 

queue. 

7.5.8. The F6 Key 

The F6 Key displays the RT-message pool with the messages attributtes. The 

columns displayed have the following meanings: 

  

Figure 7.8: RT-message Pool (Message Attributtes). 

− MSG: The message queue entry number in the array 

MRT_sm.mpool.mqe[].  



− SRCE: The message source process. 

− DEST: The message destination process. 

− TYPE: The message type described in include/minix/const.h. 

− MID: The system wide message ID. 

− SEQNO: The source process message sequence number. 

− TIMESTAMP: The message sent timestamp. 

− TOUT: The message timeout. 

− PRI: The message sender priority. 

− DLINE: The message sender deadline. 

− LAXTY: The message sender laxity. 

Figure 7.8 shows message number 0 with a timestamp of 3233 from source 7 and destination 6 

with a message ID of 2, a sequence number of 9 and a priority of 4. 

7.5.9. The Shift-F6 Hot-Key 

The Shift-F6 Hot-Key displays RT-message pool with messages contents. The first 

line of Figure 7.9 shows message number 1 from source 7 and destination 6 with a contents 

of "HELLO FATHER". 

The columns displayed have the following meanings: 

− MSG: The message queue entry number in the MRT_sm.mpool.mqe[] 

array.  

− SRCE: The message source process. 

− DEST: The message destination process. 

− TYPE: The message type described in include/minix/const.h. 

− MID: The system wide message ID. 



− VT: The VT assigned to the message. 

− 01234567890123456789: The message content. 

 

Figure 7.9: RT-Message Pool (Message Contents). 

7.5.10. The Ctrl-F6 Hot-Key 

The Ctrl-F6 Hot-Key displays MQ Status an Statistics. The columns displayed have 

the following meanings: 

− ID: The MQ number in the MRT_sm.msgQ[]array. 

− SZ: The MQ size (in MQEs). 

− FLAG: The MQ status and policy flags. 

− BITM: The MQ priority bitmap. 

− INQ: The number of message enqueued. 

− MAX: The maximun number of message enqueued. 

− OWN: The MQ owner. 



− VT: The assigned VT for the MQ. 

− DLVD: The total number of messages delivered. 

− ENQD: The total number of messages enqueued. 

 

Figure 7.10: Message Queue Status and Statistics. 

Figure 7.10 shows that Message Queue with ID 0 have a size of 4 messages with one message 

enqueued. Its owner is process number 6 and it has enqueued 4 messages and delivered 3 messages. 

7.5.11. The F8 Key 

The F8 Key displays VT attributes, status and statistics.Figure 7.11 shows VT 

number 0 that is the emulated MINIX CLOCK interrupt with a period of 4 and action type 4 

(MRT_ACT_IRQTRIG) with an action parameter 16 is owned by process  -3 (the CLOCK 

Task) with priority 15. It has expired 37461 times and the last expiration was at tick 149844.  

The columns displayed have the following meanings: 

− VT: VT number. 

− PERIOD: VT period in PIT ticks. 



− NEXTEXP: Next VT expiration. 

− LIMIT:  A limit for VT expirations. 

− ACT: The action of the VT. 

− PAR: The VT parameter field. 

− NR: Same as the VT number. 

− OWN: The owner process of the VT. 

− PRTY: The VT priority. 

− EXPIRE: The number of VT expirations. 

− TIMESTAMP: The last VT expiration timestamp. 

 

Figure 7.11: Virtual Timer Attributes, Status and Statistics. 

7.5.12. The Shift-F8 Hot-Key 

The Ctrl-F8 Hot-Key displays RT-Virtual timer queues status. Figure 7.12 shows the 

Active Queue that have VT number 0 enqueued and 15 Expired Queues, one queue for each 

system priority.  The last  line shows the Free VT Queue that have 15 free VTs.  



The columns displayed have the following meanings: 

− TYPE: The VT queue type 

− PRTY: The Priority of the VT queue 

− INQ: The number of VTs enqueued 

− MAXINQ: The maximun number of VTs enqueued. 

− LIST: The lists of VTs. 

− ACTV:  It is the Active VT queue. 

− EXPD: It is an Expired VT queue. 

− FREE: It is the Free VT queue. 

 

Figure 7.12: RT-Virtual Timer Queues. 



7.6. The Modified ps Command 

The ps command reports information about active processes. It was modified to support new 

options to show processes statistics and attributes related to RT-processing. The columns have the 

same meanings of fields explained in previous sections. 

7.6.1. The –A Option 

This option shows process attributes related to RT-processing (see Figure 7.13). 

Figure 7.13: ps Command with –A Option. 

7.6.2. The –S Option 

This option shows process statistics related to RT-processing. Figure 7.14 shows process 

number 6 named mrttest8c with PID 36 has been scheduled 12 times, the last schedule at time 22314 

ticks since the last mrt_RTstart()/mrt_restart() System Call invocation. 



Figure 7.14: ps Command with –S Option. 

7.7. The mrtstatus Command 

The mrtstatus command provides additional information related to RT-processing. As the ps 

command, it uses the character special files /dev/mem and /dev/kmem MINIX devices that map system 

and kernel memory to files. Both devices, the /dev/null, and RAM disks are supported by the 

MEMORY Task. 

The MEMORY Task offers several IOCTL operations on memory devices. The 

MIOCGPSINFO is used by the MM and the FS to gather information about the addresses of their 

process tables needed by the ps command.  

MINIX4RT adds a new IOCTL operation to the MEMORY Task named MIOCGMRTINFO to 

gather information about the addresses of main RT-kernel tables and data structures needed by the 

mrtstatus command. The mrtstatus command reports: 

− RT-kernel constants. 

− System-wide statistics. 

− Interrupt descriptor statistics. 

− Virtual Timer statistics. 



− Messages statistics. 

− Interrupt Queue statistics. 

− Virtual Timer statistics. 

− Message Queues statistics. 

  The several columns of the reports have the same meanings of fields explained in previous 

sections, other will be described in the following subsections. 

7.7.1. The –s Option  

This option (default) shows System-wide statistics related to RT-processing (see 

Figure 7.15). 

Figure 7.15: mrtstatus Command with –s Option. 



7.7.2. The –i Option  

This option shows interrupt descriptors status and statistics (see Figure 7.16). 

Figure 7.16: mrtstatus Command with –i Option. 

7.7.3. The –t Option  

This option shows VTs status and statistics (see Figure 7.17). The columns displayed 

have the following meanings: 

− VT: VT number. 

− PERIOD: VT period in PIT ticks. 

− NEXTEXP: Next VT expiration. 

− LIMIT:  A limit for VT expirations. 

− ACT: The action of the VT. 

− PAR: The VT parameter field. 

− NR: Same as the VT number. 



− OWN: The owner process of the VT. 

− PRTY: The VT priority. 

− EXPIRE: The number of VT expirations. 

− TIMESTAMP: The last VT expiration timestamp. 

Figure 7.17: mrtstatus Command with –t Option. 

7.7.4. The –m Option  

This option shows messages status and statistics (see Figure 7.18). The columns 

displayed have the following meanings: 

− MSG: Message number. 

− SPID/SNBR: Source PID and Source Number (RT-PID). 

− DPID/DNBR: Destination PID and Destination Number (RT-PID). 

− TYPE: Message Type. 

− MID: Message  ID. 

− SEQNO: Sequence Number. 



− TIMESTAMP: Message timestamp. 

− PRI: Message Priority. 

− DLINE: Message Sender Deadline. 

− LAXTY: Message Sender Laxity.  

Figure 7.18: mrtstatus Command with –m Option. 

7.7.5. The –c Option  

This option shows the values of RT-kernel constant (see Figure 7.19).  

The constants showed have the following meanings: 

− NR_VTIMERS: Number of system Virtual Timers. 

− NR_PRTY: Number of priority levels. 

− NR_IRQ_VECTORS: Number of IRQ vectors (and Hardware interrupt 

descriptors). 

− NR_IRQ_SOFT: Number of Software interrupt descriptors. 



− NR_MSGQ: Number of Message Queues (It limits the number of RT-

processes) 

− NR_MESSAGES:  Number of system messages. 

Figure 7.19: mrtstatus Command with –c Option.  

7.7.6. The –I Option  

This option shows interrupt queues status and statistics (see Figure 7.20). 

The columns displayed have the following meanings: 

− PRI: The priority of the interrupt descriptor. 

− INQ: The current number of descriptors enqueued. 

− PEND: The number of pending interrupt descriptors. 

Each bit set in the bitmap displayed represents an interrupt queue with at least one 

descriptor triggered (service pending). 

 

 



Figure 7.20: mrtstatus Command with –I Option. 

7.7.7. The –T Option  

This option shows VTs queues status and statistics (see Figure 7.21). 

The columns displayed have the following meanings: 

- TYPE: The VT queue type 

- PRTY: The Priority of the VT queue 

- INQ: The number of VTs enqueued 

- MAXINQ: The maximun number of VTs enqueued. 

- ACTV:  It is the Active VT queue. 

- EXPD: It is an Expired VT queue. 

- FREE: It is the Free VT queue. 

 



Figure 7.21: mrtstatus Command with –T Option. 

7.7.8. The –M Option  

This option shows MQ status and statistics (see Figure 7.22). 

Figure 7.22: mrtstatus Command with –M Option. 



The columns displayed have the following meanings: 

− ID: The MQ number in the MRT_sm.msgQ[]array. 

− SZ: The MQ size (in MQEs). 

− FLAG: The MQ status and policy flags. 

− INQ: The number of message enqueued. 

− MAX: The maximun number of message enqueued. 

− OWN: The MQ owner. 

− DLVD: The total number of messages delivered. 

− ENQD: The total number of messages enqueued. 

 



8. CONCLUSIONS AND FUTURE WORKS 

8.1. Conclusions 

MINIX has proved to be a feasible testbed for OS development and extensions that could be 

easily added to it. In a similar way, MINIX4RT has an architecture that can be used as a starting point 

for adding RT-services.  

In spite of it was designed for an academic environment, it can be optimized for production 

systems even in embedded systems. Its Virtual Machine architecture, code readability, MINIX 

compatibility and the similarities of several of its algorithms and data structures helps to minimize the 

understanding time of its source code. Those characteristics make it suitable for course assignments 

and RT-project developments as the support of Rate Monotonic/Deadline Monotonic scheduling 

algorithms, Sporadic/Deferable Servers implementation and performance evaluation tests. 

MINIX4RT microkernel has basic features as Interrupt Management, Process Management, 

Time Management, Real-Time IPC and Statistics gathering making it a good choice to conduct coding 

experiences. Device-drivers writers have at their disposal several flavors of interrupt handling as 

Event-Driven, Timer-Driven, Software and Non-Real-Time Interrupt Service Routines execution. 

8.2. Future Works 

MINIX4RT development does not finish with this thesis. There are other planed projects for 

its improvement as: 

− RT-FIFOs: They are mechanisms equivalent to RTLinux RT-FIFOs that 

permit RT-processes communicate with NRT-processes. 



− RT-Semaphores: They are known mechanisms in OSs used for 

synchronization and mutual exclusion among RT-processes. 

− Non Periodic Time Management: Often, OSs increase the Timer 

frequency when they need better time resolution. This approach increase the 

timer interrupt overhead because it is executed more frequently.  

Sometimes, a more efficient strategy for better timer resolution is to use the 

ONE_SHOT mode for programming the PIT instead the SQUARE_WAVE 

mode. In this mode, on each Timer interrupt the PIT is programmed to 

generate an interrupt at the time of the the next  VT expiration time. 

− Update MINIX4RT as a branch of MINIX3: MINIX Version 3 offers a 

lot of improvements over previous versions and MINIX4RT will benefit of 

it’s new features.  

− POSIX 1003.1b compatibility: To support standard functions that RT-

applications need, such as enhanced IPC, scheduling and memory 

management control, asynchronous I/O operations and file synchronization. 
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Appendix A: RT-SYSTEM CALLS AND RT-KERNEL CALLS 

REFERENCE 

A.1. System Calls Reference 

A.1.1. mrt_RTstart 

 
NAME 
     mrt_RTstart - Starts the Real-Time Processing Mode. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_RTstart(int Harmonic,int Refresh) 
 
ARGUMENTS 
 
     Harmonic:The Harmonic Number of the MINIX timer frequency (HZ = 50 Hz). 
     Refresh: The idle refresh counter in timer ticks. 
 
DESCRIPTION 
    mrt_RTstart starts the Real-Time Processing Mode and configure the Timer to  
generate  Harmonic  *  HZ  interrupts  by  second.  The  idle  process statistics 
are renewed each Refresh ticks. 
 
     This call is restricted to the super-user and must be executed by  a  Non 
Realtime process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 



ERRORS 
     mrt_RTstart will fail and processing mode will be  unchanged  if  one  or more 
of the following are true: 
 
     [E_MRT_BADHARM]A bad value has been specified for the Harmonic argument. 
 
     [E_MRT_BADRFSH]A bad value has been specified for the Refresh argument. 
 
     [E_MRT_RTACTIVE]The system is already in Real-Time Processing Mode. 
 
SEE ALSO 
     mrt_RTstop(2). 
 

A.1.2. mrt_RTstop 

NAME 
     mrt_RTstop - Stops the Real-Time processing mode. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_RTstop( void ) 
 
ARGUMENTS 
     None No Arguments. 
 
DESCRIPTION 
     mrt_RTstop Stops the Real-Time Processing Mode. 
 
     This call is restricted to the super-user and must be executed by  a  Non 
Realtime process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_RTstop will fail  and  processing  mode  will  be  unchanged  if  the 
following is true: 
 
     [E_MRT_RTACTIVE] A Real-Time process is still running. 
SEE ALSO 
     mrt_RTstart(2). 
 
NOTES 
     Kill all RT-process before call mrt_RTstop. 
 
 

A.1.3. mrt_clrpstat 

NAME 
     mrt_clrpstat - Clears all RT-processing statistics of a specified process. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_clrpstat(pid_t Pid) 
 
ARGUMENTS 
 
     Pid: The PID number of the RT-process. 
 



DESCRIPTION 
     mrt_clrpstat Clears all RT-processing statistics of a specified process. This 
call is restricted to the super-user.  It must be executed by a NRT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_clrpstat will fail if one or more of the following are true: 
 
     [E_BAD_PROC]The RT-process of the specified Pid does not exist. 
 
SEE ALSO 
     mrt_getpstat(2). 
 

A.1.4. mrt_getiattr 

NAME 
     mrt_getiattr - Gets the RT-processing Attributes of an IRQ descriptor. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int  mrt_getiattr(int irq, mrt_irqattr_t *attr) 
 
ARGUMENTS 
 
     irq: The IRQ number 
 
     attr: An IRQ Attributes descriptor with the RT-processing for the IRQ that 
will be filled by the system call. 
 
DESCRIPTION 
     mrt_getiattr Gets the RT-processing Attributes of an IRQ descriptor.   On 
successful  return of the system call, the following mrt_irqattr_t fields will be 
filled by the system: 
     period:  The processing period for a TD- interrupt handler in  RT-ticks units. 
     task: The number  of  the  RT-task  to  send  a  message  for  deferred 
processing. 
     watchdog: The ID number of a watchdog RT-process. 
     priority: The priority of the handler 
     irqtype: The type of handler. 
     name: The reference name for the handler. 
     This call is restricted to the super-user.  It must be executed by a NRT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getiattr will fail if one or more of the following are true: 
 
     [EINVAL]Invalid mrt_irqattr_t pointer. 
 
     [E_MRT_BADIRQ] Invalid value specified for irq number in irq. 
 
SEE ALSO 
     mrt_setiattr(2). 
 



A.1.5. mrt_getiint 

NAME 
     mrt_getiint - Gets the RT-processing Internal use fields values of an IRQ 
descriptor. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int  mrt_getiint(int irq, mrt_irq_int_t *stat) 
 
ARGUMENTS 
 
     irq: The IRQ number. 
 
     iint: An IRQ internal fields descriptor with  the  RT-processing  internal 
fields  values of the specified IRQ descriptor will be filled by the system. 
 
DESCRIPTION 
     mrt_getiint Gets the RT-processing Internal use fields values of  an  IRQ 
descriptor. On successful  return  of  the  system call, the following 
     mrt_irq_int_t fields will be filled by the system: 
       irq:  The number of the irq. 
       harmonic:  The value of the RT_sv.harmonic system value when the  systems 
change to Real Time mode. (only for Real Time Timer Driven descriptors). 
       vimer: The number of the Virtual Timer used for Real Time Timer Driven 
descriptors. 
       flags:  Some status flags. 
     This call is restricted to the super-user.  It must be executed by a NRT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getiint will fail if one or more of the following are true: 
 
     [EINVAL] Invalid mrt_irq_int_t pointer. 
 
     [E_MRT_BADIRQ] Invalid value specified for irq number in irq. 
 
SEE ALSO 
     mrt_getiarg(2). 
 

A.1.6. mrt_getistat 

NAME 
     mrt_getistat - Gets the RT-processing Statistics of an IRQ descriptor. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int  mrt_getistat(int irq, mrt_irqstat_t *stat) 
 
ARGUMENTS 
 
     irq: The IRQ number. 
 
     stat: An IRQ statistics descriptor with the  RT-processing  statistics  of the 
specified IRQ descriptor will be filled by the system. 
 
DESCRIPTION 



     mrt_getistat Gets the RT-processing Statistics of an IRQ descriptor.   On 
successful  return of the system call, the following mrt_irqstat_t fields will be 
filled by the system: 
 
       count:  An interrupt counter. 
       maxrain:  The maximun number of  interrupts  into  a  period  of  Timer 
Driven handler. 
       maxrain:  The number of Missed DeadLines of the handler. 
       timestamp: The last interrupt timestamp. 
       maxlat: The maximun (approximate) latency of the handler. 
 
     This call is restricted to the super-user. It must be executed by a NRT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getistat will fail if one or more of the following are true: 
 
     [EINVAL] Invalid mrt_irqstat_t pointer. 
 
     [E_MRT_BADIRQ] Invalid specified irq number. 
 
SEE ALSO 
     mrt_getiattr(2). 
 

 

A.1.7. mrt_getpattr 

NAME 
     mrt_getpattr - Gets the RT-processing attributtes  of  the  calling  NRT-
process 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_getpattr(pid_t Pid, mrt_pattr_t *P_attrib) 
 
ARGUMENTS 
 
     Pid: The PID number of the RT-process. 
 
     P_attrib: A pointer to a mrt_pattr_t data structure to store the process's RT-
rocessing attributes. 
 
DESCRIPTION 
     mrt_getpattr Gets the RT-Processing Attributes of the specified process. This 
call is restricted to the super-user. It must be executed by a NRT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getpattr will fail if one or more of the following are true: 
 
     [EINVAL]Invalid mrt_pattr_t pointer. 
 
SEE ALSO 
     mrt_setpattr(2). 
 



A.1.8. mrt_getpint 

NAME 
     mrt_getpint - Gets the RT-processing internal variables  of  a  specified 
process. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_getpint(pid_t Pid, mrt_pint_t *p_int) 
 
ARGUMENTS 
 
     Pid: The PID number of the RT-process. 
 
     p_int: A pointer  to  a  mrt_pint_t  data  structure  to  store  RT-process 
internal variables. 
 
DESCRIPTION 
     mrt_getpint Gets the RT-processing  internal  variables  of  a  specified 
process. This call is restricted to the super-user.  It must be executed by a NRT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getpint will fail if one or more of the following are true: 
 
     [EINVAL] Invalid mrt_pint_t pointer. 
 
     [E_BAD_PROC] The RT-process of the specified Pid does not exist. 
 
SEE ALSO 
     mrt_getpstat(2). 
 

A.1.9. mrt_getpstat 

NAME 
     mrt_getpstat - Gets the RT-processing statistics of a specified process. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_getpstat(pid_t Pid, mrt_pstat_t *p_stats) 
 
ARGUMENTS 
 
     Pid: The PID number of the RT-process. 
 
     p_stats: A pointer to  a  mrt_pstat_t  data  structure  to  store  RT-process 
statistics. 
 
DESCRIPTION 
     mrt_getpstat Gets the RT-processing statistics of a specified RT-process. This 
call is restricted to the super-user.  It must be executed by a NRT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getpstat will fail if one or more of the following are true: 



 
     [EINVAL] Invalid mrt_pstat_t pointer. 
 
     [E_BAD_PROC] The RT-process of the specified Pid does not exist. 
 
SEE ALSO 
     mrt_getpint(2).  mrt_clrpstat(2). 
 

A.1.10. mrt_getsstat 

NAME 
     mrt_getsstat - Gets the System Wide RT-processing statistics. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_getsstat(mrt_sysstat_t *stat) 
 
ARGUMENTS 
 
     stat A pointer to a mrt_sysstat_t data structure to store the system  RT-
processing statistics. 
 
DESCRIPTION 
     mrt_getsstat Gets the System Wide RT-processing statistics. 
 
     This call is restricted to the super-user. It must be executed by a NRT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getsstat will fail if one or more of the following are true: 
 
     [EINVAL] Invalid mrt_sysstat_t pointer. 
 
SEE ALSO 
     mrt_getsval(2). 
 

A.1.11. mrt_getsval 

NAME 
     mrt_getsval - Gets the System Wide RT-processing values. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_getsval(mrt_sysval_t *val) 
 
ARGUMENTS 
 
     val  A pointer to a mrt_sysval_t data structure to store the  system  RT-
processing statistics. 
 
DESCRIPTION 
     mrt_getsval Gets the System Wide RT-processing values. 
 
     This call is restricted to the super-user.  It must be executed by a NRT-
process. 
 



RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_getsval will fail if one or more of the following are true: 
 
     [EINVAL] Invalid mrt_sysval_t pointer. 
 
 
SEE ALSO 
     mrt_getsstat(2). 
 

A.1.12. mrt_restart 

NAME 
     mrt_restart - Restart the Real-Time Processing Mode. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_restart(int Harmonic,int Refresh) 
 
ARGUMENTS 
 
     Armonic: The Harmonic Number of the MINIX timer frequency (HZ=50 Hz). 
 
     Refresh: The idle refresh counter in timer ticks. 
 
DESCRIPTION 
     mrt_restart Restarts the Real-Time  Processing  Mode  and  configure  the 
Timer  to  generate  Harmonic  *  HZ interrupts by second.The idle process 
statistics are renewed each Refresh ticks. 
 
     This call is restricted to the super-user and must be executed by  a  Non 
Realtime process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_restart will fail and processing mode will be  unchanged  if  one  or more 
of the following are true: 
 
     [E_MRT_BADHARM] A bad value has been specified for the Harmonic argument. 
 
     [E_MRT_BADRFSH] A bad value has been specified for the Refresh argument. 
 
     [E_MRT_RTACTIVE] At least a RT-process is running in the system. 
 
SEE ALSO 
     mrt_RTstart(2).  mrt_RTstop(2). 
 

A.1.13. mrt_setiattr 

NAME 
     mrt_setiattr - Sets the RT-processing Attributes of an IRQ descriptor. 
 
SYNOPSIS 
     #include <unistd.h> 
 



     int  mrt_setiattr(int irq, mrt_irqattr_t *attr) 
 
ARGUMENTS 
 
     irq: The IRQ number. 
 
     attr An IRQ Attributes descriptor with the RT-processing  Attributes  for the 
IRQ. 
 
DESCRIPTION 
     mrt_setiattr Sets the RT-processing Attributes of an IRQ descriptor.  The 
mrt_irqattr_t  data  structure  has  the  following  fields  that must be filled: 
       period: The processing period for a TD- interrupt handler in  RT-ticks 
units. 
       task: The ID number of the RT-task  to  send  a  message  for  deferred 
processing. 
       watchdog: The ID number of a watchdog RT-process. 
       priority: The priority of the handler. 
       irqtype: The type of handler. It must an OR of the following bits: 
             MRT_RTIRQ: for Real-Time handlers  (Otherwise  it  will  be  NRT-
handler). 
             MRT_TDIRQ: for Timer-Driven handlers (Otherwise it will be  Event 
Driven-IRQ handler). 
             MRT_SOFTIRQ: for Software IRQ handlers (Otherwise it  will  be  a 
Hardware IRQ handler). 
       name: A reference name for the handler. 
 
     This call is restricted to the super-user.  It must be executed by a NRT-
process. 
 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
 
ERRORS 
     mrt_setiattr will fail if one or more of the following are true: 
 
     [EINVAL] Invalid mrt_irqattr_t pointer 
 
     [E_MRT_BADIRQ] Invalid value specified for irq number.  
 
     [E_MRT_BADTASK] Invalid value specified for the TASK number in attr->task 
 
     [E_MRT_BADWDOG] Invalid value specified for the watchdog PID in attr->watchdog 
 
     [E_MRT_BADPRTY] Invalid value specified for the IRQ descriptor priority in 
attr->priority 
 
     [E_MRT_BADIRQT] Invalid value specified for the IRQ type in attr->irqtype 
 
SEE ALSO 
     mrt_getiattr(2). 
 
 

A.1.14. mrt_setpattr 

NAME 
     mrt_setpattr - Sets the RT-processing attributtes  of  the  calling  NRT-
process. 
 
SYNOPSIS 
     #include <unistd.h> 
 



     int mrt_setpattr(mrt_pattr_t *p_attrib) 
 
ARGUMENTS 
 
     p_attrib: A pointer to a mrt_pattr_t data  structure  with  the  RT-processing 
attributes  of  the  calling  NRT-process.  The  field  of  the data structure are: 
           flags: Real Time Flags. 
           baseprty: Real Time Base priority. 
           period: period in RT-ticks for Periodic Processes. 
           limit: maximun number of process schedulings. 
           deadline: process deadline. 
           watchdog: Watchdog process. 
           mq_size: Message Queue Size. 
           mq_flags: Message Queue Policy Flags. 
 
          The Real Time Flags flags can be an OR of the following flags: 
           MRT_P_REALTIME: to set the process as Real-Time. 
           MRT_P_PERIODIC: to set the process as Real-Time Periodic. 
 
          The Message Queue Policy Flags mq_flags can be an OR of the following 
flags: 
           MRT_PRTYORDER: Priority Order Policy (otherwise FIFO policy). 
           MRT_PRTYINHERIT: Priority Inheritance policy. 
 
DESCRIPTION 
     mrt_setpattr Sets the RT-Processing Attributes of the calling NRT-process. 
This call is restricted to the super-user.  It must be executed by a NRT-process in 
System Real Time Processing Mode. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_setpattr will fail if one or more of the following are true: 
 
     [EINVAL] Invalid mrt_pattr_t pointer. 
 
     [E_MRT_BADPTYPE] Invalid value specified for process type in p_attrib->ptype. 
 
     [E_MRT_BADPRTY]Invalid value specified for process priority in   
p_attrib->priority. 
 
     [E_MRT_BADWDOG] Non existing or NRT-watchdog process specified in p_attrib    
->watchdog. 
 
     [E_MRT_NOMSGQ] The system cannot assign a Message Queue of the  specified size 
in p_attrib->mq_size. 
 
     [E_MRT_NOVTIMER] The system cannot assign a Virtual Timer  for  a  Periodic 
RT-process. 
 
SEE ALSO 
     mrt_getpattr(2). 
 

 



A.2. Kernel Calls Reference 

A.2.1. mrt_rqst 

NAME 
     mrt_rqst - sends a synchronous request message. 
 
SYNOPSIS 
     #include <unistd.h> 
     int mrt_rqst(mrtpid_t mrtpid, mrt_msg_t *m_ptr, lcounter_t timeout); 
 
ARGUMENTS 
 
     mrtpid: The RT-PID of the destination RT-process. 
 
     m_ptr: A pointer to the message buffer. 
 
     timeout: The number of RT-ticks for waiting to send de request. A  MRT_NOWAIT 
value  can be specified to return without waiting if the destination process is not 
waiting for this message.  A MRT_FOREVER value can be specified to wait until the 
destination process receive the message. 
 
DESCRIPTION 
     mrt_rqst sends a request message to a process through a message queue  in a 
synchronous way with or without specifying a timeout. It must be executed by a RT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_rqst will fail if one or more of the following are true: 
 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPROC] The process PID does not much with the process number  use by 
the kernel. 
 
     [E_MRT_BADPTYPE] The Destination process is not a RT-process. 
 
     [E_BAD_DEST]   The Destination process is does not exist. 
 
     [E_TRY_AGAIN]  The Destination process message queue is full. 
 
     [E_MRT_NOMQENT] The system message queue entry free pool is empty. 
 
SEE ALSO      
     mrt_arqst(2).  mrt_uprqst(2). 
 

A.2.2. mrt_arqst 

NAME 
     mrt_arqst - sends an Asynchronous request message. 
 
SYNOPSIS 
     #include <unistd.h> 
 



     int mrt_arqst(mrtpid_t mrtpid, mrt_msg_t *m_ptr); 
 
ARGUMENTS 
 
     mrtpid: The RT-PID of the destination RT-process. 
 
     m_ptr: A pointer to the message buffer. 
 
DESCRIPTION 
     mrt_arqst sends a request message to a process through a message queue in an 
Asynchronous way. It must be executed by a RT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_arqst will fail if one or more of the following are true: 
 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPTYPE] The Source process is not a RT-process. 
 
     [E_MRT_BADPTYPE] The Destination process is not a RT-process. 
 
     [E_BAD_DEST]  The Destination process is does not exist. 
 
     [E_TRY_AGAIN]  The Destination process message queue is full. 
 
     [E_MRT_NOMQENT] The system message queue entry free pool is empty. 
 
SEE ALSO 
     mrt_rqst(2).  mrt_uprqst(2). 
 

A.2.3. mrt_uprqst 

NAME 
     mrt_uprqst - sends an Asynchronous request message in a botton-up way. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_uprqst(mrtpid_t mrtpid, mrt_msg_t *m_ptr, int priority); 
 
ARGUMENTS 
 
     mrtpid: The RT-PID of the destination RT-process. 
 
     m_ptr: A pointer to the message buffer. 
 
     priority: message priority. 
 
DESCRIPTION 
     mrt_uprqst sends a request message to a process through a  message  queue in  
an  Asynchronous  way  in a botton-up manner. The destination process increase its 
priority if the priority argument is higher that the one it owns. It must be 
executed by a RT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_uprqst will fail if one or more of the following are true: 
 



     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPTYPE] The Source process is not a RT-process. 
 
     [E_MRT_BADPTYPE] The Destination process is not a RT-process. 
 
     [E_BAD_DEST]   The Destination process is does not exist. 
 
     [E_TRY_AGAIN]  The Destination process message queue is full. 
 
     [E_MRT_NOMQENT] The system message queue entry free pool is empty. 
 
SEE ALSO 
     mrt_rqst(2).  mrt_arqst(2). 
 

A.2.4. mrt_sign 

NAME 
     mrt_sign - sends a message to a process through a MQ in  an  asynchronous way. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_sign(mrtpid_t mrtpid, mrt_msg_t *m_ptr); 
 
ARGUMENTS 
 
     mrtpid: The RT-PID of the destination RT-process. 
 
     m_ptr: A pointer to the message buffer. 
 
     priority: Message priority. 
 
DESCRIPTION 
     mrt_sign sends a request message to a process through a message queue  in an 
Asynchronous way in a botton-up manner. It must be executed by a RT-process. 
 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned. Otherwise, a 
negative value is returned to indicate an error. 
 
 
ERRORS 
     mrt_sign will fail if one or more of the following are true: 
 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPTYPE] The Source process is not a RT-process. 
 
     [E_MRT_BADPTYPE] The Destination process is not a RT-process. 
 
     [E_BAD_DEST]   The Destination process is does not exist. 
 
     [E_TRY_AGAIN]  The Destination process message queue is full. 
 
     [E_MRT_NOMQENT] The system message queue entry free pool is empty. 
 
SEE ALSO 
     mrt_rqst(2).  mrt_arqst(2). 
 



A.2.5. mrt_reply 

NAME 
     mrt_reply - sends a message to a process through a MQ in an  asynchronous way. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_reply(mrtpid_t mrtpid, Imrt_msg_t *m_ptr); 
 
ARGUMENTS 
 
     mrtpid: The RT-PID of the destination RT-process. 
 
     m_ptr: A pointer to the message buffer. 
 
DESCRIPTION 
     mrt_reply sends a message to a process through a MQ  in  an  asynchronous way. 
It must be executed by a RT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_reply will fail if one or more of the following are true: 
 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPTYPE] The Source process is not a RT-process. 
 
     [E_MRT_BADPTYPE] The Destination process is not a RT-process. 
 
     [E_BAD_DEST]   The Destination process is does not exist. 
 
     [E_TRY_AGAIN]  The Destination process message queue is full. 
 
     [E_MRT_NOMQENT] The system message queue entry free pool is empty. 
 
SEE ALSO 
     mrt_arqst(2).  mrt_uprqst(2). 
 

A.2.6. mrt_rcv 

NAME 
     mrt_rcv - Gets a message from the RT-process MQ. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_rcv(mrtpid_t mrtpid, mrt_hdr_t *hdr_ptr, 
                     mrt_msg_t *m_ptr, lcounter_t timeout); 
 
ARGUMENTS 
 
     mrtpid 
          The RT-PID of the message sender from  which  the  caller  wants  to 
receive  a  message. A special value of MRT_ANYPROC can be specified to receive a 
message from any source. 
 
     dr_ptr: The caller´s buffer for the message header. 
 
     m_ptr: The caller^Rs buffer for the message payload. 
 



     timeout: The  number  of  RT-ticks  for  waiting  to  receive  a  message. A 
MRT_NOWAIT value can be specified to return with o without receiving the message. 
If the message has been received, the  function  return code  is  OK  else  returns 
E_TRY_AGAIN.  A MRT_FOREVER value can be specified to waits until the message is 
receive. 
 
DESCRIPTION 
     mrt_rcv gets a message from the RT-process MQ. It must be executed by a RT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_rcv will fail if one or more of the following are true: 
 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPTYPE] The Source process is not a RT-process. 
 
     [E_TRY_AGAIN] The process  has  specified a MRT_NOWAIT timeout and the MQ is 
empty or there are not  any  message  from  the  specified source.     
 
     [MRT_NOVTIMER] The  process  has  specified  a timeout to wait for  a  message  
but  there  are  not  any Virtual Timer to allocate. 
 
 
SEE ALSO 
     mrt_rqst(2).  mrt_reply(2). 
 

A.2.7. mrt_sleep 

NAME 
     mrt_sleep - Blocks a process for a specified time. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_sleep(lcounter_t time); 
 
ARGUMENTS 
 
     time: The process is blocked  for  a  specified  time  (in  RT-ticks).   A 
MRT_FOREVER  value  can  be specified for the time to wait until the process will 
be unblocked by  other  process  using  the  mrt_wakeup System Call. 
 
DESCRIPTION 
     mrt_sleep blocks a process for a specified time. It must be executed by a RT-
process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_sleep will fail if one or more of the following are true: 
 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPER] The  process  has  specified  an  invalid  time  argument. 
 
     [MRT_NOVTIMER]  The  process  has specified a time to wait but there are not 
any Virtual Timer to allocate. 
 



SEE ALSO 
     mrt_wakeup(2). 
 

A.2.8. mrt_wakeup 

NAME 
     mrt_wakeup - Wakes up a blocked (MRT_SLEEP flag set) process. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_wakeup(mrtpid_t mrtpid); 
 
ARGUMENTS 
 
     mrtpid: The RT-PID of the RT-process to unblock. 
 
DESCRIPTION 
     mrt_wakeup wakes up a blocked (MRT_SLEEP flag set) process. It must be 
executed by a RT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_wakeup will fail if one or more of the following are true: 
 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPROC] The process PID does not much with the process number  use by 
the kernel. 
 
     [E_MRT_BADPTYPE] The Destination process is not a RT-process. 
 
SEE ALSO 
     mrt_sleep(2). 
 

A.2.9. prt_print 

NAME 
     mrt_print - Prints a specified text on the system console. 
 
SYNOPSIS 
     #include <unistd.h> 
 
     int mrt_print(const char* string); 
 
ARGUMENTS 
 
     string: The string to print. 
 
DESCRIPTION 
     mrt_print Prints a specified text on  the  system  console.  The  maximum 
string length accepted is MAXPRTSTR. It must be executed by a RT-process. 
 
RETURN VALUE 
     Upon successful completion, a value of 0 (OK) is returned.  Otherwise,  a 
negative value is returned to indicate an error. 
 
ERRORS 
     mrt_print will fail if one or more of the following are true: 



 
     [E_MRT_NORTMODE] The system is in Non Real Time processing Mode. 
 
     [E_MRT_BADPTYPE] The caller process is not a RT-process. 



Appendix B: SAMPLE PROGRAMS 

This appendix show several sample programs that use MINIX4RT System Calls and Kernel 

Calls. 

B.1. mrtstart.c 

This program starts the Real-Time processing mode. The harmonic frequency of MINIX 

Timer can be specified as an argument and the number of Timer ticks to refresh IDLE process 

statistics. By default harmonic=4 and refresh=200 are assumed. 

Listing B.1: mrtstart.c 

/*******************************************************************************/ 
/*      mrtstart.c              */ 
/* Starts the Real Time mode using mrt_RTstart() System Call             */ 
/* Usage:               */ 
/*  mrtstart [harmonic [refresh]]             */ 
/* where:           */ 
/*  harmonic: The Harmonic Number of the MINIX timer frequency (HZ = 50 Hz). */ 
/* refresh: The idle refresh counter in timer ticks.    */ 
/*******************************************************************************/ 
 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <minix/type.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 
#include <minix/syslib.h> 
#include <minix/const.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 



 int rcode, harmonic, refresh; 
  
 harmonic = 4; 
 refresh = 4 * HZ; 
  
 switch (argc) 
  { 
  case 1: 
   break; 
  case 2: 
   harmonic = atoi(argv[1]); 
   break; 
  case 3: 
   harmonic = atoi(argv[1]); 
   refresh = atoi(argv[2]); 
   break; 
  default: 
   printf("usage: \n\tmrtstart [harmonic [refresh]]\n"); 
   exit(1); 
  } 
 
 rcode = mrt_RTstart(harmonic,refresh); 
 if( rcode != 0) 
  { 
  printf("mrt_RTstart: rcode=%5d.\n", rcode); 
  exit(rcode); 
  } 
 else 
  { 
  printf("System is in Realtime Mode."); 
  printf(" Harmonic=%d (%d ticks\/s), IDLE refresh=%d ticks\n" 
  ,harmonic,harmonic*HZ,refresh); 
  } 
 exit(0); 
} 

B.2. mrtstop.c 

This program stops the Real-Time processing mode only if there are not any RT-process 

running in the system. 

Listing B.2: mrtstop.c 

/*******************************************************************************/ 
/*      mrtstop.c      */ 
/* Stops the Real Time processing mode using mrt_RTstop() System Call  */ 
/* Usage:           */ 
/*  mrtstop          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <minix/type.h> 
#include <unistd.h> 
#include <stdio.h>  
#include <lib.h> 
#include <minix/syslib.h> 
 



_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 int rcode; 
 
 rcode = mrt_RTstop(); 
 if( rcode != 0) 
  { 
  printf("mrt_RTstop: rcode=%5d.\n", rcode); 
   exit(1); 
  } 
 else 
  printf("System is in Non Realtime Mode\n"); 
  
 exit(0); 
} 

B.3. mrttest1.c 

This program gets and displays Interrrupt Descriptors of attribute fields. At the last line the 

test must display irq=32 rcode=-2001. 

Listing B.3: mrttest1.c 

/*******************************************************************************/ 
/*      mrttest1.c      */ 
/* Test the mrt_getiattr() System Call to get Interrupt Descriptor Attributes */ 
/* Usage:           */ 
/*  mrttest1          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 
 int irq, rcode; 
 mrt_irqattr_t iattrs; 
 
 printf("IRQ PERIOD TASK WATCHDOG PRIORITY IRQTYPE NAME\n"); 
 
 for( irq = 0; irq < 33; irq++) 
  { 
  rcode = mrt_getiattr(irq, &iattrs); 
  if( rcode != 0) 



   printf("irq=%2d rcode=%5d.The test is OK if irq=32 rcode=-2001 
\n" 
    ,irq ,rcode); 
  else 
   printf("%3d %6d %4d %8d %8d %7X %-16s\n", 
    irq, 
    iattrs.period, 
    iattrs.task, 
    iattrs.watchdog, 
    iattrs.priority, 
    iattrs.irqtype, 
    iattrs.name); 
  } 
} 

B.4. mrttest1b.c 

This program gets and displays Interrrupt Descriptors of statistical fields. At the last line the 

test must display irq=32 rcode=-2001. 

Listing B.4: mrttest1b.c 

/*******************************************************************************/ 
/*      mrttest1b.c      */ 
/* Test the mrt_getistat() System Call to get Interrupt Descriptor Statistics */ 
/* Usage:           */ 
/*  mrttest1b          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 
 int irq, rcode; 
 mrt_irqstat_t istat; 
 
 printf("IRQ COUNT MAXSHWR MDL TSTAMP MAXLAT REENTER\n"); 
 
 for( irq = 0; irq < 33; irq++) 
  { 
  rcode = mrt_getistat(irq, &istat); 
  if( rcode != 0) 
   printf("irq=%2d rcode=%5d. Its OK if irq=32 rcode=-2001 \n" 
    ,irq ,rcode); 
  else 
   printf("%3d %5d %7d %3d %6d %6d %7d\n", 
    irq, 
    istat.count, 



    istat.maxshower, 
    istat.mdl, 
    istat.timestamp, 
    istat.maxlat, 
    istat.reenter); 
  } 
} 

B.5. mrttest1c.c 

This program gets and displays Interrrupt Descriptors of internal use fields. At the last line the 

test must display irq=32 rcode=-2001. 

Listing B.5: mrttest1c.c 

/*******************************************************************************/ 
/*      mrttest1c.c      */ 
/* Test the mrt_getiint() System Call to get Interrupt Descrip. Internal Data */ 
/* Usage:           */ 
/*  mrttest1c          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 
 int irq, rcode; 
 mrt_irqint_t iint; 
 
 printf("IRQ NUMBER HARMONIC VTIMER FLAGS\n"); 
 
 for( irq = 0; irq < 33; irq++) 
  { 
  rcode = mrt_getiint(irq, &iint); 
  if( rcode != 0) 
   printf("irq=%2d rcode=%5d.It is OK if irq=32 rcode=-2001 \n" 
    ,irq ,rcode); 
  else 
   printf("%3d %7d %7d %7d %5X\n", 
    irq, 
    iint.irq, 
    iint.harmonic, 
    iint.vtimer, 
    iint.flags); 
  } 
} 



B.6. mrttest2.c 

This program sets Interrrupt Descriptors processing attribute fields. 

Listing B.6: mrttest2.c 

/*******************************************************************************/ 
/*      mrttest2.c      */ 
/* Test the mrt_setiattr() System Call to set Interrupt Descriptor Attributes */ 
/* Usage:           */ 
/*  mrttest2          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h>  
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
#include <minix/com.h> 
#include <minix/const.h> 
 
#define RS232_IRQ  4 
#define HARDWARE -1 
#define RS232_TASK  -11 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 
 int rcode; 
 mrt_irqattr_t rs_attrs; 
 
   rs_attrs.period    = 0; 
   rs_attrs.task      = RS232_TASK; 
   rs_attrs.watchdog  = HARDWARE; 
   rs_attrs.priority  = MRT_PRI05; 
   rs_attrs.irqtype   = MRT_RTIRQ; 
   strncpy(rs_attrs.name,"RT-RS232NEW",15);  
 
 rcode = mrt_setiattr(RS232_IRQ , &rs_attrs); 
 printf("mrt_setiattr: \nirq=%2d rcode=%5d.\n", RS232_IRQ,rcode);  
 if( rcode != 0) exit(1); 
} 

B.7. mrttest3.c 

This program gets and displays System-wide statistics. 



Listing B.7: mrttest3.c 

/*******************************************************************************/ 
/*      mrttest3.c      */ 
/* Test the mrt_getsstat() System Call to get System Wide Statistics  */ 
/* Usage:           */ 
/*  mrttest3          */ 
/*******************************************************************************/ 
 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h>  
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_sysstat_t stats; 
 int rcode; 
 
 rcode = mrt_getsstat(&stats); 
 printf("mrt_getsstat: rcode=%d.\n\n", rcode); 
 if( rcode != 0) exit(1); 
 printf("schedulings = %-d\n",stats.scheds); 
 printf("messages    = %-d\n",stats.messages); 
 printf("interrupts  = %-d\n",stats.interrupts); 
 printf("ticks       = %-d:%-d\n",stats.highticks,stats.ticks); 
 printf("idle last/max = %-d/%-d\n",stats.idlelast,stats.idlemax); 
} 

B.8. mrttest3b.c 

This program displays a graph of CPU usage. 

Listing B.8: mrttest3b.c 

/*******************************************************************************/ 
/*      mrttest3b.c      */ 
/* Test the mrt_getsstat() System Call displaying a graph of the CPU Usage  */ 
/* Usage:           */ 
/*  mrttest3b          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h>  
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 



#include <minix/syslib.h> 
 
#define TOPSCALE  70 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_sysstat_t stats; 
 int rcode, i, j; 
 long cpu,idle; 
printf("                               CPU USAGE\n"); 
printf("|------10-----20-----30-----40-----50-----60-----70-----80-----90----
100\n"); 
 for( i = 0; i <  20; i++) 
  { 
  rcode = mrt_getsstat(&stats); 
  if( rcode != 0)  
   {  
   printf("mrt_getsstat: rcode=%d.\n\n", rcode); 
   exit(rcode); 
   } 
  else 
   printf("|"); 
  idle = (stats.idlelast*TOPSCALE); 
  idle /= stats.idlemax; 
  cpu = (TOPSCALE - idle); 
  for(j = 0;  j < cpu; j++)  
   printf("#"); 
  printf("\n"); 
  sleep(1); 
  } 
} 

B.9. mrttest3c.c 

This program gets and displays System processing values. 

Listing B.9: mrttest3c.c 

/*******************************************************************************/ 
/*      mrttest3c.c      */ 
/* Test the mrt_getsval() System Call to get System Values    */ 
/* Usage:           */ 
/*  mrttest3c          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h>  
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 



int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_sysval_t val; 
 int rcode; 
 
 rcode = mrt_getsval(&val); 
 printf("mrt_getsval: rcode=%d.\n\n", rcode); 
 if( rcode != 0) exit(1); 
 
 printf("flags  = x%-X\n",val.flags); 
 printf("virtual_PIC = x%-X\n",val.virtual_PIC); 
 printf("PIT_latency = %-d\n",val.PIT_latency); 
 printf("PIT_latch   = %-d\n",val.PIT_latch); 
 printf("tickrate    = %-d\n",val.tickrate); 
 printf("harmonic    = %-d\n",val.harmonic); 
 printf("refresh    = %-d\n",val.refresh); 
} 

B.10. mrttest4.c 

This program gets and displays Process Descriptor Attributes. 

Listing B.10: mrttest4.c 

/*******************************************************************************/ 
/*      mrttest4.c      */ 
/* Test the mrt_getpattr() System Call to get Process Descriptor Attributes */ 
/* Usage:           */ 
/*  mrttest4          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h>  
#include <stdio.h> 
#include <string.h> 
 
 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char **argv; 
{ 
 mrt_pattr_t pattr; 
 int rcode; 
 pid_t pid; 
 
 if(argc != 2) 
  { 
  printf("format: mrttest4 <pid>\n"); 
  exit(1); 
  } 
 pid = atoi(argv[1]); 



 rcode = mrt_getpattr(pid, &pattr); 
 if( rcode != 0) 
  { 
  printf("mrt_getpattr: pid= %d rcode=%5d.\n", pid, rcode); 
  exit(1); 
  } 
 
 printf("flags      = %X\n",pattr.flags); 
 printf("baseprty   = %X\n",pattr.baseprty); 
 printf("period     = %d\n",pattr.period); 
 printf("limit      = %d\n",pattr.limit); 
 printf("deadline   = %d\n",pattr.deadline); 
 printf("watchdog   = %d\n",pattr.watchdog); 
 printf("MQ size    = %d\n",pattr.mq_size); 
 printf("MQ flags   = %X\n",pattr.mq_flags); 
} 

B.11. mrttest4b.c 

This program sets Process Descriptor Attributes. 

Listing B.11: mrttest4b.c 

/*******************************************************************************/ 
/*      mrttest4b.c      */ 
/* Test the mrt_setpattr() System Call to set Process Descriptor Attributes */ 
/* Usage:           */ 
/*  mrttest4b          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h>  
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char **argv; 
{ 
 mrt_pattr_t pattr; 
 int rcode; 
 
 pattr.flags   = (MRT_P_REALTIME | MRT_P_PERIODIC); 
 pattr.baseprty  = MRT_PRI03; 
 pattr.period   = 10; 
 pattr.limit   = 222; 
 pattr.deadline  = 11; 
 pattr.watchdog  = -1; 
 pattr.mq_size  = 3; 
 pattr.mq_flags = 0; 
 
 rcode = mrt_setpattr(&pattr); 
 if( rcode != 0) 
  { 



  printf("mrt_setpattr: rcode=%5d.\n", rcode); 
  exit(1); 
  } 
 else 
  printf("Process Attributes set\n"); 
 sleep(60); 
} 

B.12. mrttest5.c 

This program gets and displays Process Descriptor statistical fields. 

Listing B.12: mrttest5.c 

/*******************************************************************************/ 
/*      mrttest5.c      */ 
/* Test the mrt_getpstat() System Call to get Process Statistics   */ 
/* Usage:           */ 
/*  mrttest5          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pstat_t pstats; 
 int rcode; 
 pid_t pid; 
 
 if (argc == 2)  
  pid = atoi(argv[1]); 
 else  
     pid = getpid(); 
 
 rcode = mrt_getpstat(pid, &pstats); 
 printf("mrt_getpstat: pid = %d, rcode=%5d.\n", pid, rcode); 
 if( rcode != 0) exit(1); 
 
 printf("scheds     = %10d\n",pstats.scheds); 
 printf("mdl        = %10d\n",pstats.mdl); 
 printf("timestamp  = %10d\n",pstats.timestamp); 
 printf("maxlat     = %10d\n",pstats.maxlat); 
 printf("minlax     = %10d\n",pstats.minlax); 
 printf("msgsent    = %10d\n",pstats.msgsent); 
 printf("msgrcvd    = %10d\n",pstats.msgrcvd); 
} 

 



B.13. mrttest5b.c 

This program gets and displays Process Descriptor internal use fields. 

Listing B.13: mrttest5b.c 

/*******************************************************************************/ 
/*      mrttest5b.c      */ 
/* Test the mrt_getpint() System Call to get Process Internal Data  */ 
/* Usage:           */ 
/*  mrttest5b          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pint_t pint; 
 int rcode; 
 pid_t pid; 
 
 if (argc == 2)  
  pid = atoi(argv[1]); 
 else  
     pid = getpid(); 
 
 rcode = mrt_getpint(pid, &pint); 
 printf("mrt_getpint: pid = %d, rcode=%5d.\n", pid, rcode); 
 if( rcode != 0) exit(1); 
 printf("vt        = %d\n",pint.vt); 
 printf("priority  = %d\n",pint.priority); 
 printf("mqId      = %d\n",pint.mqID); 
 printf("p_nr      = %d\n",pint.p_nr); 
} 

B.14. mrttest5c.c 

This program clears Process Descriptor statistical fields. 

Listing B.14: mrttest5c.c 

/*******************************************************************************/ 
/*      mrttest5c.c      */ 
/* Test the mrt_getiattr() System Call to clear Process statistics  */ 
/* Usage:           */ 



/*  mrttest5C          */ 
/*******************************************************************************/ 
/* MRT test 5c: mrt_clrpstat */ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 int rcode; 
 pid_t pid; 
 
 if (argc == 2)  
  pid = atoi(argv[1]); 
 else  
     pid = getpid(); 
 
 rcode = mrt_clrpstat(pid); 
 printf("mrt_clrpstat: pid = %d, rcode=%5d.\n", pid, rcode); 
 if( rcode != 0) exit(1); 
 printf("Process %d statistics cleared\n",pid); 
} 

B.15. mrttest6.c 

This program: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself the process is converted into a RT-process. 

− Converts itself back into a NRT-process. 

− Displays its process descriptor statistics. 

Listing B.15: mrttest6.c 

/*******************************************************************************/ 
/*      mrttest6.c      */ 
/* Test the mrt_set2rt(), mrt_print() and mrt_set2nrt() System Call   */ 
/* Usage:           */ 
/*  mrttest6          */ 
/*******************************************************************************/ 
 
 
#include <minix/config.h> 



#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <minix/type.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t pattr; 
 mrt_pstat_t pstats; 
 int rcode, pid; 
 
 pattr.flags   = MRT_P_REALTIME; 
 pattr.baseprty = MRT_PRI03; 
 pattr.period   = 0; 
 pattr.limit   = 0; 
 pattr.deadline  = 0; 
 pattr.watchdog  = -1; 
 pattr.mq_size  = 3; 
 pattr.mq_flags = 0; 
 
 rcode = mrt_setpattr(&pattr); 
 if( rcode != 0) 
  { 
  printf("mrt_setpattr: rcode=%5d.\n", rcode); 
  exit(1); 
  } 
 else 
  printf("Process Attributes set\n"); 
 
 rcode = mrt_set2rt(); 
 if( rcode != 0 ) 
  { 
  printf("mrt_set2rt rcode = %d\n",rcode); 
  exit(1); 
  } 
 rcode = mrt_print("THAT'S ALL FOLKS!!"); 
 if( rcode != 0 ) 
  { 
  printf("mrt_print rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 rcode = mrt_set2nrt(); 
 pid = getpid(); 
 
 rcode = mrt_getpstat(pid, &pstats); 
 printf("mrt_getpstat: pid = %d, rcode=%5d.\n", pid, rcode); 
 if( rcode != 0) exit(1); 
 
 printf("scheds     = %10d\n",pstats.scheds); 
 printf("mdl        = %10d\n",pstats.mdl); 
 printf("timestamp  = %10d\n",pstats.timestamp); 
 printf("maxlat     = %10d\n",pstats.maxlat); 
 printf("minlax     = %10d\n",pstats.minlax); 
 printf("msgsent    = %10d\n",pstats.msgsent); 
 printf("msgrcvd    = %10d\n",pstats.msgrcvd); 
} 



B.16. mrttest6b.c 

This program: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself the process is converted into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Exits without calling mrt_set2nrt()Kernel Call. 

Listing B.16: mrttest6b.c 

/*******************************************************************************/ 
/*      mrttest6b.c      */ 
/* Test the mrt_set2rt(), mrt_print() and _exit System Call    */ 
/* Usage:           */ 
/*  mrttest6b          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <minix/type.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t pattr; 
 mrt_pstat_t pstats; 
 int rcode, pid; 
 
 pattr.flags  = MRT_P_REALTIME; 
 pattr.baseprty  = MRT_PRI03; 
 pattr.period  = 0; 
 pattr.limit  = 0; 
 pattr.deadline  = 0; 
 pattr.watchdog  = -1; 
 pattr.mq_size  = 3; 
 pattr.mq_flags = 0; 
 
 rcode = mrt_setpattr(&pattr); 
 if( rcode != 0) 
  { 
  printf("mrt_setpattr: rcode=%5d.\n", rcode); 
  exit(1); 
  } 
 else 



  printf("Process Attributes set\n"); 
 
 
 rcode = mrt_set2rt(); 
 if( rcode != 0 ) 
  { 
  printf("MRTPRINT mrt_set2rt rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 rcode = mrt_print("THAT'S ALL FOLKS!! Exit Without mrt_set2nrt"); 
} 

B.17. mrttest6c.c 

This program: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Blocks itself by 2000 Timer ticks 

− Converts itself back into a NRT-process. 

Listing B.17: mrttest6c.c 

/*******************************************************************************/ 
/*      mrttest6c.c      */ 
/* Test the mrt_set2rt(), mrt_print() and mrt_set2nrt(), mrt_sleep() Sys Calls */ 
/* Usage:           */ 
/*  mrttest6c          */ 
/*******************************************************************************/ 
 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <minix/type.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t pattr; 
 mrt_pstat_t pstats; 



 int rcode, pid; 
 
 pattr.flags   = MRT_P_REALTIME; 
 pattr.baseprty  = MRT_PRI03; 
 pattr.period   = 0; 
 pattr.limit   = 0; 
 pattr.deadline  = 0; 
 pattr.watchdog  = -1; 
 pattr.mq_size  = 3; 
 pattr.mq_flags = 0; 
 
 rcode = mrt_setpattr(&pattr); 
 if( rcode != 0) 
  { 
  printf("mrt_setpattr: rcode=%5d.\n", rcode); 
  exit(1); 
  } 
 else 
  printf("Process Attributes set\n"); 
 
 rcode = mrt_set2rt(); 
 if( rcode != 0 ) 
  { 
  printf("mrt_set2rt rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 rcode = mrt_print("I am going to sleep...\n"); 
 if( rcode != 0 ) 
  { 
  printf("mrt_print1 rcode = %d\n",rcode); 
  exit(1); 
  } 
   
 rcode = mrt_sleep(200*10); 
 if( rcode != 0 ) 
  { 
  mrt_set2nrt(); 
  printf("mrt_sleep rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 rcode = mrt_print("I wake up...\n"); 
 if( rcode != 0 ) 
  { 
  printf("mrt_print2 rcode = %d\n",rcode); 
  exit(1); 
  } 
 rcode = mrt_set2nrt(); 
} 

B.18. mrttest6d.c 

This program forks into two processes, the FATHER and the SON: 

The FATHER: 

− Gets SON’s process descriptor internal values to obtain its RT-PID. 

− Sets its process descriptor attributes to convert itself into a RT-process. 



− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Wakes up SON using mrt_wakeup() Kernel Call. 

− Converts itself back into a NRT-process. 

The SON: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Sleeps (using mrt_sleep() Kernel Call) until FATHER will wake up it  

− Converts itself back into a NRT-process. 

Listing B.18: mrttest6d.c 

/*******************************************************************************/ 
/*      mrttest6d.c      */ 
/* Test the mrt_wakeup(), mrt_sleep() Sys Calls     */ 
/* Usage:           */ 
/*  mrttest6d          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t s_pattr, f_pattr; 
 int rcode; 
 pid_t pid, ppid; 
 mrtpid_t mrtpid; 
 mrt_pint_t pint; 
 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 



 if( (pid = fork()) != 0) 
  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d],I will wakeup my son [%d] in 20 secs\n" 
                     ,ppid,pid); 
  sleep(20); 
 
  rcode = mrt_getpint(pid, &pint); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d.\n" 
                           , pid, rcode); 
   exit(1); 
   } 
  mrtpid.pid  = pid; 
  mrtpid.p_nr = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[FATHER] I will wakeup my son...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
   
  rcode = mrt_wakeup(mrtpid); 
 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_wakeup rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[FATHER] mrt_wakeup OK!!\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_set2nrt(); 



 
  printf("[FATHER]Bye\n"); 
  } 
/*-----------------------------------------------------------------------------*/ 
/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid = getpid(); 
  printf("[SON] I am [%d], and I will change to RT and put on sleep\n" 
                    ,pid); 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI03; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to sleep...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
   
  rcode = mrt_sleep(MRT_FOREVER); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_sleep rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I wake up...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print2 rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_set2nrt(); 
  printf("[SON]Bye\n"); 
  }  
} 



B.19. mrttest6e.c 

This program forks into eleven processes, the FATHER and ten SONs: 

The FATHER: 

− Gets SONs’ process descriptor internal values to obtain their RT-PID. 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Wakes up ten SONs using mrt_wakeup() Kernel Call. 

− Converts itself back into a NRT-process. 

The SONs: 

− Set their process descriptor attributes to convert themselves into RT-

processes. 

− Convert themselves into RT-processes. 

− Print texts on the system console using mrt_print() Kernel Calls. 

− Sleep (using mrt_sleep() Kernel Call) until FATHER will wake up them. 

− Convert themselves back into NRT-processes. 

Listing B.19: mrttest6e.c 

/*******************************************************************************/ 
/*      mrttest6e.c      */ 
/* Test the mrt_sleep(), mrt_wakeup() Sys Calls     */ 
/* Usage:           */ 
/*  mrttest6e          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 



#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t s_pattr, f_pattr; 
 int rcode,i,j; 
 pid_t pid[10], ppid; 
 mrtpid_t mrtpid[10]; 
 mrt_pint_t pint[10]; 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 
 for( i = 0; i < 10 ; i++) 
  pid[i] = 1; 
 
 for( i = 0; i < 10 && pid[i] != 0 ; i++) 
  pid[i] = fork(); 
 
 if( i == 10)  
  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d],I will wakeup my sons \n",ppid,pid); 
 
  for ( j = 0; j < 10; j++) 
   { 
   rcode = mrt_getpint(pid[j], &pint[j]); 
   if( rcode != 0) 
    { 
    printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d\n" 
                               ,pid[j], rcode); 
    exit(1); 
    } 
   mrtpid[j].pid  = pid[j]; 
   mrtpid[j].p_nr = pint[j].p_nr; 
   } 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  mrt_print("[FATHER] I will wakeup my sons...\n"); 
    



  for ( j = 0; j < 10; j++); 
   mrt_wakeup(mrtpid[j]); 
 
  rcode = mrt_set2nrt(); 
 
  printf("[FATHER]Bye\n"); 
  } 
/*-----------------------------------------------------------------------------*/ 
/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid[i] = getpid(); 
  printf("[SON]%d I am [%d], and I will change to RT and put on sleep\n" 
                     ,i,pid[i]); 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI03; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to sleep...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
   
  rcode = mrt_sleep(MRT_FOREVER); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_sleep rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I wake up...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print2 rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_set2nrt(); 
  printf("[SON]%d Bye\n",i); 
  }  
} 



B.20. mrttest7.c 

This program test periodic processing.  

− Sets its process descriptor attributes to convert itself into a Periodic RT-

process. 

− Converts itself into a RT-process. 

− Loops until it processing limit is reached  

− Prints a text on each loop. 

− When the processing limit is reached the process is set in stopped 

setting the MRT_STOP bit of its flags. 

Listing B.20: mrttest7.c 

/*******************************************************************************/ 
/*      mrttest7.c      */ 
/* Test a periodic process         */ 
/* Usage:           */ 
/*  mrttest7          */ 
/*******************************************************************************/ 
 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <minix/type.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t pattr; 
 int rcode, pid; 
 
 pattr.flags   = MRT_P_REALTIME | MRT_P_PERIODIC; 
 pattr.baseprty  = MRT_PRI03; 
 pattr.period   = 50; 
 pattr.limit   = 10; 
 pattr.deadline  = 0; 
 pattr.watchdog  = -1; 
 pattr.mq_size  = 3; 
 pattr.mq_flags = 0; 
 



 rcode = mrt_setpattr(&pattr); 
 if( rcode != 0) 
  { 
  printf("mrt_setpattr: rcode=%5d.\n", rcode); 
  exit(1); 
  } 
 else 
  printf("Process Attributes set\n"); 
 
 
 rcode = mrt_set2rt(); 
 if( rcode != 0 ) 
  { 
  printf("mrt_set2rt rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 rcode = mrt_print("Entering in a loop...\n"); 
 if( rcode != 0 ) 
  { 
  printf("mrt_print1 rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 do { 
  mrt_print("loop\n"); 
  rcode = mrt_sleep(MRT_FOREVER); 
  } while( rcode == 0 ); 
 
} 

B.21. mrttest7b.c 

This program test periodic processing.  

− Sets its process descriptor attributes to convert itself into a Periodic RT-

process. 

− Converts itself into a RT-process. 

− Loops five times.  

− Prints a text on each loop. 

− Converts itself back into a NRT-process. 

Listing B.21: mrttest7b.c 

/*******************************************************************************/ 
/*      mrttest7b.c      */ 
/* Test a periodic process          */ 
/* Usage:           */ 
/*  mrttest7b          */ 
/*******************************************************************************/ 
#include <minix/config.h> 
#include <sys/types.h> 



#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <minix/type.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t pattr; 
 int rcode, pid,i; 
 
 pattr.flags   = MRT_P_REALTIME | MRT_P_PERIODIC; 
 pattr.baseprty  = MRT_PRI03; 
 pattr.period   = 500; 
 pattr.limit   = 0; 
 pattr.deadline  = 0; 
 pattr.watchdog  = -1; 
 pattr.mq_size  = 3; 
 pattr.mq_flags = 0; 
 
 rcode = mrt_setpattr(&pattr); 
 if( rcode != 0) 
  { 
  printf("mrt_setpattr: rcode=%5d.\n", rcode); 
  exit(1); 
  } 
 else 
  printf("Process Attributes set\n"); 
 
 
 rcode = mrt_set2rt(); 
 if( rcode != 0 ) 
  { 
  printf("mrt_set2rt rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 rcode = mrt_print("Entering in a loop...\n"); 
 if( rcode != 0 ) 
  { 
  printf("mrt_print1 rcode = %d\n",rcode); 
  exit(1); 
  } 
 
 for( i = 0; i < 5; i++) 
  { 
  mrt_print("loop\n"); 
  rcode = mrt_sleep(MRT_FOREVER); 
  } 
 
 mrt_set2nrt(); 
 printf("exiting...\n"); 
} 



B.22. mrttest8.c 

This program forks into two processes, the FATHER and the SON: 

The FATHER: 

− Gets SON’s process descriptor internal values to obtain its RT-PID. 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Send a request message to SON using mrt_rqst() Kernel Call. 

− Converts itself back into a NRT-process. 

The SON: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Sleeps for 2000 Timer ticks. 

− Converts itself back into a NRT-process. 

Listing B.22: mrttest8.c 

/*******************************************************************************/ 
/*      mrttest8.c      */ 
/* Test the mrt_rqst() Kernel Call        */ 
/* Usage:           */ 
/*  mrttest8          */ 
/*******************************************************************************/ 
 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 



#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t s_pattr, f_pattr; 
 int rcode; 
 pid_t pid, ppid; 
 mrtpid_t mrtpid; 
 mrt_pint_t pint; 
 mrt_msg_t  msg; 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 
 if( (pid = fork()) != 0) 
  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d],I will REQUEST my son [%d] in 10 secs\n" 
                   ,ppid,pid); 
  sleep(10); 
 
  rcode = mrt_getpint(pid, &pint); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d.\n" 
                         ,pid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = pid; 
  mrtpid.p_nr = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[FATHER] I will rqst my son...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
   
  rcode = mrt_rqst(mrtpid,&msg,10*200); 
 



  mrt_set2nrt(); 
  printf("[FATHER] mrt_rqst rcode = %d\n",rcode); 
  sleep(30); 
  printf("[FATHER] bye\n"); 
  exit(0); 
  } 
/*-----------------------------------------------------------------------------*/ 
/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid = getpid(); 
  printf("[SON] I am [%d] , and I will change to RT and put on sleep\n" 
                        ,pid); 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI03; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to sleep...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
   
  rcode = mrt_sleep(60*200); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_sleep rcode = %d\n",rcode); 
   exit(0); 
   } 
 
  rcode = mrt_print("[SON] I wake up...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print2 rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_set2nrt(); 
  printf("[SON]Bye\n"); 
  }  
} 



 

B.23. mrttest8b.c 

This program forks into two processes, the FATHER and the SON: 

The FATHER: 

− Gets SON’s process descriptor internal values to obtain its RT-PID. 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Calls mrt_rcv() Kernel Call to receive a message from SON with a 

timeout of 2000 Timer ticks. 

− Converts itself back into a NRT-process. 

The SON: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Sleeps for 2000 Timer ticks. 

− Converts itself back into a NRT-process. 

Listing B.23: mrttest8b.c 

/*******************************************************************************/ 
/*      mrttest8b.c      */ 
/* Test the mrt_rcv() Kernel Call        */ 
/* Usage:           */ 
/*  mrttest8b          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 



#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t s_pattr, f_pattr; 
 int rcode; 
 pid_t pid, ppid; 
 mrtpid_t mrtpid; 
 mrt_pint_t pint; 
 mrt_msg_t  msg; 
 mrt_mhdr_t hmsg; 
 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 
 if( (pid = fork()) != 0) 
  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d], I will RECEIVE msgs from [%d] in 10 secs\n" 
                   ,ppid,pid); 
  sleep(10); 
  rcode = mrt_getpint(pid, &pint); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n" 
                        , pid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = pid; 
  mrtpid.p_nr = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[FATHER] I will RECEIVE a msg from my son...\n"); 
  if( rcode != 0 ) 



   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
   
  rcode = mrt_rcv(mrtpid,&msg,&hmsg,10*200); 
  mrt_set2nrt(); 
  printf("[FATHER] mrt_rcv rcode = %d\n",rcode); 
  sleep(30); 
  printf("[FATHER] bye\n"); 
  exit(0); 
  } 
/*-----------------------------------------------------------------------------*/ 
/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid = getpid(); 
  printf("[SON] I am [%d], and I will change to RT and put on sleep\n" 
                        ,pid); 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI03; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 3; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to sleep...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
   
  rcode = mrt_sleep(60*200); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_sleep rcode = %d\n",rcode); 
   exit(0); 
   } 
 
  rcode = mrt_print("[SON] I wake up...\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print2 rcode = %d\n",rcode); 



   exit(1); 
   } 
 
  rcode = mrt_set2nrt(); 
  printf("[SON]Bye\n"); 
  }  
} 

B.24. mrttest8c.c 

This program forks into two processes, the FATHER and the SON: 

The FATHER: 

− Gets SON’s process descriptor internal values to obtain its RT-PID. 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Loops 10 Times 

− Sleeps for 2000 Timer ticks on each loop. 

− Send a request message to SON on each loop. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Converts itself back into a NRT-process. 

The SON: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Loops forever 

− Calls mrt_rcv() Kernel Call to receive a message from FATHER. 

− Prints the message content on the system console using mrt_print() 

Kernel Call. 



Listing B.24: mrttest8c.c 

/*******************************************************************************/ 
/*      mrttest8c.c      */ 
/* Test the mrt_rqst() and mrt_rcv() Kernel Calls      */ 
/* Usage:           */ 
/*  mrttest8c          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t s_pattr, f_pattr; 
 int rcode,i; 
 pid_t pid, ppid; 
 mrtpid_t mrtpid; 
 mrt_pint_t pint; 
 mrt_msg_t  msg; 
 mrt_mhdr_t hmsg; 
 char text[50]; 
 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 
 if( (pid = fork()) != 0) 
  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d],I will REQUEST msgs to [%d]\n" 
                    ,ppid,pid); 
  rcode = mrt_getpint(pid, &pint); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n" 
                           ,pid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = pid; 
  mrtpid.p_nr = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 1; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 



   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  mrt_print("[FATHER] I will REQUESTS 10 msgs to my son...\n"); 
 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  for( i = 0; i < 10; i++) 
   { 
   mrt_sleep(200*10); 
   sprintf(msg.m_m7.m7ca1,"Hello son (%d)",i); 
   rcode = mrt_rqst(mrtpid,&msg,MRT_FOREVER); 
   if( rcode != 0) 
    sprintf(text,"[FATHER] msg %d NOT sent\n",i); 
   else 
    sprintf(text,"[FATHER] msg %d sent\n",i); 
   mrt_print(text); 
   } 
     
  mrt_set2nrt(); 
  sleep(30); 
  printf("[FATHER] bye\n"); 
  exit(0); 
  } 
/*-----------------------------------------------------------------------------*/ 
/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid = getpid(); 
  ppid = getppid(); 
  printf("[SON] I am [%d], and I will change to RT and put on sleep\n" 
                      ,pid); 
  rcode = mrt_getpint(ppid, &pint); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_getpattr: pid=%d rcode=%5d.\n" 
                         ,ppid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = ppid; 
  mrtpid.p_nr = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 10; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 



   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to RECEIVE messages..\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  i = 0; 
  mrt_sleep(200*10); 
  while(1) 
   { 
   rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER); 
   if( rcode != 0 ) 
    { 
    mrt_set2nrt(); 
    printf("[SON] mrt_rcv rcode = %d\n",rcode); 
    exit(1); 
    } 
   else 
    { 
    sprintf(text,"[SON]%d: %s",i,msg.m_m7.m7ca1); 
    mrt_print(text); 
    i++; 
    } 
   } 
 
  }  
} 

B.25. mrttest8d.c 

This program forks into two processes, the FATHER and the SON: 

The FATHER: 

− Gets SON’s process descriptor internal values to obtain its RT-PID. 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Loops 10 Times 



− Send an asynchronous request message to SON on each loop. 

− Prints a text on the system console using mrt_print() Kernel Call. 

− Converts itself back into a NRT-process. 

The SON: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Loops forever 

− Calls mrt_rcv() Kernel Call to receive a message from FATHER. 

− Prints the message content on the system console using mrt_print() 

Kernel Call. 

Listing B.25: mrttest8d.c 

/*******************************************************************************/ 
/*      mrttest8d.c      */ 
/* Test the mrt_arqst() and mrt_rcv() Kernel Calls      */ 
/* Usage:           */ 
/*  mrttest8d          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t s_pattr, f_pattr; 
 int rcode,i; 
 pid_t pid, ppid; 
 mrtpid_t mrtpid; 
 mrt_pint_t pint; 
 mrt_msg_t  msg; 
 mrt_mhdr_t hmsg; 
 char text[50]; 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 
 if( (pid = fork()) != 0) 



  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d],I will REQUEST msgs to [%d]\n" 
                     ,ppid,pid); 
  rcode = mrt_getpint(pid, &pint); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_getpattr: pid=%d rcode=%5d.\n" 
                          ,pid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = pid; 
  mrtpid.p_nr  = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 1; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  mrt_print("[FATHER] I will REQUESTS 10 msgs to my son...\n"); 
 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  mrt_sleep(200*10); 
 
  for( i = 0; i < 10; i++) 
   { 
   sprintf(msg.m_m7.m7ca1,"Hello son (%d)",i); 
   rcode = mrt_arqst(mrtpid,&msg); 
   if( rcode != 0) 
    sprintf(text,"[FATHER] msg %d NOT sent\n",i); 
   else 
    sprintf(text,"[FATHER] msg %d sent\n",i); 
   mrt_print(text); 
   } 
     
  mrt_set2nrt(); 
  sleep(30); 
 
  printf("[FATHER] bye\n"); 
  exit(0); 
  } 
/*-----------------------------------------------------------------------------*/ 



/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid = getpid(); 
  ppid = getppid(); 
  printf("[SON] I am [%d], and I will change to RT and put on sleep\n" 
                    ,pid); 
  rcode = mrt_getpint(ppid, &pint); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_getpattr: pid= %d rcode=%5d.\n" 
                       ,ppid,rcode); 
   exit(1); 
   } 
 
  mrtpid.pid  = ppid; 
  mrtpid.p_nr  = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 10; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to RECEIVE messages..\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  i = 0; 
  mrt_sleep(200*10); 
 
  while(1) 
   { 
   rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER); 
   if( rcode != 0 ) 
    { 
    mrt_set2nrt(); 
    printf("[SON] mrt_rcv rcode = %d\n",rcode); 
    exit(1); 
    } 
   else 
    { 
    sprintf(text,"[SON]%d: %s",i,msg.m_m7.m7ca1); 
    mrt_print(text); 



    i++; 
    } 
   } 
  }  
} 

B.26. mrttest8e.c 

This program forks into two processes, the FATHER and the SON: 

The FATHER: 

− Gets SON’s process descriptor internal values to obtain its RT-PID. 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Sends a request message to SON. 

− Calls mrt_rcv() Kernel Call to receive the reply from SON. 

− Prints the reply on the system console using mrt_print() Kernel Call. 

− Converts itself back into a NRT-process. 

The SON: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Calls mrt_rcv() Kernel Call to receive a message from FATHER. 

− Sends a reply message to FATHER. 

− Prints the request on the system console using mrt_print() Kernel Call. 

− Converts itself back into a NRT-process. 

Listing B.26: mrttest8e.c 

/*******************************************************************************/ 
/*      mrttest8e.c      */ 
/* Test the mrt_rqst(), mrt_rcv(), mrt_rply() Kernel Calls     */ 
/* Usage:           */ 



/*  mrttest8e          */ 
/*******************************************************************************/ 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[]; 
{ 
 mrt_pattr_t s_pattr, f_pattr; 
 int rcode,i; 
 pid_t pid, ppid; 
 mrtpid_t mrtpid; 
 mrt_pint_t pint; 
 mrt_msg_t  msg; 
 mrt_mhdr_t hmsg; 
 char text[50]; 
 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 
 if( (pid = fork()) != 0) 
  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d],I will REQUEST to [%d]\n" 
                      ,ppid,pid); 
 
  rcode = mrt_getpint(pid, &pint); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n" 
                         ,pid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = pid; 
  mrtpid.p_nr  = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 1; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 



  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  mrt_sleep(200*10); 
 
  sprintf(msg.m_m7.m7ca1,"Hello SON (%d)",i); 
  rcode = mrt_rqst(mrtpid,&msg,MRT_FOREVER); 
  if( rcode != 0) 
   sprintf(text,"[FATHER] mrt_rqst rcode %d\n",rcode); 
  else 
   sprintf(text,"[FATHER] msg %d request\n",i); 
  mrt_print(text); 
 
 
  rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER); 
  if( rcode != 0 ) 
   sprintf(text,"[FATHER] mrt_rcv error %d\n",rcode); 
  else 
   sprintf(text,"[FATHER] msg [%s] received\n",msg.m_m7.m7ca1); 
  mrt_print(text); 
 
  mrt_set2nrt(); 
  sleep(30); 
  printf("[FATHER] bye\n"); 
  exit(0); 
  } 
/*-----------------------------------------------------------------------------*/ 
/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid = getpid(); 
  ppid = getppid(); 
  printf("[SON] I am [%d] , and I will change to RT and put on sleep\n" 
                    ,pid); 
  rcode = mrt_getpint(ppid, &pint); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_getpattr: pid= %d rcode=%5d.\n" 
                         ,ppid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = ppid; 
  mrtpid.p_nr  = MRT_ANYPROC; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 10; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 



   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to RECEIVE messages..\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  i = 0; 
  rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER); 
  if( rcode != 0 ) 
   sprintf(text,"[SON] mrt_rcv error %d\n",rcode); 
  else 
   sprintf(text,"[SON] msg [%s] received\n",msg.m_m7.m7ca1); 
  mrt_print(text); 
 
  sprintf(msg.m_m7.m7ca1,"Hello DAD (%d)",i); 
 
  rcode = mrt_reply(hmsg.src,&msg); 
  if( rcode != 0) 
   sprintf(text,"[SON] mrt_reply rcode %d\n",rcode); 
  else 
   sprintf(text,"[SON] msg %d reply\n",i); 
  mrt_print(text); 
 
  mrt_set2nrt(); 
  printf("Message Header\n"); 
  printf("Source %d/%d \n",hmsg.src.pid,hmsg.src.p_nr); 
  printf("Dest   %d/%d \n",hmsg.dst.pid,hmsg.dst.p_nr); 
  printf("Mtype  %d\n",hmsg.mtype); 
  printf("Mid\seqno %d/%d\n",hmsg.mid,hmsg.seqno); 
  printf("Tstamp  %d\n",hmsg.tstamp); 
  printf("Priority %d\n",hmsg.priority); 
  printf("Deadline %d\n",hmsg.deadline); 
  printf("Laxity   %d\n",hmsg.laxity); 
  printf("Timeout  %d\n",hmsg.timeout); 
  printf("[SON] bye\n"); 
  exit(0); 
  } 
} 

B.27. mrttest9.c 

This program forks into two processes, the FATHER and the SON: 

The FATHER: 

− Gets SON’s process descriptor internal values to obtain its RT-PID. 



− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Loops 5 times  

− Sends an up request message to SON on each loop. 

− Converts itself back into a NRT-process. 

The SON: 

− Sets its process descriptor attributes to convert itself into a RT-process. 

− Converts itself into a RT-process. 

− Loops forever. 

− Calls mrt_rcv() Kernel Call to receive a message from FATHER on 

each loop. 

− Prints the request on the system console using mrt_print() Kernel Call 

on each loop. 

Listing B.27: mrttest9.c 

/*******************************************************************************/ 
/*      mrttest9.c      */ 
/* Test the mrt_uprqst() and mrt_rcv() Kernel Calls      */ 
/* Usage:           */ 
/*  mrttest9          */ 
/*******************************************************************************/ 
 
 
#include <minix/config.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <errno.h> 
#include <signal.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <stdio.h> 
#include <string.h> 
#include <lib.h> 
#include <minix/syslib.h> 
 
_PROTOTYPE(int main, (int argc, char *argv [])); 
 
int main(argc, argv) 
int argc; 
char *argv[];  
{ 
 mrt_pattr_t s_pattr, f_pattr; 



 int rcode,i; 
 pid_t pid, ppid; 
 mrtpid_t mrtpid; 
 mrt_pint_t pint; 
 mrt_msg_t  msg; 
 mrt_mhdr_t hmsg; 
 char text[50]; 
 
/*-----------------------------------------------------------------------------*/ 
/*      FATHER      */ 
/*-----------------------------------------------------------------------------*/ 
 if( (pid = fork()) != 0) 
  { 
  ppid = getpid(); 
  printf("[FATHER]I am [%d],I will UP REQUEST to my son [%d]\n" 
                   ,ppid,pid); 
 
  rcode = mrt_getpint(pid, &pint); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_getpattr: pid= %d rcode=%5d.\n" 
                          , pid, rcode); 
   exit(1); 
   } 
 
  mrtpid.pid  = pid; 
  mrtpid.p_nr  = pint.p_nr; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 1; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[FATHER] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[FATHER] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[FATHER] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[FATHER] mrt_print rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  mrt_sleep(200*10); 
 
  for ( i = 0; i  < 5 ;  i++) 
   { 
   sprintf(msg.m_m7.m7ca1,"Hello SON (%d)",i); 
   rcode = mrt_uprqst(mrtpid,&msg,MRT_PRI02); 
   if( rcode != 0) 
    sprintf(text,"[FATHER] mrt_uprqst rcode %d\n",rcode); 



   else 
    sprintf(text,"[FATHER] msg %d UP request\n",i); 
   mrt_print(text); 
   } 
 
  mrt_set2nrt(); 
  printf("[FATHER] bye\n"); 
  exit(0); 
  } 
 
/*-----------------------------------------------------------------------------*/ 
/*      SON      */ 
/*-----------------------------------------------------------------------------*/ 
 else 
  { 
  pid = getpid(); 
  ppid = getppid(); 
  printf("[SON] I am [%d] , and I will change to RT and put on sleep\n" 
                    ,pid); 
 
  rcode = mrt_getpint(ppid, &pint); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_getpattr: pid= %d rcode=%5d.\n" 
                          ,ppid,rcode); 
   exit(1); 
   } 
  mrtpid.pid  = ppid; 
  mrtpid.p_nr  = MRT_ANYPROC; 
 
  s_pattr.flags  = MRT_P_REALTIME; 
  s_pattr.baseprty  = MRT_PRI04; 
  s_pattr.period  = 0; 
  s_pattr.limit  = 0; 
  s_pattr.deadline  = 0; 
  s_pattr.watchdog  = -1; 
  s_pattr.mq_size  = 10; 
  s_pattr.mq_flags = 0; 
 
  rcode = mrt_setpattr(&s_pattr); 
  if( rcode != 0) 
   { 
   printf("[SON] mrt_setpattr: rcode=%5d.\n", rcode); 
   exit(1); 
   } 
  else 
   printf("[SON] Process Attributes set\n"); 
 
  rcode = mrt_set2rt(); 
  if( rcode != 0 ) 
   { 
   printf("[SON] mrt_set2rt rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  rcode = mrt_print("[SON] I am going to RECEIVE messages..\n"); 
  if( rcode != 0 ) 
   { 
   mrt_set2nrt(); 
   printf("[SON] mrt_print1 rcode = %d\n",rcode); 
   exit(1); 
   } 
 
  while(1) 
   { 
   rcode = mrt_rcv(mrtpid,&msg,&hmsg,MRT_FOREVER); 
   if( rcode != 0 ) 
    sprintf(text,"[SON] mrt_rcv error %d\n",rcode); 



   else 
    sprintf(text,"[SON] msg [%s] received\n",msg.m_m7.m7ca1); 
   mrt_print(text); 
   } 
  } 
} 



Appendix C: PERFORMANCE TESTS 

This appendix describe the set of tests carried out on MINIX4RT. The first set that are focused 

on interrupt service times and Timer services timeliness were performed by Felipe Ieder and Nicolas 

Cesar as a laboratory practice of Real-Time Operating Systems at Facultad Regional Santa Fe of 

Universidad Tecnológica Nacional (FRSF-UTN) in May 2004. Because the FRSF-UTN does not have 

suitable equipment, the methods used for the tests are not rigurous, therefore the results are not 

accurated. 

The set of test on RT-IPC perfomance were performed by the author in December 2005 using 

an up-to-date kernel. 

C.1. Interrupt Service Time 

The interrupt service time tests include different options for interrupt handlers. 

− Event Driven Interrupt Handler 

− Timer Driven Interrupt Handler 

− Software Interrupt Handler 

The tests were carried out using three different frequencies of interrupts.(1000, 5000 and 

10000 [Hz]). The parallel port was used as the source of interrupts for the set of tests. 

The equipment used for the test was: 

− LUNIX: Intel Pentium III 800MHz, 256 MB RAM, Hard Disk 

80GB,Chipset VIA Software: RT Linux with kernel 2.4.21 on Mandrake 

9.1. This computer was used as the monitor machine. 



− PAP: IBM Model 370C Notebook, Intel® DX4 75MHz on system 

board, AT Bus, Memory   8 MB,  Diskette Drive 1.44MB,  Hard Disk Drive 

540MB 2.5-inch, PCMCIA One Type-III or two Type-II. Software: 

MINIX4RT (Kernel 28042004). This computer was used as tested machine.  

The tests are performed under different kinds of load for the system: 

− No load (NOLoad): All background processes that are started at init are 

killed before the test. 

− I/O Diskette Load (DKTLoad): A  process access files on a diskette 

during the test. The diskette interrupt descriptor is Real-Time Timer Driven 

with a priority lower than the parallel port. 

− I/O Disk Load(HDLoad): A process access files on the hard disk during 

the test. 

− CPU Load(CPULoad): A script load the CPU without any I/O operation 

during the test.  

C.1.1. Delay of RTLinux  

Before testing MINIX4RT, a set of tests were carried out over the system that made 

the measurements. A parallel port loop was made using a DB25 male connector to connect 

D1 (pin 3) with ACK (pin 10) of the parallel port (see Figure C.1 and  Figure C.2). 

 

 

Figure C.1: Delay test of LUNIX (RTLinux) 



 

 

Figure C.2: DB25 Male Connector  

A process in LUNIX machine generate a pulse on pin D1, that generates a parallel 

port interrupt. The time elapsed beetween the pulse generation and the service of the parallel 

port interrupt is considered as the delay of the LUNIX machine that must be subtracted from 

the measurements as is explained en Section C.1.2. The results of LUNIX tests are showed in 

Table C.1. 

Table C.1: Delay of LUNIX (RTLinux). 

 Frequecy [Hz] 

Delay [ns] 10000 5000 1000 

Average 8379 8378 8340 

Standard Deviation 670 606 212 

Minimum 7872 7968 8032 

Maximum 16576 17728 11648 

C.1.2. Interrupt Service Time Tests of MINIX4RT  

The tests were performed conecting the LUNIX machine with PAP machine (see 

Figure C.3) using a parallel port cable with the pinout detailled in Table C.2. 

Table C.2: Testing Cable Pinout 

 



The following is the sequence of events of the tests: 

− LUNIX generates a pulse on a parallel port Data Bit (D3) that produces a 

parallel port interrupt on PAP (ACK).  

− The parallel port interrupt handler of PAP generates a pulse pulse on a 

parallel port Data Bit (D3)  that produces an interrupt on LUNIX (ACK).   

The time elapsed beetween the pulse generation on LUNIX and the parallel port 

interrupt service in LUNIX is considered as the delay of the LUNIX machine plus the 

MINIX4RT interrupt service time. 

  

Figure C.3: Interrupt Service Time Tests of MINIX4RT 

C.1.3. Interrupt Service Time of Software Interrupts  

This section shows the tests results of Interrupt Service Time for Software interrupts.  

The RT-interrupt handler triggers a Software Interrupt that generates the response pulse on 

the parallel port.    

Table C.4: Interrupt Service Time of Software Interrupts for 10000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 41841 42777 43752 40974 

Standard Deviation 6594 7948 8027 8104 

Minimum 10112 30528 30368 30528 

Maximum 100320 105920 117569 151456 



 

 

Table C.5: Interrupt Service Time of Software Interrupts for 5000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 33085 42916 38622 43732 

Standard Deviation 3135 4030 2759 4216 

Minimum 30592 31552 33152 30624 

Maximum 69792 87200 58976 88288 

Table C.6: Interrupt Service Time of Software Interrupts for 1000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 38319 44443 39652 35986 

Standard Deviation 6865 7523 2582 6534 

Minimum 30688 30848 35712 30688 

Maximum 62304 59584 51008 87264 
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Figure C.4: Interrupt Service Time for Software Interrupts for 10000 [Hz] 
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Figure C.5: Interrupt Service Time for Software Interrupts for 5000 [Hz] 
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Figure C.6: Interrupt Service Time for Software Interrupts for 1000 [Hz] 

C.1.4. Interrupt Service Time of Event-Driven Interrupts  

This section describe the tests results of Interrupt Service Time for Event-Driven 

interrupts. The RT-interrupt handler generates the response pulse on the parallel port.    



Table C.7: Interrupt Service Time of Event-Driven Interrupts for 10000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 26395 38525 39909 37556 

Standard Deviation 8709 9239 9309 9786 

Minimum 21888 21888 21856 21376 

Maximum 100352 89632 122816 55904 

Table C.8: Interrupt Service Time of Event-Driven Interrupts for 5000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 38685 41094 41706 40368 

Standard Deviation 8303 6131 5355 6857 

Minimum 21824 21888 23168 21536 

Maximum 75392 82560 83424 52608 

Table C.9: Interrupt Service Time of Event-Driven Interrupts for 1000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 31092 33790 33506 29895 

Standard Deviation 10294 10445 9100 10284 

Minimum 21824 22144 23232 22144 

Maximum 69664 90912 92896 86464 
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Figure C.7: Interrupt Service Time for ED-Interrupts [10000 Hz] 
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Figure C.8: Interrupt Service Time for ED-Interrupts [5000 Hz] 
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Figure C.9: Interrupt Service Time for ED-Interrupts [1000 Hz] 

C.1.5. Interrupt Service Time of Timer-Driven Interrupts  

This section describe the tests results Interrupt Service Time of Timer-Driven 

interrupts. In this tests, the RT-interrupt handler sets the interrupt descriptor to be executed 



in the next Timer Interrupt. The TD-Interrupt descriptor generates the response pulse on the 

parallel port. The Timer interrupt frequency was 5000 [Hz].  

Table C.10: Interrupt Service Time of Timer-Driven Interrupts for 1000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 532139 462369 322101 256622 

Standard Deviation 24242 27099 21207 23484 

Minimum 488544 412416 288832 215616 

Maximum 610688 540256 378624 314464 
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Figure C.10: Interrupt Service Time for TD-Interrupts [1000 Hz] 

C.2. Virtual Timer Timeliness 

A periodic RT-application correctness depends on the timeliness of its scheduling. 

MINIX4RT implements periodic processessing using Virtual Timers facilities. Therefore, the 

timeliness of Virtual Timers is an important measurament that evaluates performance of a RTOS. 

These tests were carried out using the same equipment and loads as in Section C.1. 



Table C.11: Virtual Timer Timeliness for 10000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 99524 99524 99730 99732 

Standard Deviation 6773 7371 7079 6528 

Minimum 39968 53760 62880 60320 

Maximum 123712 142848 127264 138688 

Table C.12: Virtual Timer Timeliness for 5000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 199456 199447 199465 199464 

Standard Deviation 5228 9341 3335 1614 

Minimum 167328 154592 155232 183904 

Maximum 233632 246432 242880 213536 

Table C.13: Virtual Timer Timeliness for 1000 [Hz] 

Delay [ns] DKTLoad HDLoad CPULoad NOLoad 

Average 999833 999772 999839 999799 

Standard Deviation 7277 12511 3625 3896 

Minimum 955424 936064 961024 975520 

Maximum 1048064 1041728 1038496 1023712 
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Figure C.11: Virtual Timer Timeliness for 10000 [Hz] 
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Figure C.12: Virtual Timer Timeliness for 5000 [Hz] 
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Figure C.13: Virtual Timer Timeliness for 1000 [Hz] 



C.3. RT-IPC performance 

The equipment used for the tests was: 

− PAP: IBM Model 370C Notebook, Intel® DX4 75MHz on system 

board, AT Bus, Memory   8 MB,  Diskette Drive 1.44MB,  Hard Disk Drive 

540MB 2.5-inch, PCMCIA One Type-III or two Type-II. Software: 

MINIX4RT (Kernel 20122005). 

As in MINIX4RT messages can be transfered in two ways (synchronous or asynchronous) and 

with or without priority inheritance (BPIP), four sets of tests were carried out to evaluate the 

performance of each.  

C.3.1. Synchronous Message Transfers Tests without BPIP and without 

Timeouts 

Table C.14 shows the test results. Listing C.1 shows pseudocode of two programs:  

− FATHER: Makes a loop sending request messages to SON and 

receiving the replies. 

− SON: Makes a loop receiving request messages and sending replies. 

Listing C.1: Pseudocode of Programs to Test Synchronous Message Transfers without BPIP and 

without Timeouts 

father() 
{ 
         ...... 
         before = get_sys_ticks();   /* pseudo code */ 
         for( i = 0; i < 10000; i++) 
   { 
   mrt_rqst(SON,&rqst,MRT_FOREVER); 
   mrt_rcv(SON,&rply,&hrply,MRT_FOREVER);   
   } 
         testime = get_sys_ticks() - before;   /* pseudo code */ 
         ...... 
} 
son() 
{ 
         ...... 
  while(1) 
   { 
   mrt_rcv(FATHER,&rqst,&hrqst,MRT_FOREVER);   
   mrt_reply(FATHER,&rply); 
   } 
         ...... 
} 



Table C.14: Synchronous Message Transfers Test Results without BPIP and without Timeouts 

Clock Freq 1000 ticks/s 

Testing time 1925 ticks 

mrt_arqst 10000 msgs 

mrt_reply 10000 msgs 

Total msg 20000 msgs 

Throughput 10390 msgs/s 

RT-schedulings 20000 scheds 

Time by msg 96 microsec/msg 

C.3.2. Asynchronous Message Transfers Tests without BPIP and without 

Timeouts 

Table C.15 shows the test results. Listing C.2 shows pseudocode of two processes:  

− FATHER: makes two loops. An internal loop sending 10 asynchronous 

request messages to SON. An an external loop receiving replies. 

− SON: makes two loops. An internal loop receiving 10 messages from 

FATHER. An an external loop sending replies. 

Listing C.2: Pseudocode of Programs to Test Asynchronous Message Transfers without BPIP 

and without Timeouts 

father() 
{ 
         ...... 
         before = get_sys_ticks();   /* pseudo code */ 
         for( i = 0; i < 1000; i++) 
   { 
   for( j = 0; j < 10; j++) 
     mrt_arqst(SON,&rqst); 
   mrt_rcv(SON,&rply,&hrply,MRT_FOREVER);   
   } 
         testime = get_sys_ticks() - before;   /* pseudo code */ 
         ...... 
} 
son() 
{ 
         ...... 
  while(1) 
   { 
   for( j = 0; j < 10; j++) 
    mrt_rcv(mrtpid,&rqst,&hrqst,MRT_FOREVER);   
   mrt_reply(mrtpid,&rply); 
   } 
         ...... 
} 



Table C.15: Asynchronous Message Transfers Test Results without BPIP and without Timeouts 

Clock Freq 1000 ticks/s 

Testing time 993 ticks 

mrt_arqst 10000 msgs 

mrt_reply 1000 msgs 

Total msg 11000 msgs 

Throughput 11078 msgs/s 

RT-schedulings 4000 scheds 

Time by msg 90 microsec/msg 

C.3.3. Synchronous Message Transfers Tests with BPIP and without 

Timeouts 

This test was carried out using the programs of C.3.1. Table C.16 shows the test results. 

Table C.16: Synchronous Message Transfers Test Results with BPIP and without Timeouts 

Clock Freq 1000 ticks/s 

Testing time 2164 ticks 

mrt_arqst 10000 msgs 

mrt_reply 10000 msgs 

Total msg 20000 msgs 

Throughput 9242 msgs/s 

RT-schedulings 20000 scheds 

Time by msg 108 microsec/msg 

C.3.4. Asynchronous Message Transfers Tests with BBIP and without 

Timeouts 

This test was carried out using the programs of C.3.2. Table C.17 shows the test results. 

Table C.17: Asynchronous Message Transfers Test Results with BPIP and without Timeouts 

Clock Freq 1000 ticks/s 

Testing time 1008 ticks 

mrt_arqst 10000 msgs 

mrt_reply 1000 msgs 

Total msg 11000 msgs 

Throughput 10912 msgs/s 

RT-schedulings 4000 scheds 

Time by msg 91 microsec/msg 

C.3.5. Request/Receive Tests with BPIP and without Timeouts 

Table C.18 shows the test results. Listing C.3 shows pseudocode of two programs:  



− FATHER: Makes a loop sending request messages to SON and 

receiving the replies using the mrt_rqrcv() kernel call. 

− SON: Makes a loop receiving request messages and sending replies. 

Listing C.3: Pseudocode of Programs to Test Request/Receive with BPIP and without Timeouts 

father() 
{ 
         ...... 
         before = get_sys_ticks();   /* pseudo code */ 
         for( i = 0; i < 10000; i++) 
   { 
   mrt_rqrcv(SON,&rqst,&rply,&hrply,MRT_FOREVER);   
   } 
         testime = get_sys_ticks() - before;   /* pseudo code */ 
         ...... 
} 
son() 
{ 
         ...... 
  while(1) 
   { 
   mrt_rcv(FATHER,&rqst,&hrqst,MRT_FOREVER);   
   mrt_reply(FATHER,&rply); 
   } 
         ...... 
} 

 

Table C.18 Request/Receive Test Results with BPIP and without Timeouts 

Clock Freq 1000 ticks/s 

Testing time 1749 ticks 

mrt_rqrcv 10000 msgs 

mrt_reply 10000 msgs 

Total msg 20000 msgs 

Throughput 11435 msgs/s 

RT-schedulings 20000 scheds 

Time by msg 87 microsec/msg 

C.3.6. Synchronous Message Transfers Tests with BPIP and with Timeouts 

Table C.19 shows the test results. Listing C.4shows pseudocode of two processes: 

Listing C.4: Pseudocode of Programs to Test Synchronous Message Transfers with BPIP and 

with Timeouts 

father() 
{ 
         ...... 
         before = get_sys_ticks();   /* pseudo code */ 
         for( i = 0; i < 10000; i++) 
   { 
   mrt_rqst(SON,&rqst, 60*1000); 



   mrt_rcv(SON,&rply,&hrply,60*1000);   
   } 
         testime = get_sys_ticks() - before;   /* pseudo code */ 
         ...... 
} 
son() 
{ 
         ...... 
  while(1) 
   { 
   mrt_rcv(FATHER,&rqst,&hrqst, 60*1000);   
   mrt_reply(FATHER,&rply); 
   } 
         ...... 
} 

Table C.19: Synchronous Message Transfers Test Results with BPIP and with Timeouts 

Clock Freq 1000 ticks/s 

Testing time 2222 ticks 

mrt_arqst 10000 msgs 

mrt_reply 10000 msgs 

Total msg 20000 msgs 

Throughput 9000 msgs/s 

RT-schedulings 20000 scheds 

Time by msg 111 microsec/msg 

C.3.7. Asynchronous Message Transfers Tests with BBIP and with Timouts 

Table C.20 shows the test results. Listing C.5 shows pseudocode of two processes: 

Listing C.5: Pseudocode of Programs to Test Asynchronous Message Transfers with BPIP and 

with Timeouts 

father() 
{ 
         ...... 
         before = get_sys_ticks();   /* pseudo code */ 
         for( i = 0; i < 1000; i++) 
   { 
   for( j = 0; j < 10; j++) 
     mrt_arqst(SON,&rqst); 
   mrt_rcv(SON,&rply,&hrply,60*1000);   
   } 
         testime = get_sys_ticks() - before;   /* pseudo code */ 
         ...... 
} 
son() 
{ 
         ...... 
  while(1) 
   { 
   for( j = 0; j < 10; j++) 
    mrt_rcv(mrtpid,&rqst,&hrqst,60*1000);   
   mrt_reply(mrtpid,&rply); 
   } 
} 



Table C.20: Asynchronous Message Transfers Test Results with BPIP and without Timouts 

Clock Freq 1000 ticks/s 

Testing time 1071 ticks 

mrt_arqst 10000 msgs 

mrt_reply 1000 msgs 

Total msg 11000 msgs 

Throughput 10270 msgs/s 

RT-schedulings 4000 scheds 

Time by msg 97 microsec/msg 

C.3.8. Test Request/Receive Tests with BPIP and with Timeouts 

Table C.21 shows the test results. Listing C.6 shows pseudocode of two processes: 

Listing C.6: Pseudocode of Programs to Test Synchronous Message Transfers with BPIP and 

with Timeouts 

father() 
{ 
         ...... 
         before = get_sys_ticks();   /* pseudo code */ 
         for( i = 0; i < 10000; i++) 
   { 
   mrt_rqrcv(SON,&rqst,.&rply,&hrply,60*1000);   
   } 
         testime = get_sys_ticks() - before;   /* pseudo code */ 
         ...... 
} 
son() 
{ 
         ...... 
  while(1) 
   { 
   mrt_rcv(FATHER,&rqst,&hrqst, 60*1000);   
   mrt_reply(FATHER,&rply); 
   } 
         ...... 
} 

 

Table C.21: Synchronous Message Transfers Test Results with BPIP and with Timeouts 

Clock Freq 1000 ticks/s 

Testing time 1754 ticks 

mrt_rqrcv 10000 msgs 

mrt_reply 10000 msgs 

Total msg 20000 msgs 

Throughput 11402 msgs/s 

RT-schedulings 20000 scheds 

Time by msg 87 microsec/msg 

 



C.3.9. RT-IPC Tests Results  

Figure C.11 shows a comparison of Message Time for all tests. 
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Figure C.11: Virtual Timer Timeliness for 10000 [Hz] 

Figure C.12 shows a comparison of Message Thoughput for all tests. 
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Figure C.12: Virtual Timer Timeliness for 10000 [Hz] 



Appendix D: SYSTEM DATA STRUCTURES 

D.1. User-Level Data Structures 

The following data structures are used by User-Level programs. 

D.1.1. System-wide Data Structures 

Listing D.1: System-wide Data Structures. 

/*--------------------------- SYSTEM WIDE STATISTICS -------------------------*/ 
struct mrt_sysstat_s { 
 lcounter_t  scheds; /* schedules counter   */ 
 lcounter_t  messages; /* message counter - ID count  */ 
    lcounter_t  interrupts; /* Interrupt counter   */ 
    lcounter_t  ticks;  /* Less Significative tick counter */ 
    lcounter_t  highticks; /* More Significative tick counter  */ 
    lcounter_t  idlemax; /* Maximun idle counter     */ 
    lcounter_t  idlelast; /* last idle counter     */ 
 };  
typedef struct mrt_sysstat_s mrt_sysstat_t; 
 
/*--------------------------- SYSTEM OPERATIONAL VALUES ----------------------*/ 
struct mrt_sysval_s { 
 unsigned int flags;  
 bitmap16_t  virtual_PIC; /* Virtual PIC for MINIX     */ 
 lcounter_t  PIT_latency; /* PIT latency in Hz between two reads */ 
 unsigned  PIT_latch; /* TIMER_FREQ/MRT_tickrate   */ 
 scounter_t  tickrate; /* Real-Time ticks by second  */ 
 scounter_t  harmonic; /* MRT_tickrate = MRT_harmonic x HZ */ 
 scounter_t  refresh; /* Idle refresh tick count   */ 
 }; 
typedef struct mrt_sysval_s mrt_sysval_t; 

D.1.2. Interrupt-related Data Structures 

Listing D.2: Interrupt-related Data Structures. 

/*--------------------------- IRQ SPECIFIED ARGUMENTS  ------------------------*/ 
struct mrt_irqattr_s {  
 lcounter_t  period; /* For Timer Driven period in ticks  */ 
 proc_nbr_t  task;  /* Real Time task number    */ 



 proc_nbr_t  watchdog; /* Interrupt Watch dog process  */ 
 priority_t  priority; /* RT or NRT priority   */ 
 irq_type_t  irqtype; /* IRQ Type     */ 
 char   name[MAXPNAME];/* name of the RT driver   */ 
  };  
typedef struct mrt_irqattr_s mrt_irqattr_t; 
 
/*--------------------------- IRQ STATISTICS ----------------------------------*/ 
struct mrt_irqstat_s {  
 lcounter_t  count;  /* Interrupt counter   */ 
 scounter_t  maxshower; /* Maximum shower value   */ 
 lcounter_t  mdl;  /* Missed Deadlines    */ 
 lcounter_t  timestamp; /* Last Interrupt timestamp     */ 
 lcounter_t  maxlat; /* Maximun Interrupt latency PIT Hz  */ 
 int   reenter; /* Maximun reentrancy level     */ 
  };  
typedef struct mrt_irqstat_s mrt_irqstat_t; 
 
/*--------------------------- IRQ INTERNAL ------------------------------------*/ 
struct mrt_irqint_s  {  
 int   irq;  /* irq number     */ 
 scounter_t  harmonic; /* MRT_sv.harmonic when mrtode starts */ 
 int   vtimer; /* VT assigned for Timer Driven IRQs */ 
 int   flags;  /* MRT_ENQUEUED, MRT_TRIGGEREG  */ 
  };  
typedef struct mrt_irqint_s mrt_irqint_t; 
 

D.1.3. Process-related Data Structures 

Listing D.3: Process-related Data Structures. 

struct mrtpid_s { 
 pid_t   pid;   /* request destination PID  */ 
 int   p_nr;   /* request destination number */ 
  }; 
typedef struct mrtpid_s mrtpid_t; 
 
struct mrt_pattr_s { 
 int    flags;   /* Real Time Flags    */ 
  priority_t  baseprty;  /* Real Time BASE priority  */ 
  lcounter_t  period;  /* period in RT-ticks  */ 
 scounter_t  limit;   /* max number of process 
schedulings*/ 
   lcounter_t  deadline;    /* process deadline   */ 
 int    watchdog;     /* Watchdog process   */ 
 scounter_t  mq_size;  /* Message Queue Size  */ 
unsigned int  mq_flags;  /* Message Queue Policy Flags */ 
 }; 
typedef struct mrt_pattr_s  mrt_pattr_t; 
 
struct mrt_pstat_s { 
   lcounter_t  scheds;  /* number of schedules   */ 
   lcounter_t  mdl;   /* Missed DeadLines    */ 
   lcounter_t  timestamp;  /* Last schedule timestamp in ticks*/ 
   lcounter_t  maxlat;  /* Maximun latency in timer Hz  */ 
   scounter_t  minlax;  /* Minimun laxity in timer Hz  */ 
   lcounter_t  msgsent;  /* Messages sent by the process  */ 
   lcounter_t  msgrcvd;  /* Messages received by the process*/ 
 }; 
typedef struct mrt_pstat_s mrt_pstat_t; 
 
struct mrt_pint_s { 
 int   vt;   /* VT timer ID for periodic process*/ 
 priority_t  priority;  /* Real Time EFECTIVE priority */ 
 scounter_t  mqID;   /* Message Queue ID   */ 



 int   p_nr;   /* process slot    */ 
 }; 
typedef struct mrt_pint_s mrt_pint_t; 
 

D.1.4. Kernel Calls-related Data Structures  

Listing D.4: Kernel Calls-related Data Structures. 

struct mrt_rqst_s { 
  int   p_nr;   /* request destination number */ 
   pid_t   pid;   /* request destination PID  */ 
   mrt_msg_t  *msg;   /* Message to be sent  */ 
   lcounter_t  timeout;  /* rqst timeout in ticks   */ 
 }; 
typedef struct mrt_rqst_s mrt_rqst_t; 
 
struct mrt_rply_s { 
   int   p_nr;   /* request destination number */ 
   pid_t   pid;   /* request destination PID  */  
  mrt_msg_t  *msg;   /* Message to be sent 
 */ 
 }; 
typedef struct mrt_rply_s mrt_rply_t; 
typedef struct mrt_rply_s mrt_sign_t; 
 
struct mrt_rcv_s { 
   int   p_nr;   /* requested source proc number */ 
   pid_t   pid;   /* requested source proc PID */  
  mrt_msg_t  *msg;   /* pointer to the msg buffer 
 */ 
 mrt_mhdr_t   *hdr;   /* pointer to the msg header  buf*/ 
 lcounter_t  timeout;  /* receive timeout in ticks  */ 
 }; 
typedef struct mrt_rcv_s mrt_rcv_t; 
 
struct mrt_uprq_s { 
   int   p_nr;   /* request destination number */ 
   pid_t   pid;   /* request destination PID  */  
  mrt_msg_t  *msg;   /* pointer to the buffer for 
the msg*/ 
 int   priority;  /* message RT priority  */ 
 lcounter_t  deadline;     /* process deadline   */ 
 lcounter_t  laxity;  /* process laxity in timer Hz  */ 
  }; 
typedef struct mrt_uprq_s mrt_uprq_t; 

D.1.5. Message-related Data Structures  

Listing D.5: Message-related Data Structures. 

struct mrt_mhdr_s{ 
 mrtpid_t  src;  
 mrtpid_t   dst;  /* destination process   */ 
 unsigned int  mtype;  /* what kind of message is it  */ 
 lcounter_t  mid;  /* message ID     */ 
 scounter_t  seqno;  /* msg sequence nbr    */ 
 lcounter_t   tstamp; /* sent timestamp    */ 
 priority_t  priority; /* sender's priority   */ 
 lcounter_t  deadline; /* sender's deadline   */
  
 lcounter_t  laxity; /* sender's laxity    */ 



 }; 
typedef struct mrt_mhdr_s mrt_mhdr_t; 
 
 
union mrt_msg_u { 
 mess_1 m_m1; 
 mess_2 m_m2; 
 mess_3 m_m3; 
 mess_4 m_m4; 
 mess_5 m_m5; 
 mess_6 m_m6; 
 mess_7 m_m7; 
 } ; 
 
typedef union mrt_msg_u mrt_msg_t; 
 
/* Real-Time Message Structure */ 
struct mrt_msgd_s { 
 mrt_mhdr_t   hdr; 
 mrt_msg_t      m_u; 
} ; 
typedef struct mrt_msgd_s mrt_msgd_t; 

D.2. Kernel-Level Data Structures 

The following data structures are used by Kernel-Level programs. 

D.2.1. System-wide Data Structures 

Listing D.6: System-wide Data Structures. 

 struct MRT_sysstat_s { 
 lcounter_t  scheds; /* schedules counter   */ 
 lcounter_t  messages; /* message counter - ID count  */ 
volatile lcounter_t  interrupts; /* Interrupt counter   */ 
volatile lcounter_t  ticks;  /* Less Significative tick counter */ 
volatile lcounter_t  highticks; /* More Significative tick counter  */ 
   lcounter_t  idlemax; /* idle maximum value   */ 
 lcounter_t  idlelast; /* last counter    */ 
 };  
typedef struct MRT_sysstat_s MRT_sysstat_t; 
 
typedef struct { 
 /* DON'T MOVE flags FROM THE FIRST POSITION IN THE STRUCT !! */  
 unsigned int flags; /* MRT_RTMODE 0x0001 RT processing mode  */ 
    /* MRT_DBG232  0x0002 Flag to allow printf232  */ 
    /* MRT_LATENCY 0x0004 Flag to allow latency comp. */ 
    /* MRT_MINIXCLI 0x0008 MINIX virtual IF 1=CLI    */ 
    /* MRT_NEWINT  0x0010 an int has occurs dur int 
flush*/ 
    /* MRT_FLUSHLCK    0x0020 set when MRT_flush_int runs*/ 
    /* MRT_NOFLUSH 0x0040 to avoid MRT_irq_flush */ 
    /* MRT_NEEDSCHED 0x0080 to invoke the scheduler  */ 
    /* MRT_RTSCHED 0x0100 The current proc has been */ 
    /* selected by thge RT scheduler MRT_pick_proc */ 
 bitmap16_t  virtual_PIC; /* Virtual PIC for MINIX     */ 
 lcounter_t  PIT_latency; /* PIT latency in Hz between two reads  */ 
 unsigned  PIT_latch;  /* TIMER_FREQ/MRT_tickrate  */ 
 scounter_t  tickrate;  /* Real-Time ticks by second  */ 
 scounter_t  harmonic;  /* tickrate = MRT_sv.harmonic * HZ */ 



 scounter_t  refresh;   /* ticks to refresh idlerfsh  */ 
 int   MINIX_soft;  /* MINIX CLOCK Software interrupt    */ 
 priority_t  prtylvl;  /* Current syetem priority level  */ 
 lcounter_t  idlecount;  /* idle loop counter   */ 
 scounter_t  idlerfsh;   /* idle refresh loop counter  */ 
 MRT_sysstat_ t counter;  /* system statistics    */ 
 } MRT_sysval_t; 

D.2.2. Interrupt-related Data Structures 

Listing D.7: Interrupt-related Data Structures. 

struct MRT_irqd_s { 
 /*-------------------- STATISTICAL FIELDS   ----------------------------*/  
 lcounter_t  count; /* Interrupt counter    */ 
 scounter_t  maxshower; /* Maximun shower value   */ 
 lcounter_t  mdl;  /* Missed DeadLines    */ 
 lcounter_t  timestamp; /* Last Interrupt timestamp     */ 
 lcounter_t  maxlat; /* Maximun Interrupt latency in timer hz */ 
 int   reenter; /* maximun reentrancy level  */ 
 /*-------------------- INTERNAL USE  FIELDS   --------------------------*/ 
 int   irq;  /* IRQ number     */ 
 scounter_t  harmonic; /* Harmonic when the period was set  */ 
 MRT_vtimer_t  *pvt;  /* VT assigned for Timer Driven IRQs  */ 
 int   flags;  /* MRT_ENQUEUED, MRT_TRIGGERED  */ 
 lcounter_t  latency; /* Interrupt latency in timer hz  */ 
 scounter_t  shower; /* shower counter since last period */ 
 scounter_t  before; /* TIC counter in MRT_IRQ_dispatch  */ 
 struct MRT_irqd_s  *next;  /* next irq desc in the priority list */ 
 struct MRT_irqd_s  *prev;   /* prev irq desc in the priority list */ 
 /*-------------------- FUNCTIONAL FIELDS    ----------------------------*/  
 irq_handler_t  nrthandler; /* Non real time handler   */ 
 irq_handler_t  rthandler; /* real time handler   */ 
 lcounter_t  period; /* For Timer Driven period in ticks  */ 
 proc_nbr_t  task;  /* Real Time task number    */ 
 proc_nbr_t  watchdog; /* Interrupt watchdog process  */ 
 priority_t  priority; /* RT or NRT priority   */ 
 irq_type_t  irqtype; /* MRT_RTIRQ | MRT_TDIRQ | MRT_SOFTIRQ  */ 
 char   name[MAXPNAME];/* name of the RT driver   */ 
}; 
typedef struct MRT_irqd_s MRT_irqd_t; 
 
typedef struct { 
 MRT_irqd_t   *first; /* Queue head     */ 
 MRT_irqd_t   *last;  /* Queue tail     */ 
 int    inQ;  /* nbr of irqs descriptors in queue */ 
 int    pending; /* number of pend irq_d in queue  */ 
 } MRT_irqQ_t; 
 
typedef struct { 
 /* DON'T MOVE bitmap FROM THE FIRST POSITION IN THE STRUCT !! */ 
 bitmap16_t  bitmap; /* Priority IRQ bitmap   */ 
 MRT_irqQ_t  irqQ[MRT_NR_PRTY];/* IRQs Queues    */ 
 } MRT_iQ_t; 
 
typedef struct { 
 MRT_iQ_t  iQ; 
 bitmap16_t  hard_use; /* bitmap of  in-use hard interrupts  */ 
 bitmap16_t  soft_use; /* bitmap of in-use soft interrupts  */ 
 MRT_irqd_t   irqtab[NR_IRQ_VECTORS+NR_IRQ_SOFT];/*IRQ desc table  */ 
 bitmap16_t  mask[NR_IRQ_VECTORS];/* PIC masks for each priority */ 
  } MRT_sysirq_t; 
 



D.2.3. Process-related Data Structures 

Listing D.8: Process-related Data Structures. 

 
typedef struct { 
 int    flags;  /* Real Time Flags    */ 
 priority_t  priority; /* EFECTIVE Real Time priority  */ 
 priority_t  baseprty; /* BASE Real Time priority   */ 
   lcounter_t  period; /* period in RT-ticks   */ 
 scounter_t  limit;  /* maximun number of process scheds   */ 
   lcounter_t  deadline;    /* process deadline    */ 
 pid_t    watchdog;    /* Watchdog process    */ 
 } rtattrib_t; 
 
typedef struct { 
   lcounter_t  scheds; /* number of RT schedules   */ 
   lcounter_t  mdl;  /* Missed DeadLines    */ 
   lcounter_t  timestamp; /* Last schedule timestamp in ticks  */ 
   lcounter_t  maxlat; /* Maximun latency in timer Hz   */ 
   lcounter_t  minlax; /* Minimun laxity in timer Hz   */ 
   lcounter_t  msgsent; /* messages sent by the process  */ 
   lcounter_t  msgrcvd; /* messages received by the process  */ 
 } rtstats_t; 
 
 
struct proc { 
  struct stackframe_s p_reg; /* process' registers saved in stack frame  */ 
 
#if (CHIP == INTEL) 
  reg_t p_ldt_sel;   /* selector in gdt giving ldt base and limit */ 
  struct segdesc_s p_ldt[2]; /* local descriptors for code and data   */ 
     /* 2 is LDT_SIZE - avoid include protect.h  */ 
#endif /* (CHIP == INTEL) */ 
 
#if (CHIP == M68000) 
  reg_t p_splow;   /* lowest observed stack value    */ 
  int p_trap;    /* trap type (only low byte)    */ 
#if (SHADOWING == 0) 
  char *p_crp;   /* mmu table pointer (really struct _rpr *)  */ 
#else 
  phys_clicks p_shadow;  /* set if shadowed process image   */ 
  int align;    /* make the struct size a multiple of 4  */ 
#endif 
  int p_nflips;   /* statistics      */ 
  char p_physio;   /* cannot be (un)shadowed now if set   */ 
#if defined(FPP) 
  struct fsave p_fsave;  /* FPP state frame and registers   */ 
  int align2;    /* make the struct size a multiple of 4  */ 
#endif 
#endif /* (CHIP == M68000) */ 
 
  reg_t *p_stguard;   /* stack guard word     */ 
 
  int p_nr;    /* number of this process (for fast access)  */ 
 
  int p_int_blocked;  /* nonzero if int msg blocked by busy task  */ 
  int p_int_held;   /* nonzero if int msg held by busy syscall */ 
  struct proc *p_nextheld;  /* next in chain of held-up int processes  */ 
 
  int p_flags;   /* P_SLOT_FREE, SENDING, RECEIVING, etc.  */ 
  struct mem_map p_map[NR_SEGS]; /* memory map      */ 
  pid_t p_pid;   /* process id passed in from MM    */ 
 
  clock_t user_time;  /* user time in ticks     */ 
  clock_t sys_time;   /* sys time in ticks     */ 



  clock_t child_utime;  /* cumulative user time of children   */ 
  clock_t child_stime;  /* cumulative sys time of children   */ 
  clock_t p_alarm;   /* time of next alarm in ticks, or 0   */ 
 
  struct proc *p_callerq;  /* head of list of procs wishing to send  */ 
  struct proc *p_sendlink;  /* link to next proc wishing to send   */ 
  message *p_messbuf;  /* pointer to message buffer    */ 
  int p_getfrom;   /* from whom does process want to receive?  */ 
  int p_sendto; 
 
  struct proc *p_nextready; /* pointer to next ready process   */ 
  sigset_t p_pending;  /* bit map for pending signals    */ 
  unsigned p_pendcount;  /* count of pending and unfinished signals  */ 
 
  char p_name[16];   /* name of the process     */ 
 
#ifdef MRT 
  rtattrib_t  rt;  /* Real Time Attributes     */ 
  rtstats_t  st;  /* Real Time Statistics      */ 
 
  MRT_msgQ_t   *pmq;  /* Real Time Message Queue    */ 
  MRT_vtimer_t  *pvt;  /* virtual timer ID for periodic process   */ 
 
  int    getfrom; /* from whom does RT-process want to receive? */ 
  int    sendto; /* to whom does RT-process want to send?  */ 
 
  mrt_msg_t  *pmsg;  /* pointer to message buffer    */ 
  mrt_mhdr_t  *pmhdr; /* pointer to message header buffer  */ 
 
  struct proc *pnextrdy;   /*  next ready process in the priority queue  */ 
  struct proc *pprevrdy;   /*  previous ready process in the priority queue 
*/ 
 
#endif /* MRT */ 
 
}; 
typedef struct proc MRT_proc_t; 
 
typedef struct { 
 struct proc   *first; /* Queue head     */ 
 struct proc  *last;  /* Queue tail     */ 
 int    inQ;  /* Current number of process in queue  */  
 int   maxinQ; /* Maximun number of process enqueued */ 
 } MRT_procL_t; 
 
typedef struct { 
 bitmap16_t  bitmap; /* bitmap of priority queues   */ 
 MRT_procL_t  procL[MRT_NR_PRTY]; /* Array of priority queues */ 
 } MRT_procQ_t; 
 
typedef    struct  { 
 MRT_procQ_t  rdyQ; 
 }MRT_sysproc_t; 

D.2.4. Message-related Data Structures  

Listing D.9: Message-related Data Structures. 

/* Real-Time Message Queue Entry */ 
struct MRT_mqe_s { 
 mrt_msgd_t  msgd; 
 int   index; 
 MRT_vtimer_t  *pvt;  /* VT for timeouts    */ 
 struct MRT_mqe_s   *next; 
 struct MRT_mqe_s   *prev; 



 }; 
typedef struct MRT_mqe_s MRT_mqe_t; 
 
struct MRT_mpool_struct { 
 MRT_mqe_t  mqe[NR_MESSAGES]; 
 }; 
typedef struct MRT_mpool_struct MRT_mpool_t; 
 
typedef struct { 
 bitmap16_t  bitmap; 
 MRT_mqe_t  *first[MRT_NR_PRTY];/* pointer to the first msgd   */ 
 MRT_mqe_t  *last[MRT_NR_PRTY]; /* pointer to the last msgd    */ 
 } MRT_mQ_t; 
 
/* Real-Time Message Queue */ 
struct MRT_msgq_s { 
 int   index;  /* message queue ID (for quick search) */ 
 int   size;  /* message queue size   */ 
 int   flags;  /* message queue policy flags  */ 
 int   inQ;  /* # messages enqueued    */ 
 int   maxinQ;  /* maximun # of messages enqueued */ 
 int   owner;  /* msg queue owner    */ 
 long   delivered; /* total #  of msgs delivered   */ 
 long   enqueued; /* total # of msgs enqueued  */ 
 MRT_vtimer_t  *pvt;  /* VT assigned for Timer Driven IRQs  */ 
 MRT_mQ_t  mQ; 
}; 
typedef struct MRT_msgq_s MRT_msgQ_t; 
 
typedef struct { 
 MRT_mpool_t mpool;   /* message pool    */ 
 MRT_msgQ_t  mfreeQ;  /* free message list    */ 
 MRT_msgQ_t  msgQ[NR_MSGQ];  /* message queues    */ 
  } MRT_sysmsg_t; 

  



GLOSARY 

Context The minimum information that is needed in order to save a 

currently executing process so that it can be resumed. 

Context switching The process of saving and restoring sufficient information 

for a Real-Time process so that it can be resumed after 

being interrupted. 

CPU Central Processing Unit. 

CPU utilization A measure of the percentage of non Idle processing. 

Critical region/section Code that interacts with a serially reusable resource. 

Deadline A deadline is a point in time at which some operation must 

be completed.  

Deadline Monotonic Scheduling Scheduling policy in Real-Time systems that meets a 

periodic process's deadline that does not equal its period. 

Deadlock A catastrophic situation that can arise when processes are 

competing forthe same set of two or more serially reusable 

resources. 

Default The value or status that is assumed unless otherwise 

specified. 

Device Driver A program that  translate Operating System mandated 

function calls into device specific calls 



Direct Memory Access (DMA) A scheme in which access to the computer's memory is 

afforded to other devices in the system without the 

intervention of the CPU. 

Dynamic Real-time Scheduling Algorithm Scheduling algorithm that uses deadlines to assign priorities 

to processes throughout execution 

Earliest-Deadline-First (EDF) Scheduling policy that gives a processor to the process with 

the closest deadline. 

Embedded System A computing machine contained in a device whose 

purposeis not to be a computer. For example, the computers 

in automobiles and household appliances are embedded 

computers. Embedded computers use embedded software, 

which integrates an operating system with specific drivers 

and application software. Their design often requires special 

software-hardware codesign methods for speed, low power, 

low cost, high testability, or other special requirements. 

Event Any occurrence that results in a change in the state of a 

system. 

Exception Error or other special condition that arises during program 

execution. 

Exception handler Code used to process exceptions. 

First-In-First-Out (FIFO) Nonpreemptive scheduling policy that dispatches processes 

according to their arrival time in the ready queue 

Hard Real-Time Scheduling Scheduling policy that ensures processes meet their 

deadlines. 

Hard Real-Time System A Real-Time system in which missing even one deadline 

results in system failure. 

Host A computer that is the one responsible for performing a 

certain computation or function. 



Input and Output (I/O) Input/output, or I/O, is the collection of interfaces that 

different functional units (sub-systems) of an information 

processing system use to communicate with each other, or 

the signals (information) sent through those interfaces. 

Interprocess Communications (IPC) IPC is a set of techniques for the exchange of data between 

two or more threads in one or more processes.  

Interrupt An input to a processor that signals the occurrence of an 

asynchronous event. The processor's response to an 

interrupt is to save the current machine state and execute a 

predefined subprogram. The subprogram restores the 

machine state on exit and the processor continues in the 

original program. 

Interrupt Controller A device that provides additional interrupt handling 

capability to a CPU. 

Interrupt Handler A predefined subprogram that is executed when an interrupt 

occurs. The handler can perform input or output, save data, 

update pointers, or notify other processes of the event. The 

handler must return to the interrupted program with the 

machine state unchanged. 

Interrupt Latency The delay between when an interrupt occurs and when 

theCPU begins reacting to it. 

Interrupt Service Routine (ISR) Piece of code that your processor executes when an external 

event, such as a timer, occurs. 

Kernel The lowest portion of the operating system that provides for 

task scheduling, dispatching, and interprocess 

communication. 

Kernel Calls A kernel call is the mechanism used by an application 

program to request service from the operating system kernel 

Latency (process scheduling) Time a Process spends in a system mode before it is 

serviced. 



Laxity Value determined by subtracting the sum of the current time 

and a process's remaining execution time from the process's 

deadline. This value decreases as a process nears its 

deadline. 

Least Slack First It is a scheduling algorithm. It assigns priority based on the 

slack time of a process. 

Library A set of precompiled routines that may be linked with a 

program at compile time or loaded at load time or 

dynamically at run time. 

Link The portion of the compilation process in which separate 

modules are placed together and cross-module references 

resolved. 

Linker A computer program that takes one or more object files, 

assembles them into blocks that are to fit into particular 

regions in memory, and resolves all external (and possibly 

internal) references to other segments of a program and to 

libraries of precompiled program units. 

Make Utility to maintain, update, and regenerate related programs 

and files. The commands to be executed are placed in a 

makefile. 

Makefiles Files that contain a collection of commands that allow 

groups of programs, object files, libraries, and so on, to 

interact. Makefiles are executed by your development 

system's make utility. 

Message Queue An interprocess communication facility consisting of a 

memory location and at least two basic operations 

send/receivethat can be performed on it. 

Microkernel A microkernel is a type of kernel which consists of defining 

a very simple abstraction over the hardware, with a set of 

primitives or system calls to implement minimal OS 

services such as thread management, address spaces and 



interprocess communication 

Multitasking The operation by which a microprocessor schedules the 

handling of multiple tasks or processes. In generated code, 

the number of tasks is equal to the number of sample times 

in your model.  

Multitasking Operating System An operating system that provides sufficient functionality to 

allow multiple programs to run on a single processor so that 

the illusion of simultaneity is created. Contrast with 

multiprocessing operating system. 

Operating System A set of programs that manages the operations of a 

computer.It oversees the interaction between the hardware 

and the software and providesa set of services to system 

users. 

Policy Policy is a describing or proscribing set of rules and actions 

that encompass an ideal goal 

Predictability A system whose timing behavior is always within an 

acceptable range 

Preempt A condition that occurs when a higher-priority process 

interrupts a lower priority priority. 

Preemptive Priority System A system that uses preemption schemes instead of round-

robin or first-come, first-served scheduling. 

Primitives Primitives are functions provided by the Operating 

System/Kernel as basic building blocks  

Priority Measure of a process's or thread's importance used to 

determine the order and duration of execution. 

Priority Inversion A condition that occurs because a lower priority process 

executes when a higher priority process is ready to run. 



Process The context, consisting of allocated memory, open files, 

network connections,in which an operating system places a 

running program. 

Process Control Block/Process Descriptor An area of memory containing information about the 

context of an executing program. Although the process 

control block is primarily a software mechanism used by the 

operating system for the control of system resources, some 

computers use a fixed set of process control blocks as a 

mechanism to hold the context of an interrupted process. 

Race Condition A situation where multiple processes access and 

manipulates hared data with the outcome dependent on the 

relative timing of these processes. 

Rate-Monotonic Scheduling Is an optimal preemptive static-priority scheduling 

algorithm used in Real-Time operating systems 

Ready State In the process control block model, the state of those 

processes that are ready to run, but are not running. 

Real-Time Refers to systems whose correctness depends not only on 

outputs bu tthe timeliness of those outputs. Failure to meet 

one or more of the deadlines can result in system failure. 

Real-Time Computing Support for environments in which response time to an 

event must occur within a predetermined amount of time. 

Real-time systems may be categorized into hard, firm and, 

soft real time. 

Real-Time System Computer that processes real-world events as they happen, 

under the constraint of a real-time clock, and that can 

implement algorithms in dedicated hardware. Examples 

include mobile telephones, test and measurement devices, 

and avionic and automotive control systems. 

Response Time The time between the presentation of a set of inputs to a 

software system and the appearance of all the associated 



outputs. 

Round-Robin Scheduling Scheduling policy that permits each ready process to 

execute for at most one quantum per round. After the last 

process in the queue has executed once, the scheduler 

begins a new round by scheduling the first process in the 

queue, 

Schedualability Analysis The compile-time prediction of execution-time 

performance. 

Scheduler The part of the kernel that determines which task will run. 

Scheduling policy The way that the scheduler uses to determine which task 

runs by following a scheduling algorithm  

Semaphore A special variable or object type used for protecting critical 

regions. 

Server A process used to manage multiple requests to a serially 

reusable resource. 

Stack A first-in, last-out data structure handle by some CPU 

instructions. 

Synchronous An operation or operations that synchronize processes. 

System Calls  A system call is the mechanism used by an application 

program to request service from the operating system 

System Implementation A phase of the software development life cycle during 

which a software product is integrated into its operational 

environment. 

Task A special kind of process in MINIX that treats with devices 

Throughput A measure of the number of operation or transactions per 

second that can be processed. 



Time-Sharing Time-sharing refers to sharing a computing resource among 

many users by multitasking. 

Timeslice Amount of time that a process is allowed to run on a 

processor before the process is preempted. 

Timing Constraint Time period during which a process (or subset of a process's 

instructions) must complete 

Trap Internal interrupt caused by the execution of a certain 

instruction. 

User Space Memory not required by the operating system. 

Watchdog A process that is scheduled or signaled when something in 

the system behavior is wrong. 

 


