
Simplifying and Solving Qualified Types
for Principal Type Specialisation

Pablo E. Mart́ınez López and Hernán Badenes

Laboratorio de Investigación y Formación en Informática Avanzada
Universidad Nacional de La Plata
CC 11, 1900, La Plata, Argentina

{fidel,hernan}@lifia.info.unlp.edu.ar

Abstract. Principal Type Specialisation is an approach to Type Spe-
cialisation designed to generate polymorphic residual programs and giv-
ing chance of modular specialisation. Principality is obtained by using a
system of qualified types (types enriched with predicates, or constraints)
to defer some decisions until link-time, when information from the whole
program has been gathered.
In order to complete specialisations, it is necessary to provide “solutions”
for the predicates, together with evidence that they hold. In this paper we
address the problem of simplifying and solving predicates produced by
principal type specialisation. We give a formalization of the simplification
and solving problems.
The simplification process (essentially the task of removing redundant
predicates) generates substitutions and conversions as tools for soundly
modifying terms and types accordingly. We study the basic properties
of simplifications in an abstract way, and implement one simplification
relation. The process of solving predicates is then defined in terms of
simplification and both notions are incorporated to the specialisation
process.

1 Introduction

Program specialisation is a way to generate programs automatically: a given
(source) program is used to produce one or more versions of it (the residual pro-
grams), each specialised to particular data. The classic example is the recursive
power function, which, given, for example, that the exponent is known to be 3,
can be specialised to the non-recursive residual version λx → x ∗ (x ∗ x), and
similarly for other exponents.

There are different approaches to specialisation, Partial Evaluation [1] be-
ing the most popular, well-known and well-engineered. Partial evaluation spe-
cialises programs by a form of generalized evaluation: expressions which depend
on known data are replaced by the result of computing them.

A good way to determine the limits of a specialisation method is to specialise
a self-interpreter with it for a given object program and compare the residual
program with the object one: if they are essentially the same, we can be confident

that no limits exist – we say that the specialisation is optimal. Traditional partial
evaluation can achieve optimality in the case of interpreters written in untyped
–or dynamically typed– languages. For typed interpreters, the residual code will
contain type information coming from the representation of programs in the
interpreter: optimality is lost. This problem was stated by Neil Jones in 1987 as
one of the open problems in the partial evaluation field [2]. Although recently
it has been argued that there are ways of reading this situation that avoid the
problem [3] we stick to the tradition here.

Type Specialisation [4] was introduced by John Hughes in 1996 as a solu-
tion for optimal specialisation of typed interpreters. The basic idea behind type
specialisation is to move static information to the type, thus specialising both
the source term and source type to residual term and residual type. The origi-
nal formulation of type specialisation [4] has some problems, one of them being
that there are rules that are not completely syntax directed; so, for some source
terms, several different unrelated specialisations can be produced. Another prob-
lem is related with the treatment of polyvariance –the ability of an expression to
produce more than one residual in the same specialisation– and its interaction
with dynamic recursion.

Principal Type Specialisation [5] is an approach to type specialisation which
exhibits the principality property –it is possible to derive a ‘more general spe-
cialisation’ for every term– and it was designed to solve some of the problem of
classic type specialisation. Further technical details are given in the next section,
as they are needed to understand our work.

Our contribution is to formalize some of the postprocessing phases of Prin-
cipal Type Specialisation and to instantiate them by implementing simple algo-
rithms for simplifying and solving constraints generated (see section 2). In this
regard, this paper can be seen as a follow-up of [5].

This paper is structured as follows. In section 2 we make a brief presenta-
tion of Principal Type Specialisation, introducing the technical matter needed
as background and motivating our work. Then, in section 3 we describe the first
half of our work: the simplification of predicates (constraints), specifying what a
simplification relation is, implementing a simplification relation for our language,
and introducing this concept into the type specialisation process. Section 4 ad-
dresses our main problem, the solving of constraints. We specify what a solving
is (in terms of simplifications), and describe how to perform it for specialisa-
tions. Then we give a simple heuristic for solving the constraints presented in
the language we study – it is important to know that it is only an exemplary
algorithm; the search for more powerful alternatives is subject of future work.
Finally we give some lines of future and related work and the conclusions in
sections 5 and 6.

2 Principal Type Specialisation

In this section we mention some essential features of Principal Type Speciali-
sation approach. However, we refer the reader to the original work of Mart́ınez

López and Hughes [5] to get further details, as a strongly recommended intro-
duction to fully understand this work.

The source language specialised is a λ-calculus enriched with arithmetic and
boolean constants and operations, tuples, let-in, if -then-else and case con-
structs. Source expressions are annotated with S or D to indicate static (resp.
dynamic) expressions, specifying that the information must (resp. must not)
be moved from the term into the type. This information is given as input to
the specialiser, and might have been provided by the user or by some kind of
binding-time analysis.

The language of expressions includes a special annotation for lifting a static
value into a dynamic one: lift. It also allows the use of polyvariance – i.e. the
ability to obtain different versions of the same term in the same specialisation
(e.g. for distinct arguments) – by wrapping polyvariant expressions with the con-
struct poly, and making different specialisations of them with the construction
spec, each time they are used. Several extensions to this source language are also
studied (as recursion or datatypes), but we limit our work to those mentioned.

The principality property is obtained by defining the specialisation on a sys-
tem of qualified types [6] as residual type language: residual types are enriched
with predicates constraining quantification of type variables. These predicates
are generated during specialisation and specify some conditions the terms and
types should hold in their final form. Residual terms are typed with schemes
(qualified types with quantification for type variables), denoted ∀α.∆ ⇒ τ ′,
where α is a list of variables, ∆ a list of predicates and τ ′ a residual type. Resid-
ual types definition contains, besides the usual constructions, an infinite set of
one-point types, denoted n̂ or b̂ for each integer or boolean value, meaning that
the term’s value is known at specialisation time to be n (resp. b).

During specialisation, predicates (denoted δ) are generated; for example:
IsInt t (meaning t must resolve to some one-point integer), t := t′ ⊗ t′′ (forc-
ing t to be the result of the arithmetic operation with operands t′ and t′′) and
IsMG σ σ′ (constraining scheme σ to be ‘more general’ than σ′, according to an
ordering ≥ defined in terms of instantiation and a relation between predicates
called entailment – prescribed by the Theory of Qualified Types). A language
of conversions C is defined as special terms which transform expressions of one
type to expressions of another (less general), denoted C : σ ≥ σ′. They are
defined in terms of ≥, and can be seen as the semantics of IsMG predicates.

Predicates are labelled with evidence variables, in the form h : δ. When
predicates are proved, those variables are replaced by some evidence values,
(including integer constants n and conversions C, as well as evidence variables)
and this evidence can fill holes or modify the shape of terms.

In specialisation judgements, predicates are stored in the context, as a pred-
icate assignment : a list of predicates hi : δi. It is desirable when specialising a
term to obtain as final result a program without evidence variables nor predi-
cates, informally meaning that it has been completely specialised.

A word about notation: following [6], we use some abbreviations to im-
prove readability (at least once conventions are understood): for instance, if

∆ = δ1 . . . δn and h = h1 . . . hn, we denote the predicate assignment h1 : δ1, . . . ,
hn : δn by h : ∆. There are a few additional abbreviations, which we hope are
intuitive enough to omit here – for the full details refer to [5] or [6].

Specialisation judgements are denoted h : ∆ | Γ
P̀

e : τ ↪→ e′ : σ, meaning
that the source term e of type τ can be specialised to the residual program e′ of
type σ, if its free variables specialise as Γ asserts (a list of specialisation assign-
ments of the form x : τ ↪→ x′ : τ ′) and if the predicates of ∆ hold (proved by
unknown evidence, represented by h). Γ is used in specialisations in a similar way
as type assignments are in any Hindley-Milner typing procedure. We illustrate
some of the concepts mentioned in this section in the following example.

Example 1. The following is a simple specialisation:

h : IsInt t | ∅
P̀

λDx.lift x : IntS →D IntD ↪→ λx′.h : t→ Int

Note the correspondence of static and dynamic annotation between the source
term and its type; and the way unknowns are denoted in the residual expression
as evidence variables (in the term) and type variables (in its type), and related
by the predicate in the context.

The specialisation process is specified by a system of rules, called P (it stands
for Principality, in contrast to the Original system O of [4]), later modified to
obtain the syntax-directed system S, and finally implemented algorithmically by
the system W. In this paper we shall include simplification and solving to the
specialisation process by adding new rules to systems P and W.

3 Simplification

As we have said, specialisation generates predicates which restrict the scope of
quantification of type variables; and those predicates are labelled with evidence
variables. We motivate the need of simplifying them with a simple example.

Example 2. Recall example 1, where the function that lifts static values into
dynamic ones is specialised. If this expression were used within a context where
the type variable t got unified with some one-point type, say 3̂, the predicate
in the context would become h : IsInt 3̂: and then the value 3 could be used to
prove this predicate. Using that evidence in the program would give the desired
term λx.3. But the predicate in the context must still be eliminated; this is one
of the tasks simplification must perform.

The rest of this section will be devoted to the formalization of the concept
of simplification, and the implementation of a simplification algorithm capable
of handling the constraints produced by the principal type specialiser.

3.1 Specifying Simplifications

To formalize the notion of simplification we define it in an abstract way as
a relation based on the entailment relation `̀ , with no concern about what
simplifications can actually perform.

Definition 3 (Simplification). A relation D between two predicate assign-
ments h : ∆ and h′ : ∆′, with a substitution S and a conversion C as witnesses,
is called a simplification, and denoted

S;C | h : ∆ D h′ : ∆′

if it holds that: (i) h′ : ∆′ `̀ v : S∆ , (ii) S∆ `̀ ∆′ , (iii) C = h←v.

The first condition states that the resulting (simplified) assignment is strong
enough to proof (entail) the instantiation by S of the original assignment, con-
structing some evidence v; the second states that the instantiation of the first
predicate assignment can prove the simplified one. In some way, the double
entailment ensures that no arbitrary decisions are being made while changing
predicates or instantiating them by S; the only changes are those that do not
narrow the world of possible specialisations. The conversion C (which converts
terms using the variables of assignment ∆, to terms using that – usually fewer
– of ∆′) must provide the evidence v whenever evidence variables h appear.

We shall use the notation h←v as just an abbreviation for (Λh.[])((v)), where
the variable h is abstracted and then the evidence v is applied. This notation
will be used to emphasize that evidence variables are being replaced by evidence
values; while abstraction and application are just the tool to do it, they can
be confused with those generated by the moving of predicates from the context
to the type and back, using standard rules (QIN) and (QOUT) of Qualified Types
Theory. The equality of conversions used in the rule is not syntactic but semantic,
that is, C = C ′ if for C[e′] = C ′[e′] for every term e′, as defined by [5] in terms
of βv- and ηv-reduction relations for conversions.

Each relation satisfying definition 3 is suitable to be used as a simplification
relation, while in the practice we would require additional properties, like some
kind of reduction (to actually simplify), confluence of simplifications, etc. – but
we allow any simplification (e.g. the identity) to fit in the definition. In the next
section we shall implement a simplification for our language.

Viewing a simplification as a reduction relation between predicate assign-
ments (with additional ‘witnesses’ like the substitution and conversion), it should
be interesting to show that the reduction is stable under substitutions. Unfor-
tunately, this is not true for definition 3, due to the substitution involved in the
entailment. A weaker condition is still true, and will be enough for our purposes.
We say two substitutions S and T are compatible for a predicate assignment ∆,
denoted S ↔∆ T , if S∆ = T∆. Using this definition, the following property
holds:

Proposition 4. If S ↔∆ T and T ;C | ∆ D ∆′ then T ;C | S∆ D S∆′.

(SimEntl)
h : ∆ `̀ vδ : δ

Id; hδ←vδ | h : ∆, hδ : δ D h : ∆

(SimComp)
S; C | h : ∆ D h′ : ∆′ S′; C′ | h′ : ∆′ D h′′ : ∆′′

S′S; C′ ◦ C | h : ∆ D h′′ : ∆′′

(SimCtx)
S; C | h1 : ∆1 D h2 : ∆2

S; C | h1 : ∆1, h
′ : ∆′ D h2 : ∆2, h

′ : S∆′

(SimPerm)
S; h1, h2←v1, v2 | h1 : ∆1, h2 : ∆2 D h′1 : ∆′

1, h
′
2 : ∆′

2

S; h2, h1←v2, v1[h2/v2] | h2 : ∆2, h1 : ∆1 D h′2 : ∆′
2, h

′
1 : ∆′

1

(SimCHAM)
∆′

1 ≡ ∆1 S; C | ∆1 D ∆2 ∆2 ≡ ∆′
2

S; C | ∆, ∆′
1

D ∆, ∆′
2

Fig. 1. Structural simplification rules

This is an essential property to ensure that sequential steps of our algorithm give
a sound solution. (This can be seen as going against principality, but it can be
shown that only unsatisfiable models are left out.) It is interesting to note that,
as defined, simplification works looking only at the information of the context:
it does not matter what the specialised expression is.

3.2 A Simplification Relation

In section 3.1 we defined when a relation between predicate assignments can be
called a simplification. In this section we implement a particular simplification
relation, to deal with the predicates produced in the specialisation process.

We give an implementation of D defining it by means of a system of rules.
Part of it is shown in figure 1. These are called structural rules, since they are
not restricted to any particular construct in source or residual languages.

The first rule makes it possible to use the entailment relation to eliminate
predicates, when they are implied by the rest of the context – in this way in-
ternalising the entailment relation `̀ on which the theory of qualified types is
based.

The second one makes the transitive closure of the relation, choosing suitable
substitution and conversion as compositions of the original ones.

The third one extends simplification to work on bigger sets of predicates; it is
important to note the use of the substitution S in the right hand side to cancel
variables that may have been simplified.

The fourth one allows the treatment of the lists of predicates as if they have
no order, by closing the simplification with respect to permutations.

These two rules are complementary to each other, and usually used together.
For that reason, we define a derived rule, (SimCHAM), to expand the relation to
be used in larger contexts, following the Chemical Abstract Machine approach
of [7], where the equivalence ≡ is defined as the smallest relation containing
∆, δ, δ′,∆′ ≡ ∆, δ′, δ, ∆′, allowing to conveniently permutate predicates (reflex-
ivity of D is given by this rule, when no changes are made to predicates). It is

(SimOpres)
t ∼S n̂

S; hδ←n | hδ : t := n̂1 ⊗ n̂2 D ∅
(n=n1⊗n2)

(SimMGU)
C : σ2 ≥ σ1

Id; h2←(h1◦ C) | h1 : IsMG σ1 s, h2 : IsMG σ2 s D h1 : IsMG σ1 s

Fig. 2. Language-dependent Simplification rules

important to note that the order of predicates can be changed only when they
are still labelled with evidence variables in a predicate assignment (h : δ); after
they are introduced in a type with the (QIN) rule of qualified types theory, the
link from the variables to their predicates is only given by the order in which
they appear in the expressions (Λh. in terms and δ ⇒ in types).

To complete the relation defined by the structural rules, we give in figure 2
a (partial) set of rules to deal with some constructs of our language.

The rule (SimOpres) allows to simplify a predicate representing a static opera-
tion, when both operands are known to be numeric one-point types. In this case,
the predicate is eliminated while the conversion provides the necessary evidence
(the result) to the term. With this rule the standard constant folding procedure
is performed, solving the constraints of the form h : t := t′⊕ t′′ generated by the
specialiser.

Example 5. Consider this principal specialisation, derived in system P:

∆ ` (λDx.(lift x, x +S 3S)D) @D (2S +S 1S) : (IntD , IntS)
↪→ (λx′.(h, •))@• : (Int, t′)

with the following predicates as the context:

∆ = h : t := 1̂ + 2̂, h′ : t′ := t + 3̂

Removing the predicates by applying (SimOpres) twice, the term becomes

(Λh′.(Λh.(λx′.(h, •))@•)((3)))((6)) : (Int, 6̂)

from which, after βv-reduction steps (we shall omit them for readability in next
examples; since we work under the equivalence between conversions, with include
βv- and ηv-reductions) is converted to

(λx′.(3, •))@• : (Int, 6̂)

This illustrates the way constant folding is performed by type specialisation, and
also how the information can flow from the argument to the body of a function,
using the information carried by type and evidence variables.

The second rule, (SimMGU), allows to eliminate a redundant IsMG predicate:
when two upper bounds of a scheme variable are comparable to each other, then
the greatest bound does not provide any further information than the least one.

It can be removed, and the conversion is constructed as the composition of the
conversion going from the greatest type to the least one and the conversion of
the remaining predicate, abstracted by the evidence variable h.

There can be a variety of rules to handle different types of predicates. For
instance, one can think of simplifying variables in arithmetic predicates when
there is only one possible solution, or dealing with case constructs and patterns
to unify and simplify unknowns – we limit to those mentioned for reasons of
space.

Example 6. Our simplification relation can simplify S;C | ∆1 D ∆2, where

∆1 = h1 : IsInt 9̂, h2 : IsInt t′′′, h3 : t :=1̂+2̂, h4 : t′ := t+3̂, h5 : t′′′ := t′′+t′

∆2 = h5 : t′′′ := t′′ + 6

using (SimEntl) once to remove IsInt 9̂, (SimEntl) once again to remove IsInt t′′′

(entailed by the predicated labelled by h5), and then (SimOpres) twice to solve
sequentially t := 1̂+2̂ and t′ := t+3̂. Composing the applications with (SimComp)

and expanding the assignment with (SimCHAM) when needed, the substitution
S = [t/3̂][t′/6̂] and conversion C = (h1, h2, h3, h4)←(9, h5, 3, 6) are obtained.

The following theorem justifies the use of the relation defined above as a
simplification, according to definition 3.

Theorem 7. The rules in figures 1 and 2 define a simplification relation.

Example 8. It would look intuitive to include a counterpart to (SimMGU), to sim-
plify lower bounds, like:

C : σ2 ≥ σ1

Id;h1←C ◦ h2 | h1 : IsMG s σ1, h2 : IsMG s σ2 D h2 : IsMG σ2 s

However, there are reasons for not including it as a simplification. For example,
lower bounds generated by the spec annotation never contain type variables;
and these ground schemes can never be comparable each other by ≥.

This is an example of how ad-hoc a simplification system is, taking into
account not only the specific predicates it must simplify but also the way we
expect to have the result, or which things we do not want to get simplified.

3.3 Type Specialisation

The next step in defining simplification is to incorporate the notion into the
specialisation process. As a first approach, a new rule is added to specialisation
system P, allowing to simplify predicates at any stage of the process:

(SIMP)
h : ∆ | Γ

P̀
e : τ ↪→ e′ : σ S;C | h : ∆ D h′ : ∆′

h′ : ∆′ | SΓ
P̀

e : τ ↪→ C[e′] : Sσ

Its use in the system P is justified by the following consistency theorem:

Theorem 9. If h : ∆ | Γ
P̀

e : τ ↪→ e′ : σ and S;C | h : ∆ D h′ : ∆′ then
h′ : ∆′ | SΓ

P̀
e : τ ↪→ C[e′] : Sσ.

In practice, we would need an algorithm to perform simplification, and to
decide when it is convenient to actually do it. Provided we define a function
simplify that returns a ‘maximally simplified’ (up to some criterion) assignment
h′ : ∆′, a substitution S and a conversion C, given a non-simplified assignment
h : ∆, we should decide where to incorporate it to the specialisation algorithm.
The most convenient place is before wrapping types into poly type schemes, so
they are already simplified (to the extent allowed by the information available
at the wrapping) when they are unwrapped for use, saving computational work.
In this way we change the rule (W-POLY) of system W, resulting in:

(W-POLY)
h : ∆ | S Γ

Ẁ
e : τ ↪→ e′ : τ ′

h′′ : IsMG σ s | TS Γ
Ẁ

poly e : poly τ ↪→ e′′ : poly s

where, being s and h′′ fresh variables:

e′′ = h′′[Λh′.C[e′]]
(h′ : ∆′, T, C) = simplify(h : ∆)
σ = GenTSΓ (∆′ ⇒ Tτ ′)

This rule simplifies the assignment h : ∆ using the function simplify to obtain a
new assignment h′ : ∆′, a substitution T and a conversion C. It then builds the
term C[e′] of type Tτ ′ under assignment ∆′, and empties the context simulating
the application of (QIN), thus obtaining the term Λh′.C[e′] of type ∆′ ⇒ Tτ ′.
It finally fills in the context with a new predicate h′′ : IsMG σ s with a fresh
variable, using the evidence variable to specify the new conversion at top level of
the term. The type used in the IsMG predicate is the generalization over every
free variable (not free in Γ), and the predicates are in that way simplified before
being wrapped with the poly construct. This modification to W is the only one
needed to perform simplifications in type specialisation.

There are several aspects of simplification that are not mentioned here. For
instance, an analogy of the difference between the concepts of simplification and
improving in Jones’ work [8] can be found in this model, or the analysis of the flow
of data during the specialisation process giving place to distinct characterization
of rules – they can be found in the full version of this work [9].

4 Solving Predicates

The motivation of this work is to define the constraint solving process. In pres-
ence of poly and spec annotations, the specialiser does not decide the final
form of polyvariant expressions, but abstracts it with evidence variables (put in
every definition point poly and use point spec) until all the information can be
gathered. These variables are a key component of principality, as they abstract
the different instances of a term, and will be replaced by conversions when the
values of scheme variables are decided by constraint solving.

It is not until solving these predicates that the residual expressions can take
their final form. This stage is performed after specialisation, and only when there
is enough information in the context to allow it – they are related in the same
way compiling and linking are.

This kind of static analysis allows to separately specify (specialise) and im-
plement (solve) the problem, as was pointed out by Aiken [10] for set constraint-
based analysis. In this way specialisation can be seen as a static program anal-
ysis, and can be done locally (principality of specialisations). It allows modular
specialisation, and the conjunction of the analyses of subprograms gives the
constraints required for the whole process to finish.

4.1 Specifying Solutions

To begin with, we define when a substitution mapping scheme variables to type
schemes can be called a solution, when it can be performed, and which other
components are needed.

Definition 10 (Solving). A solving from a predicate assignment ∆1 to ∆2,
requiring the predicates of ∆′, is a relation

S:T ;C | ∆1 + ∆′ BV ∆2

where S (called the solution) and T are substitutions, C a conversion and V a
set of type variables, such that

(i) T ;C | S∆1,∆
′ D ∆2

(ii) dom(S) ∩ (V ∪ FTV(∆′)) = ∅

While solving may appear similar to simplifying at a first glance, its conse-
quences are stronger. The substitution S, the solution, may decide the values
of some scheme variables and the new (solved) predicate assignment it is not
asked to entail the original one (in contrast to simplifying, where both predicate
assignments are equivalent in some sense). This is why, when trying to solve a
variable, we must be more careful than with simplification: some extra condi-
tions must be observed to prevent taking unsound or premature decisions, as we
shall see in the next sections.

4.2 Solving Specialisations

In this section we study how solving can be performed during specialisation, by
incorporating it to system P. In contrast to simplifying, some cautions have to
be taken to avoid unsound results: if a variable is decided when some of the
information affecting its set of possible values is missing (which can happen if
a scheme variable occurs anywhere in the residual type or in the type assign-
ment Γ) then it should not be solved. This situation is presented in the following
example:

Example 11. Specialising the term e defined as:

letD f = poly (λDx.λDy.(lift x, lift y)) in (spec f @D 1S @D 2S , f)
: ((IntD , IntD),poly (IntS→ IntS→ (IntD , IntD)))

gives the residual term and types

Λhu
f , h`

f .let f = hu
f [Λhx.Λhy.λx.λy.(hx, hy)] in (h`

f [f]@ •@•, f)
: ∀s. IsMG (∀t, t′IsInt t, IsInt t′ ⇒ t→ t′ → (Int, Int)) s,

IsMG s (1̂→ 2̂→ (Int, Int))⇒ ((Int, Int),poly s)

Had the variable s be solved before moving the predicates from the context into
the type, a suitable solution would be to choose σ = ∀t, t′.IsInt t, IsInt t′ ⇒ t→
t′ → (Int, Int), giving

let f = Λhx hy.λx y.(hx, hy) in (f((1))((2))@ •@•, f) : ((Int, Int),poly σ)

In this term, the second component of the tuple can be used for any type instance
of t → t′ → (Int, Int). This is apparently a good solution. But, if the original
term e appears in the following program, and specialised in a monolithic fashion:

letD e = . . . in letD id = λDx.x in
letD g = poly (λDx.λDy.(lift (id @D x), lift (id @D y))) in
spec (if True then g else snd e) @D 4S @D 4S : (Int, Int)

it can be seen (as a good exercise of type specialisation, for which there is not
enough space here) that the specialisation fails, as the two predicates

hu
g : IsMG (IsInt t⇒ t→ t→ (Int, Int)) s,

h`
f : IsMG s (1̂→ 2̂→ (Int, Int))

can not be satisfied sharing the same context. This shows that we must be careful
when introducing solving into the specialisation process, particularly looking at
which scheme variables appears out of the context (in the type).

With the motivation of the previous example, we add constraint solving to
the specialisation process in a similar way we did with simplification, with the
additional condition about free variables of not appearing in the type scheme
nor in the type assignment. The rule (SOLV) is added to system P:

(SOLV)
∆1 | Γ P̀

e : τ ↪→ e′ : σ S:T ;C | ∆1 + ∆′ BFTV(Γ,σ) ∆2

∆2 | TSΓ
P̀

e : τ ↪→ C[e′] : TSσ

In this point it is possible to illustrate the reason of the occurrence of the
predicate assignment ∆′ in the solving relation. It stands for expressing the need
of forcing the creation of new predicates to make two type schemes comparable
by ≥: when an IsMG predicate is to be satisfied, some conditions are forced to
be true, as shown in the next example.

st→ t′→ t s t′→ t→ t

ss= t→ t→ t

s2̂→ 2̂→ 2̂ s 3̂→ 3̂→ 3̂

�
��

A
AA

A
AA

�
��

s t→ t′→ Int

s2̂→ t′→ Int s t→ 3̂→ Int

s 2̂→ 3̂→ Int

A
AA

�
��

�
��

A
AA

IsMG (∀t, t′.IsInt t, IsInt t′ ⇒ t→ t′→ t) s
IsMG (∀t, t′.IsInt t, IsInt t′ ⇒ t′→ t→ t) s
IsMG s (̂2→ 2̂→ 2̂)
IsMG s (̂3→ 3̂→ 3̂)

IsMG (∀t, t′.IsInt t, IsInt t′ ⇒
t→ t′ → Int) s

IsMG s (2̂→ 3̂→ Int)

(a) Unique solution (b) Multiple solutions

Fig. 3. Lattices of solutions

Example 12. Consider the following principal type specialisation:

∆ ` letD f = poly (λDx.lift (x +S 2S))
in letD g = poly (λDy.spec f @D (y +S 1S)) in spec g @D 2S : IntD

↪→ let f = hu
f [Λhx.Λhx′′ .λx.hx′′]

in let g = hu
g [Λhy.Λh`

f .Λhy′ .λy.h`
f [f]@•] in h`

g[g]@• : Int

with ∆ being:

hu
g : IsMG (∀ty,ty′ .IsInt ty, IsMG sf (ty′→ Int), ty′ := ty+1̂⇒ ty→ Int) sg,

h`
g : IsMG sg (2̂→ Int),

hu
f : IsMG (∀tx, tx′′ .IsInt tx, tx′′ := tx + 2̂⇒ tx → Int) sf ,

If type scheme variables sg y sf are about to be solved (which is possible w.r.t.
the condition shown in example 11), it can be seen that sg is the first choice, and
according to the next sections it has one upper and one lower bound. Choosing
the upper bound as solution, the IsMG including sf must be added to the context
to ensure that the upper bound is actually more general than the lower bound.
This solving gives

let f = hu
f [Λhx, hx′′ .λx.hx′′]

in let g = Λhy, h`
f , hy′ .λy.h`

f [f]@• in g((2))((h∗))((3))@• : Int

(where h∗ is a fresh evidence variable) and the assignment

hu
f : IsMG (∀tx, tx′′ .IsInt tx, tx′′ := tx + 2̂⇒ tx → Int) sf ,

h∗ : IsMG sf (3→ Int)

The last predicate, labelled with the new variable h∗, constitute the predicate
assignment ∆′ of (SOLV) rule, whose introduction we wished to illustrate. We
finish the example solving (and then simplifying) sf by choosing the value given
by its upper bound. The final result is (the context is now empty):

let f = Λhx, hx′′ .λx.hx′′

in let g = Λhy, h`
f , hy′ .λy.h`

f [f]@• in g((2))(([]((3))((5))))((3))@• : Int

It is interesting to observe that, knowing all the definition and use places of f
and g, an equivalent term could be constructed:

let f = λx.5 in let g = λy.f@• in g@• : Int

This term is much simpler than the previous one, where evidence abstraction
and application produces a substantial overhead, had it to be executed. It has
also the advantage of belonging to the same residual language of the original
type specialisation of [4] (furthermore, it is exactly the term there obtained).

Like the case of simplification, solving is consistent w.r.t. system P:

Theorem 13. If ∆1 | Γ P̀
e : τ ↪→ e′ : σ and S:T ;C | ∆1 + ∆′ BFTV(Γ,σ) ∆2

then ∆2 | TSΓ
P̀

e : τ ↪→ C[e′] : TSσ.

4.3 Finding Solutions

In this section we develop an algorithm to perform constraint solving for the
language presented. It will be an heuristic, that will try to eliminate as many
predicates as possible. Our goal is just to make a very simple algorithm so as
to illustrate the concepts studied, but not to make a real constraint solving
algorithm – that job is outside the limits of this work. Some conditions to be
considered are studied in the next subsections, finishing with the implementation
of the algorithm in section 4.3.

The search space While simplification works on any kind of predicate, the
solving process have to decide the values of variables appearing in specific pred-
icates, which represent decisions deferred at specialisation time. In our language
they are symbolized exclusively by IsMG predicates, generated by the use of
(POLY) and (SPEC) specialisation rules. (Extensions of the language like static
functions produces similar predicates w.r.t. solving)

Working specifically for the residual expressions coming from specialising our
source language, it results that the only IsMG predicates generated are of the
form IsMG σ s or IsMG s σ, where s /∈ FV(σ).

As the ordering defined by conversions on type schemes can be viewed as a
lattice, the problem of solving IsMG predicates (which are just the extension
of ≥ to type scheme variables) can take advantage of this feature. An example
of the representation of type schemes in the lattice and the distinct possible
solutions for IsMG predicates, is found in figure 3.

In this way we shall talk, when trying to find the solution for a scheme
variable, about upper and lower bounds. Our heuristic for constraint solving will
search for the values that are inside the given bounds (e.g., the greatest lower
bound of upper bounds), for which a necessary condition will be to have found
all the possible bounds for the variable being solved (example 11 shows what
could happen if this condition were not observed).

Multiple solutions In general, there can be many possible solutions for the
same variable. In presence of several predicates of the form IsMG σu s and
IsMG s σ`, any type scheme less than every upper bound σu and greater than
the lower bounds σ` can be used as a solution (provided s does not appear
neither in the type or the assignment – as shown in example 11 – nor in any
other kind of predicate).

We will choose the greatest possible solutions. It remains to be studied how
this choice affects the final result. We think that the different solutions will
produce the same term, after applying a transformation to eliminate as much
evidence as possible.

Selection of variables Another decision to make when solving a predicate set
is which variables are chosen to be solved. If there are solutions to all variables,
solving then at once would be enough, but practical implementations will be
based on picking them one by one, or by groups. The following lemma allows us
to calculate solutions sequentially, and then compose them:

Lemma 14. Solutions sequentially obtained can be composed. That is, provided
that S2 ↔S∆1,∆′ T1 then S1:T1;C1 | ∆1 + ∆′ BV ∆2 and S2:T2;C2 | ∆2 +
∆′′ BV ∆3 implies S2S1:T2T1;C2 ◦ C1 | ∆1 + (S2∆

′,∆′′) BV ∆3

The compatibility condition may seem too strong, but as we shall see, it holds
when we are sequentially solving variables with the algorithm described in the
next section. So our algorithm will solve single variables in each step.

Algorithm As described in 4.3, type schemes can be viewed in a lattice sorted
by the ‘more general’ relation ≥. As stated in 4.3, we know that any value inside
the bounds given for a scheme variable s can be selected as a solution.

In this way we shall describe an heuristic for solving constraints produced by
specialisations of our source language based on this ordering.

Given a predicate assignment ∆, which can be partitioned in ∆u,∆`,∆s,
where ∆u are all upper bounds of the form hu

i : IsMG σu
i s, ∆` the lower bounds

h`
j : IsMG σ`

j s, and s /∈ FTV(σu
i , σ`

j ,∆s) (i.e. s is ready to be solved), we proceed
one step of the algorithm in the following way:

1. Let σ = glb(σu
i) be the greatest lower bound of upper bounds (there is no

solution if it is not defined), and Cu
i conversions such that Cu

i : σu
i ≥ σ (all

of them must exist, because of the way we are chosing σ).
2. Compute a conversion C`

j and a predicate assignment ∆`
j for every lower

bound, such that C`
j : σ ≥ (∆`

j | σ`
j). The predicates ∆`

j are needed since we
must enforce σ to be greater than any lower bound, and this is can be done
constraining them with extra conditions, taken from the glb.

3. Let ∆f be the union of all ∆`
j (the forced predicates), and S the substi-

tution [σ/s]. Simplify the result using the function defined in section 3.3:
(∆′, T, C) = simplify(∆s,∆f).

4. The result is the tuple ([σ/s], T, C ◦(hu
i←C ′u

i)◦(h`
j←C ′`

j),∆f ,∆′), returning
the solution, the simplifying solution, a conversion made of the composition
of the evidence replacements for every upper and lower bounds with the
simplifying conversion, the forced (“new”) predicates and the solved and
simplified predicate assignment.

Correctness of this algorithm w.r.t. the specification of solving relations is
shown in the following lemma:
Lemma 15. If one step of the algorithm obtains (S, T, C, ∆f ,∆′) for an assign-
ment ∆ and scheme variable s (with s /∈ V) then S:T ;C | ∆ + ∆f BV ∆′.

We can see that the variable s is removed from the term, and no variables are
created in the process. This guarantees termination of the full algorithm, defined
as just the iteration of the step described above. Moreover, since compositions of
solutions are also solutions (provided compatibility of substitution, which holds
for those picked in the algorithm), the algorithm gives a solution for as many
variables as can be solved with this criterion.

This algorithm solves only those constraints generated for the simple, pruned
language we work with. It fails (it does nothing) if given an assignment which
can not be split in the way described by step 1; this is a strong condition: for
instance, specialising recursive definitions produces IsMG predicates where the
same variable appears on both bounds, so they can not be solved by this method.
Solving those assignments is subject of future work.

5 Related and Future Work

This work is entirely based on a fairly reduced source language. We think that
this language is still appropriate, introducing the problems we aimed to solve.

The main line of future work is to develop heuristics to deal with the results
of specialising more interesting constructs like recursion or static functions. That
work is not just an instantiation of the algorithms to our formalization, but it
is a complex task by itself, given by the fact that constraint solving is the point
where principal type specialisation can hide the source of non-termination of
traditional partial evaluators. This is why we talk about heuristics instead of
algorithms, since it is not sure to obtain a procedure for effectively solving every
possible set of predicates. However, this task can bring surprisingly innovative
ideas to the field: for example, the specialisation of lazy functional languages can
be represented, as argued in [11].

Another interesting task is the study of the relation between the terms result-
ing from solving predicates (full of evidence expressions like evidence abstraction
and application) and those of the original specialisation of Hughes [4]. We are
studying an implementation of the ‘evidence elimination’ postprocessing phase
(the task of eliminating evidence abstraction and applications from specialised
terms) for a selected class of terms, as an instance of constraint solving. This
can be done by carefully choosing the solutions of variables, taking into account
every upper and lower bounds present in the term. This yields, in the best case,
the same terms obtained by the original specialiser.

6 Conclusions

We presented a formalization of the processes of simplification and constraint
solving as part of the principal type specialisation process, a novel approach to
type specialisation. The main contribution is to provide a formal language in
which to study the behavior of types and terms under this processes, giving a
basis to the formal study of constraint solving of specialising new, and more
interesting, features, such as recursion and polymorphism.

We also gave an instantiation of our abstract study by specifying a simplifica-
tion relation with a system of rules, proved soundness w.r.t. their requirements,
and a simple implementation of an heuristic for constraint solving that is rela-
tively weak but strong enough to solve the cases generated as specialisations of
the constructs in our source language. This can be seen as a starting place to
implement more powerful constraint solving algorithms, for which ours is just a
minimalist example.

References

1. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall International Series in Computer Science (1993)
Available online at URL: http://www.dina.dk/~sestoft/pebook/pebook.html.

2. Jones, N.D.: Challenging problems in partial evaluation and mixed computation,
North Holland, IFIP World Congress Proceedings, Elsevier Science Publishers B.V.
(1988) 1–14

3. Danvy, O., Mart́ınez López, P.E.: Tagging, encoding and Jones optimality. In
Degano, ed.: Programming Languages and Systems. 12th European Symposium on
Programming, ESOP 2003. Volume 2618 of Lecture Notes in Computer Science.
(2003) 335–347

4. Hughes, J.: Type specialisation for the λ-calculus; or, a new paradigm for par-
tial evaluation based on type inference. In Danvy, O., Glück, R., Thiemann, P.,
eds.: Selected papers of the International Seminar “Partial Evaluation”. Volume
1110 of Lecture Notes in Computer Science., Dagstuhl, Germany, Springer-Verlag,
Heidelberg, Germany (1996) 183–215

5. Mart́ınez López, P.E., Hughes, J.: Principal type specialisation. In: Proceedings
of Asian Symposium on Partial Evaluation and Semantic-Based Program Manip-
ulation (ASIA-PEPM), ACM Press (2002)

6. Jones, M.P.: Qualified Types: Theory and Practice. Distinguished Dissertations
in Computer Science. Cambridge University Press (1994)

7. Berry, G., Boudol, G.: The chemical abstract machine. In: Theoretical Computer
Science. Volume 96. (1992) 217–248

8. Jones, M.P.: Simplifying and improving qualified types. Technical report, Yale
University (1994) YALEU/DCS/RR-1040.

9. Badenes, H.: Cómo eliminar evidencia resolviendo restricciones para producir au-
tomáticamente programas tipados. (2003) Undergraduate thesis, Universidad Na-
cional de La Plata (In preparation).

10. Aiken, A.: Introduction to set constraint-based program analysis. In: Science of
Computer Programming. Volume 35. (1999) 79–111

11. Mart́ınez López, P.E.: Type Specialisation of Polymorphic Languages. PhD thesis,
University of Buenos Aires (2003) (In preparation).

