
Designing Adaptable Geographic Objects for Mobile Applications

Robert Laurini
INSA-Lyon,

 France
Robert.Laurini@lisi.insa-lyon.fr

Javier Bazzocco
LIFIA, Facultad de

Informática,Universidad
Nacional de La Plata,

Argentina
jb@lifia.info.unlp.edu.ar

Silvia Gordillo
LIFIA, Facultad de

Informática,Universidad
Nacional de La Plata,

Argentina
gordillo@lifia.info.unlp.edu.ar

Gustavo Rossi
LIFIA, Facultad de

Informática,Universidad Nacional
de La Plata,Argentina

gustavo@lifia.info.unlp.edu.ar

Catalina Mostaccio
LIFIA, Facultad de

Informática,Universidad Nacional
de La Plata,
Argentina

catty@lifia.info.unlp.edu.ar

Abstract

In this position paper we discuss the evolution of an
object-oriented framework for GIS applications into a
platform for dealing with mobile users and geographic
objects. We first motivate our research by discussing the
state of the art of mobile GIS applications, the so-called
location-based services using a simple scenario. We
briefly describe an object-oriented architecture for
dealing with discrete and continuous geographic data
and show how good design practices allowed us to make
geographic objects adaptive to mobile users. Some
concluding remarks are finally presented.

1. Introduction

In the last 5 years, we have experienced an
increasingly interest in the development of ubiquitous
applications, i.e. those applications that follow the
anytime/anywhere/any media paradigm and provide
transparent access to information and other kind of
services trough different (in general portable) devices.
Mobile applications are one important type of ubiquitous
software; these applications have the ability to adapt
themselves to the user’s context, e.g. his location, the
device he is using (a laptop, palm computer, cell phone,
etc), his preferences, etc. Research issues related with

mobile computing range from hardware (small memory
devices, interface appliances) and communication
networks (trustable connections, security, etc) to software
and data management aspects such as new interface
metaphors, data models for mobile applications,
continuous queries, adaptive applications, information
exchange between disparate applications, etc. In this
position paper we deal with a particular kind of mobile
applications, those that adapt their services to the user’s
location, the so-called Location-Based Services.

Location-Based Services evolve in a similar way as the
more generic class of ubiquitous applications. According
to Abowd [1]: “Ubicomp applications evolve organically.
Even though they begin with a motivating application, it
is often not clear up front the best way for the application
to serve its intended user community”. As a consequence
design issues are critical for the application to evolve
seamlessly when requirements change [2]. In our
research, we are pursuing the definition of a modular
design approach for building location-based applications.
In particular, we have identified a set of design micro-
architectures to build evolvable location models, i.e. those
application components that represent the user location
and which are used to adapt the application’s behavior
accordingly [3]. However, location-based services might
also involve the interaction with legacy GIS (geographic
information systems) software. This interaction poses
new architectural and development challenges to the

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

designer; for example if we are using a commercial
(monolithic) GIS product, we may need to wrap its
functionality to use it in the mobile context; even with
open architectures such as those defined by [20] we must
write some adaptation code to deal with the location’s
context. In this position paper, we discuss some lessons
learned while re-designing an object-oriented framework
for GIS software into a platform for dealing with
location-based services. Our contribution is twofold: first
we reflect on our experience to indicate which design
practices help in the process of evolving software systems
into position-aware systems; second we identify a set of
problems (and corresponding solutions) for dealing with
geographic objects in the context of mobility.

The structure of this position paper is as follows: In
Section 2 we survey the state of the art of Location-based
software, analyzing their evolution from monolithic GIS
applications to lighter Internet services and introduce an
example scenario. In Section 3 we describe our GIS
framework and analyze which design challenges we had
to face to make it user-aware. In Section 4 we discuss the
core of our solution and discuss how to integrate the
evolved architecture with adaptable (object) location
models. Finally, in Section 5 we present some further
work and concluding remarks.

2. From GIS applications to Location-Based
Software

Geographic Information Systems were originally
thought to deal with spatial data to provide information
related to situations of terrestrial objects and predictive
analysis to study phenomena evolution. GIS software
usually provides powerful functions and interfaces in
order to calculate and provide the result of spatial analysis
[17], [19]. GIS technology has evolved from mainframe-
based applications to desktop and, recently, distributed
information systems. A nice description of this evolution
can be found in [21]. This evolution has been
accompanied by a corresponding evolution in the
software modeling and design techniques related with the
construction of these (complex) applications. The era in
which GIS applications were closed, proprietary
repositories of tangled geographic data queried with ad-
hoc techniques has ended. We can now use light
geographic services provided by public APIs, and open
source GIS applications that support a wide variety of
spatial data functions. The advent of the Internet, the use
of the WWW as a platform to deliver multimedia
information and to use sophisticated information systems,
has given a new opportunity for disseminating and
popularizing the use of GIS. Web Cartography [15] and
cartography services [24] are now widely used. New
architectural approaches to build service-based

applications (using Web services for example) gave more
impulse to this trend and the emergence of standards for
interoperability such as GML [6], [7], made it feasible.

Location Based Services (LBS) can be seen as the
logical evolution of geographic applications in the context
of mobility [12]. Mobile GIS applications allow the use of
geographical data from wireless devices such as palm and
pocket PCs (eventually with accompanying positioning
devices like GPSs). In [21] LBS are defined as
“applications that have geospatial data-handling functions
and the integration of geo-referenced information with
other types of data. For example, car navigation systems,
realtor systems and pizza delivery are some representative
location-based services. Mobile GIS has become the
perfect platform for the development of comprehensive
location-based services”. However, and even taken into
account that the root of LBS is GIS software (and that
from the functionality point of view, a GIS module is
necessary to build a LBS), the evolution patterns of LBS
are clearly different from those of GIS software, and
accordingly the software design requirements change
dramatically as discussed in [3]. Different architectures
and design solutions have been presented in [12] and [13]
to deal with the mobility issue; nevertheless, the subject
of integrating GIS software with ubiquitous computing
from the object oriented point of view has been recently
introduced and studied in [3], [8] and [10]. In this paper
we address a more complex problem when dealing with
GIS software in the context of mobility: how to adapt the
structure, representation, topology and behavior of
geographic objects when the user moves.

To make this discussion concrete, suppose for example
a simple application to provide the user with tourist
information while he moves throughout a country like
France using his preferred device. While in the highway,
he is prompted with information about best routes to go
somewhere, he is informed about tourist spots and
services (like gas stations), etc. When he enters a city like
Paris he can be told how to go to a place from where he is
now, which hotels and restaurants he can find in the
neighborhood, etc. Existing state-of-the-art technologies
such as positioning devices and Internet cartography [15]
make this scenario absolutely feasible. When he enters a
Museum the problem has a new shift. Using a new set of
positioning artifacts like beacons [22], we can eventually
know in which room he is, and we can tell him how to go
where he wants. If we are able to know the artwork the
user is watching (another kind of “location”), we may
want to explain him some facts about its author, the
historical context, etc. While most technological
requirements in this scenario can be easily fulfilled, there
are many design and usability problems that need some
further study. We will focus on one of these design
problems; how to adapt the basic features of geographic

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

objects to the user location and context, e.g.: while he is
in the highway, Paris can be represented by a point
geometry [17]; in the latter examples we need a polygon
geometry in which Museums are points; finally we need
Museum to be represented as a polygon. In the rest of this
paper we refine this discussion.

3. A Framework for GIS Applications

In this section we briefly introduce our object-oriented
framework for building geographical applications (Geo-
Framework). This framework is fully described in [8],
[9], [10], and [18]. Geo-Framework provides a set of
basic classes and abstract behaviors that can be either
extended or customized for specific applications (and
domains).

The main architectural design decision of the
framework is a clear separation between application
objects and their spatial features, described as shown later
as decorations [5]. This approach makes possible not only
the development of new applications decoupling complex
concerns like the definition of spatial features, but also
the extension of “conventional” information systems with
geographic features, a problem that is outside the scope of
this paper (even though some of the solutions proposed
here share the same design philosophy).

3.1. The Base Architecture

When designers build GIS applications, they deal with
two different kinds of data types. One represents
conceptual data in terms of descriptive attributes. For
example, when modeling a country in the context of a
geographic application, typical descriptive attributes are
the name of the country, its first language, or its
government system. The other kind of data represents all
aspects related to geographic features, like the country
boundaries, its position in the map, etc. Designers have to
deal with different aspects of the same application object:
the specification of conventional data (like name of the
country) and behavior (operations like tax-payment), and
the definition of spatial information and spatial analysis.

Geo-framework induces a structure in which an object-
oriented model of the application is built first without
considering spatial features. Geographical aspects and
behaviors are added by first identifying which classes in
the application model will contain spatial features; then,
for each one of these classes, we define a new one that
wraps it with the spatial behavior by applying the
Decorator design pattern [5]. As an example, we suppose
that we have a Country class and decorate it to include the
spatial information, in order to perform operations like
width in a particular latitude, its location, neighbor
countries and so on. Figure 1 shows both conceptual and
geographic definitions; additional features have been

defined in the second one (abstract classes are not shown
for simplicity).

Country

name
states

addState()
stateList()

GeoCountry

location

width()
distanceTo()

Figure 1. Conceptual and geographic classes

Geographic objects, have a location attribute which
abstracts positioning information; in particular its
topology (point, line, polygon) and its reference system.
In this way, each spatial object will have associated a
Location class which, in turn, is related to a Topology and
ReferenceSystem classes shown in Figure 2.

GeographicObject

methodA()

ReferenceSystem

linearDistanceTo()
translateTo()

Topology

shape()

Location

distanceTo()
isEqualTo()

AbstractGeoObject

location()
isPointSite()

GeoDecoratorA

Figure 2. Geographical Classes, their topologies
and reference systems

Topology is a class hierarchy defining the basic spatial
elements: point, line and polygon. In this hierarchy, all
spatial operations are defined according to the kind of
elements we are manipulating. For example: one element
defined as a polygon will be able to perform operations
such as adjacency, intersections, inclusion, etc.
ReferenceSystem meanwhile defines an abstract protocol
that is used to describe the context where a Location is
defined. It also defines the set of legal operations in this
context. In other words each ReferenceSystem instance
describes how measures are interpreted in the defined
Location.
The framework also supports dealing with “pure”
geographic objects such as Continuous phenomena or
fields (the temperature in a country, the level of pollution
of a river). Each field is usually described in terms of a
set of elements such as: the nature of the field,
dimensions, an interval of dates and a set of points
representing the sample which makes the field discrete
and computable. Each point belonging to the sample, in
turn, contains its position (also represented by the
Location class) and a value. Samples may have different
implementations which is achieved by using an instance

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

of the Bridge pattern [5]. Finally, estimation methods for
calculating the value of the field in a particular position
are provided using Strategies [5]. In this way both
representations and estimation methods can be changed
dynamically during run-time. Figure 3 shows the sub-
architecture for dealing with continuous fields.

Figure 3. Sub-architecture for continuous fields

3.2. Design challenges with mobile users

We have used this framework to instantiate
applications in different fields such as Agriculture
Intelligent Systems and AVL (Automatic Vehicular
Location). In the former case we dealt with moving
geographical objects whose current position should be
found or estimated. Decoupling conceptual from
geographical objects, and these objects from their
positions allowed us to easily add behaviors to track (or
simulate) movement. However, when the user himself is
moving some new and challenging problems might
appear. For the sake of conciseness we assume from now
on that users are mobile and geographic objects static.

The first problem, as shown in the example in Section
2 is related with the topology of geographic objects while
users move. Typical GIS applications and even Location-
based Services define only one topology (and thus,
reference system) for a geographical object. This means
that if Paris is represented as a point, this representation
can not change to a polygon dynamically. A naïve
solution would be to use always the most generic one (a
polygon) and perform the adaptation only at the interface
level. However, as geometric operations and constraints
are based on the chosen topology we might have
problems. Moreover, we might need another topology for
objects with a local reference system, such as a museum
and as the kind of queries users pose to these
geographical objects change with his location (e.g.: how
do I reach the museum? , where is artwork x?) we might
end with classes supporting a huge number of operations.
Summarizing: in terms of design problems, we need that
the relationship among Geo-Objects and their locations
(in Figure 2) are mediated by the user position (or more
generally by the user context).

It is easy to see that the same problem appears with
other relationships such as location and reference system
(for example a pair of numeric attributes might have
different semantics in different referent systems). We do
not discuss here variations related with continuous fields
to keep the examples simple.

4. Towards Mobile and Ubiquitous GIS

Applications built from Geo-Framework can be used
from Web-compliant interfaces by using the Geographic
Mark-up Language (GML) for sending geographical
objects/interfaces as responses to http requests [11]. We
also built an infrastructure for using some specific Geo-
Framework functionality using Web Services [16]. In the
next sub-sections we describe the key architectural
decisions in order to support mobile users.

.
4.1. The Architecture of a mobile GIS application

Generally speaking, the kind of applications we want
to build usually need an adaptation capability (that
“conventional” GISs do not have) to modify their
behaviors according to the user position. Notice that we
use the term “behavior” even to indicate the special case
in which we need to change a relationship.

Existing arquitectural solutions for the design of
ubiquitous (Web) software, can be applied in this field
with minor modifications. For example we can use the
approach described in [13] in which three important
architectural components are described (See Figure 4):

-the application model containing main application
classes and functionality; it must be constructed to be
independent with respect to types of users and adaptation
rules.

-the user or context profile: that contains information
about the users’ interests and preferences and the actual
usage context; in particular, this module is responsible of
maintaining the current user’s location.

-the adaptation model that encapsulates different kinds
of rules, for example for adapting the application
behavior to specific contexts or situations.

MethodA

EstimationMethod

execute()

Representation

MethodN

RepresentationA RepresentationN

ContinuousField

Location

AcquiredPoint

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

Figure 4. The generic architecture of Ubiquitous
Applications

When using this architectural strategy, domain model
behaviors that need to be adapted are mediated by the rule
(adaptation) model that, collaborating with the
corresponding user profile objects, decides how the
behavior is affected. A clear separation between the
adaptation model and the user profile, decoupling them
from the application model allows easier maintenance and
prevents the core functionality from being cluttered with
conditional sentences regarding user’s conditions and
usage context. The cost of this solution is that the rule
model might become too complex with hundreds of rules
that must be maintained and kept up to date. In [4], we
have discussed when adaptation rules should be replaced
by polymorphic behaviors in order to simplify the
adaptation model. In the following sub-sections we show
how we adapted Geo-Framework to this scheme.

4.2. Adaptable geographic objects: Wrappers to the
rescue

The first critical decision is how to easily trigger the
adaptation model when a user request arrives. In [23] we
show how to use wrappers to seamless customize existing
applications. We chose a similar approach: for each
behavior (or set of behaviors) that should be adapted we
built a light weighted object that provides the modified
behavior, in this case by sending a message to the
corresponding adaptation rule, as shown in Figure 5. This
approach helps us to adapt behaviors in an instance-based
and dynamic way, without paying the cost of massive
class modifications.

Figure 5. Triggering Geo-adaptation behaviors

Notice that, from now on, the topology of a geographic
object is not defined by a static relationship but instead it
is represented by a rule that connects the location object
with its corresponding topology and reference system. In
some cases it might be necessary to wrap more than a
simple behavior in the chain leading from the request to
the object that provides the specific answer.

This solution, while fully compatible with the
architecture of Figure 4 has a problem (that we discussed
in [4]); it over-emphasizes rules for providing the
corresponding behaviors. A typical adaptation model
implementation will provide condition and action objects,
the former ones for querying the user model and the latter
ones for performing the corresponding action.

We found that a slightly different solution is better for
performing adaptations related with user locations:
moving the adaptation behavior to the user model instead
of viewing this model as just a repository of data about
the user. With this strategy, different location contexts
might provide different (adaptation) behaviors. This
approach is shown in Figure 6.

ApplicationCore

GeographicalObject

UserContex
t

UserLocation

AdaptationModule

RuleModel

LocationAbstractGeoObject

User request

GeoDecoratorA

GeoWrapper

location

location(user)
location()

UserLocation
RuleModel

locationOf()

ruleModel.locationOf (geoObject, user)

User request

AbstractGeoObject

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

Figure 6. Allocating the adaptation code in the user
model

This solution has a problem: objects that represent user
locations might have different attributes according to the
positional system we use. It may be not possible or
reasonable to define new classes each time the application
evolves. We solve this problem by using an extension of
the type object pattern (known as Adaptive Object
Models) [25].

4.3. Representing mobile users with adaptive object
models

If we consider that different user location contexts can
be expressed in a different reference system (e.g. a
position in the highway using latitude/longitude, a
location in the Museum as a room number), it is quite
clear that a solution based on inheritance and sub-classing
is not the best one because me might end with a large
number of different classes with minor structural
differences but with few or none behavioral refinements
between them. We thus replace different user location
classes with a generic class LocationType whose
instances are different types of locations as shown in
Figure 7. Each Location type defines a set of property
types, having a name and a type (class PropertyType).
Instances of Location contain a set of properties
(instances of class Property) each one referring to one
property type. Using the “square” in Figure 7 we can
manage the meta (or knowledge) level by creating new
instances of the “type side” (at the right) and the concrete
level by creating new instances of classes in the left.

Figure 7. Adaptive model for locations and their
properties

By this mean, adding new types of locations is not
restricted by the code, compile & deploy process (which
is still error prone in languages such as Java), which is
known to be a very “static” solution. By using the
preceding approach, the definition of a new kind of
location can be easily made by arranging the required
properties instances as needed (each one of them
belonging to a particular type of property). The static
definition of the structure imposed by the classes
approach is changed in favor of the more dynamic
alternative presented by the “square” solution presented
above. From the “code-level” point of view, the presented
approach has some important benefits: there is no need to
create a large set of location sub-classes that only differ in
their structure; additionally, the design leads a greater
utilization of the polimorphism since no distinction is
made regarding the type of the location (every location
object is an instance of the same class, but configured in a
different way).
Regarding adaptation we need that different Location
objects (and of course Location types) might provide
different geographic adaptation behaviors. For expressing
simple adaptations (for example a change in the topology
or reference system) we simply connect the location
object with the corresponding geographical object. For
more complex adaptations (being them geographic or not)
we used Strategies [5] that are attached to the
corresponding Location object as shown in Figure 8.
Geographic strategies can be implemented using
conventional algorithmic style or they may be described
as geographic rules using the infrastructure of the rule
model. The decision depends on the kind of adaptation
that should be performed; for example, if the behavior
might be cluttered with if sentences, the rule style is
preferable.

RuleModel

locationOf()

GeoWrapper

location

location(user)

(userLocation).locationOf (geoObject)

AbstractGeoObjec

location()

UserLocation
User
request typ

typ

properties properties

Propert

value : Symbol

Location

0..*0..*

PropertyType

name : String
type : Type11

LocationType

11
0..*0..*

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

Figure 8: User Location objects and their behaviors

5. Concluding remarks and further work

In this paper we have presented some micro-
architectures that arose when re-designing a large object-
oriented framework for GIS applications to make it
sensitive to mobile users’ requests. Our experience have
shown us that the evolution from “conventional” GIS
software into location-based services presents many
design challenges that are seldom discussed in the
literature, mainly because technological changes are still
occurring and are receiving much more attention.

We have identified a set of specific problems related
with the geometry, reference system and other geographic
features, when the user moves. Having different “views”
of a geographical object is often over-simplified to user
interface problems (seeing a city as a point, polygon, etc);
however, we have shown that adapting geographic
objects to the needs of a mobile user requires quite more
subtle changes. In this paper, we have discussed some of
these problems and we have shown that seamless
extensions to the Geo-Framework were easily achieved
by using good object-oriented design practices; we
strongly believe that these practices are in the heart of
every evolvable mobile software. We also presented an
original approach for dealing with geographic adaptations
by introducing adaptive object models as the key solution
for representing the user’s location.

We are now researching on some issues related with
the combination of geographic with more typical
information systems behaviors in the context of mobility.
In our example in Section 2 we want that the user is
provided with different functionality as he moves. In our
modified framework this is possible by adding those
behaviors to location objects; however higher level
objects (with more semantics than just the user’s position)
are necessary: we call them location contexts. Location
contexts are the user profile counterpart of some
application objects (a city, a museum, etc); they are
described as the complement of the corresponding local
Reference System that (as explained in Section 3.1)
contains the basic geographical operations. We are
exploring the type of architectural connections we must

build between both kinds of objects. At the same time we
are adapting some of our micro-architectures to well-
known styles such as the Model-View-Controller [14] to
simplify the connection with existing middleware, that in
fact is responsible of identifying the request, the current
user, his location and location context.

6. References

[1] G. Abowd, “Software Engineering Issues for Ubiquitous
Computing”, Proceedings of the International Conference on
Software Engineering (ICSE 99), ACM Press, 1999, pp. 75-84.

[2] G. Banavar, and A. Bernstein, “Software Infrastructure and
design challenge for ubiquitous applications”. Communications
of the ACM, Vol 45, (12) pp. 92-96.

[3] J. Bazzocco, S. Gordillo, G. Rossi, and R. Laurini,
“Designing Evolvable Location Models for Ubiquitous
Applications”. Proceedings of OOIS, Lectures Notes in
Computer Science, Springer-Verlag Heidelberg, ISSN: 0302-
9743 , 2003, Volume 2817, pp. 289-293

[4] J. Cappi, G. Rossi, and A. Fortier, “Customization policies
need more than rule objects”, Proceedings of OOIS 2002,
Springer Verlag, Lectures Notes in Computer Science.

[5] E. Gamma, R. Helm, J. Johnson, and J. Vlissides, Design
Patterns. Elements of reusable object-oriented software,
Addison Wesley, 1995.

[6] A. Garmash, “A Geographic XML-based Format for the
Mobile Environment”, Proceedings of the 34 th. Hawaii
International Conference on System Sciences, IEEE Press, 2001.

[7] Geographical Mark-up Language, in
www.opengis.org/techno/specs/00-029/GML.html

[8] S. Gordillo, F. Balaguer, and F. Das Neves, “Generating the
Architecture of GIS Applications with Design Patterns”,
Proceedings of the ACM-GIS97: 5th International Workshop on
Advances in Geographic Information Systems, Ed. R. Laurini, P.
Bergougnoux, K. Makki and N. Pissinou, 1997, pp. 30-34.

[9] S. Gordillo, and F. Balaguer, “Refining an object-oriented
GIS design model: Topologies and Field Data”, 6th ACM
Workshop on Geographic Information Systems, Maryland, USA,
1998, pp. 76-81.

[10] S. Gordillo, F. Balaguer, C. Mostaccio, and F. Das Neves,
“Developing GIS Applications with Objects: A Design Pattern
Approach”. GeoInformatica. Kluwer Academic Publishers,
1999, Vol 3:1, pp. 7-32.

[11] S. Gordillo, Modélisation et Manipulation de Phénomènes
Continus Spatio-temporels, PhD, Université Claude Bernard,
Lyon I, 2001. 190 pp.

[12] J. Hjelm, Creating Location Services for the Wireless Web:
Professional Developer's Guide, John Wiley, 2002.

type

type

properties properties

Location

Property PropertyType

0..*0..*

LocationType

0..*0..*

Abstract
GeographicStrategy

GeoStrategy1 User

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

[13] G. Kappel, B. Proll, and W. Retschitzegger,
“Customization of Ubiquitous Web Applications. A comparison
of approaches”, International Journal of Web Engineering and
Technology, Inderscience Publishers, January 2003

[14] A. Knight, and N. Dai, “Objects and the Web”, IEEE
Software ,March-April 2002, pp. 51-59.

[15] M. Kraak, and A. Brown (editors), Web Cartography.
Development and Prospects, Taylor and Francis, 2001.

[16] F. Krimerman, and A.Glavina, Designing Spatial Web
Services, (in spanish) Universidad de Buenos Aires, Argentina,
2003.

[17] R. Laurini, and D. Thompson, Fundamental of Spatial
Information Systems, Academic Press, 1993.

[18] R. Laurini, and S. Gordillo, “Field Orientation for
Continuous Spatio-temporal Phenomena”. International
Workshop on Emerging Technologies for Geo-Based
Applications, Ascona, Switzerland, 2000, pp. 77-101.

[19] P. Longley, M. Goodchild, D. Maguire, and D. Rhind,
Geographical Information Systems and Science, Wiley, 2002.

[20] Open GIS Consortium, Inc. 2003 in www.opengis.org

[21] Z. Peng, and M., Tsou, Internet GIS. Distributed
Geographic Information Services for the Internet and Wireless
Networks, John Wiley, 2003
[22] S. Pradham, “Semantic Location. Personal and Ubiquitous
Computing”. Springer Verlag 2002, Vol 6, pp. 213-216.

[23] G. Rossi, A. Fortier, J. Cappi, and D. Schwabe, “Seamless
Personalization of e-commerce applications”, International
Workshop on E-commerce and conceptual Modeling, Springer
Verlag, Lectures Notes in Computer Science, 2001,

[24] K. Virrantaus, J. Veijalainen, and J. Markkula, “Developing
GIS-Supported Location-Based Services”, Proceedings of the
Second International Conference on Web Information Systems
Engineering (WISE’02).

[25] J. Yoder, and R., Razavi, “Metadata and Adaptive
Object-Models”, ECOOP 2000 Workshops, in
www.adaptiveobjectmodel.com.

Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW’03)

0-7695-2103-7/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

