Experiences on DSL Tools for Visual Studio*

Tomai Kosar!, Marjan Mernik!, Pablo E. Martinez Lopez?

YUniversity of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova ulica 17, 2000 Maribor, Slovenia
{tomaz.kosar, marjan.mernik} @uni-mb. si

2 Universidad Nacional de La Plata, Facultad de Informdtica, LIFIA
CC. 11, Correo Central
(1900) La Plata, Buenos Aires, Argentina
fidel@lifia.info.unlp.edu. ar

Abstract. Within their application do-
mains, domain-specific languages offer sub-
stantial gains in expressiveness, productiv-
ity, and ease of use, compared with general-
purpose programming languages. Despite
the many advantages of domain-specific lan-
guages, their use has been unduly limited, by
a lack of support in developmental environ-
ments. Recently, Microsoft introduced some
support by constructing domain-specific lan-
gquages with a plug-in ‘DSL Tools for Visual
Studio’. This paper gives language designers
tips on developing a domain-specific language
using this tool and describes the experiences of
an end-user of constructing a language. An-
other contribution of this paper is a compar-
ison of tools with the traditional approach by
the tmplementation of a domain-specific lan-
guage, done on the same representative lan-
quage.

Keywords. domain-specific visual lan-
guage, domain-specific language, language
workbenches, source-to-source transforma-
tion
1 Introduction
A domain-specific language (DSL) is a lan-
guage designed in such a way that it pro-
vides a notation tailored towards an appli-
cation domain, and is based only on the rele-
vant concepts and features of that domain [8].
As such, a DSL is a means of describing and

*This work is sponsored by bilateral project “Im-
plementation of DSLs: Evaluation of Approaches”
(code ES/PA02/E01, BI-BA/03-05-002) between
Slovenia and Argentina, part of the program SECyT-
MESS.

753

generating the members of a family of pro-
grams in the given domain, without the need
for knowledge about general programming.

However, language design and its imple-
mentation have always been considered as a
very difficult task — this is perhaps one of
the reasons why the popularization of DSLs
has not reached the expectations of many
DSL researchers. Various implementation ap-
proaches also exist when developing domain-
specific language. It is hard to decide which
approach to take, and only a few studies on
their comparisons are found in the literature
[5]. Another reason for this poor populariza-
tion is the lack of language support in the
developmental environments.

The traditional development of domain-
specific languages is still based on the code
world, which often leads to poor domain
understanding. Domain-specific visual lan-
guages (DSVL) has been introduced to over-
come this, where graphical representations
are used to develop a system performing task
similar, but much more expressive, than pro-
gramming by code [9]. The easiest way to
imagine DSVLs is by comparing it to UML,
that enables users to model/program in a vi-
sual manner. Unlike UML, DSVLs enable
end-users to program with concepts relevant
for specific domain. DSL Tools for Visual
Studio [1] is a representative example of those
tools.

In this paper, the stress is put in devel-
oping a domain specific visual language us-
ing DSL Tool for Visual Studio [1]. However,
traditional DSL implementation approaches

Proceedings of the ITI 2007 29" Int. Conf: on Information Technology Interfaces, June 25-28, 2007, Cavtat, Croatia

Class FDL _Menu {
begin spec(Menu, strResult)
begin feature
Menu :all (opt(Appetizer), MainCourse, opt(Salad), Dessert)
Appetizer :all (cheese, smokedHam, olives)
MainCourse:one-of (DishA, DishB, DishC, DishD)

DishA :all (backedPotatoes, roastBeef)
DishB :all (golaz!, polenta)

DishC :all (mashedPotatoes, stewedSteak)
DishD :all (asado?, chorizo)

Salad :more-of (lettuce, tomato, cucumber)

Dessert
end feature

:one-of (gibanica®, flanConDulceDeLeche?)

begin constraints
exclude smokedHam
include asado
asado requires tomato
exclude flanConDulceDeLeche
end constraints
end_s_pec

static void Main(){
Console WriteLine(strResult);
¥
¥

Figure 1: FDL description of Menu

one-of (
all(asado, chorizo, lettuce, tomato, cucumber, gibanica),

all(asado, chorizo, lettuce, tomato, gibanica),
all(asado, chorizo, tomato, cucumber, gibanica),
all(asado, chorizo, tomato, gibanica)

)

Figure 2: The meaning of program Menu

should not be underestimated, so a very sim-
ple comparison of this tool with those ap-
proaches is also presented.

The organization of the paper is as fol-
lows. A small, representative language for
case study is discussed in 2. The charac-
teristics of DSL Tools for Visual Studio are
described in Section 3. Related work is dis-
cussed in Section 4. Finally, a synthesis and
concluding remarks are presented in Section

5.
2 Case study

In order to show the language construction
with DSL Tools for Visual Studio, we need to
choose the appropriate domain to solve. The
Feature Description Language (FDL) [4] has
served this purpose well in the past [5, 6, 7],
and is also used as a representative language
in this paper.

The language FDL describes features and
their hierarchical composition. A feature can

!Traditional Slovenian food, stewed beef made
with paprika and onions.

2Slow cooked barbecued cow meat, national spe-
ciality of Argentina.

3A cake with poppy seeds, curd cheese, walnuts
and apples, national speciality of Slovenia.

“Traditional Argentinian dessert, custard made of
milk and egg yolks with a jam made of long boiled
sugared milk.

754

be atomic, optional, one-of, more-of, or
all. Atomic features are the basic con-
struct; optional features can be present or
not; one-of means that exactly one of its
child features can be present in the config-
uration; more-of is similar to one-of, except
that an arbitrary number of child features can
be chosen from the set; finally, all means
that all its children have to be present.

The meaning of the FDL program Menu,
in Figure 1, is the set of all possible configura-
tions. There are 256 various compositions of
the menu in this example. When we add con-
straints to it (see the part begin constraints
in Figure 1), the original 256 possibilities are
reduced to just 4. In Figure 2, every all
feature represents a possible solution to our
problem. Interested readers can find more de-
tails about FDL in the literature [4, 5.

3 DSL Tools for Visual Studio
The current version of DSL Tools is 1.0 and
can be added to Visual Studio 2005 as a
plug-in. The toolkit contains support for the
metamodeling environment, the modeling en-
vironment, and the generation of code. An
overview of the toolkit is given in this sec-
tion.

3.1 Metamodeling Environment

A metamodeling environment is defined as a
set of rules, notations, and constructs, which
are further used by an end-user in model-
ing environment. These rules and constructs
should be strictly defined, without any am-
biguities or errors. A metamodel consists of
the following definitions: domain model no-
tation, constructs, and relationships between
model notation and the constructs.

Definition of Domain Model Notation
Domain model notation represents the struc-
ture of a domain and is composed in a visual
manner. It shows the inner structure and re-
lationship between classes, which are defined
in a document with .dsldm extension (DSL
Domain Model). Constructs which can be
used in visual mode are class, property, em-
bedding, reference, and inheritance.

In a similar way as in object-oriented pro-
gramming, a class represents a set of objects
sharing the same structure, behaviour, and

%2 FDL - Microsoft Visual Studio

File Edit View Project Build Debug Data Tools Window Community Help

A-EA-Edd &~ b Debug ~ Any CPU ~ [# Exception - &% B
N S o
Toolbox v~ I X DomainModel.dsldm| FDL VB.vstemplate s % |Domain Explorer B
= D in Model Desig ; ?D “ | | FDL (Domain Model)
"t Pointer [:;I‘_:a?atureDlagram #- FeatureDiagram (Class, Xml Root)

== Class il il #- AtomicFeature (Class)

AllFeature T

= Value Property m & AllFeature (Class)

% Embedding & OneOffFeature (Class)

% Reference AtomicFeatu... m - & MoreOfFeature (Class)

4> Inheritance # Feature (Class)
= General MoreOfFeat... CompositeFeature (Class)

455_ OfFeature (Class)

There are no usable controls #- AllFeatureHasAtomicFeature (Relationship)

in this group. Drag an item OneDftegture o) @ AllRelation (Relationship)

onto this text to add it to & AtomicRelation (Relationship)

the toolbox. & OneofRelation (Relationship)
[MoreOffeature #- AllFeatureHasOneOfFeature (Relationship)
AllFeature & MoreOfFeatureHasOneOfFeature (Relationship)
R m ~—{ AllFeature & MoreOffeatureHasAtomicFeature (Relationship)
| . #-MoreOffeatureHasAllFeature (Relationship)
P i & OneOffeatureHasAllFeature (Relationship)
| AtomicFeature
i #- OneOfFeatureHasLawfullSon (Relationship)
i OneOffeature & OneOfFeatureHasAtomicFeature (Relationship)
i m OneOfFeature & MoreOfFeatureHasLawfullSon (Relationship)
Son #- AllFeatureHasMoreOffFeature (Relationship)
- m & MoreofRelation (Relationship)
#-OneOfFeatureHasMoreOfFeature (Relationship)
: % & . .
I Allcatur = AllFeatureHasLawfullSon (Relationship)
i
| A 4 | &
Ready
Figure 3: Metamodel environment in DSL Tools
relationships. Classes can have sets of at- seen as productions in EBNF notation.

tributes, which define the properties of a con-
struct and can be used by end-users to cus-
tomize their own needs for the language under
construction.

The basic functions of ‘embedding’ and
‘reference’ are to connect classes of DSL. The
difference between these two links is in seman-
tics. If we have classes A and B, ‘embedding’,
means that class A includes B (B is part of A),
while ‘reference’ means that class A uses B.
There are some rules as to how classes can be
connected. Links between classes are graphi-
cally represented by triangles and rectangles,
which represent the source and type in the re-
lationship. Both source and type are defined
by a cardinal number (0,1,+ or *). Another
link between classes is inheritance. Again,
graphical notation and meaning is analog to
the one from the object-oriented paradigm.

The notation of a FDL domain model is
given using the constructs explained above
(see Figure 3). A domain model represents
the syntax of a language. If the reader is fa-
miliar with EBNF, she can draw some cor-
relations using domain model: the meaning
of classes and non-terminals is similar, at-
tributes corresponds to terminal symbols, and
links pointing from individual classes can be

755

A semantically valid language is obtained
by a walidation model, where attribute val-
ues and link names (they must be unique) are
checked. Validation process checks also if the
links produce cycles. For validation purposes
a new document must be defined in a project,
which validates a specific class or attribute.
For instance, the name of FDL’s atomicFea-
ture must start with a lowercase letter. Val-
idation of the class representing atomicFea-
ture is part of the validation model.
Definition of Domain Constructs
Constructs definition is defined in a .dsldd
document (DSL Designer Definition). Unfor-
tunately, this task is quite demanding since
everything must be done in XML notation
and no supporting visual tool exists for this
task.

Elements mnotation and objectModels are
concerned with defining a domain model.
Furthermore, element notation consists of el-
ements diagrams and diagramMaps. The el-
ement diagram defines the types of diagram.
Also, diagram defines symbols, which will be
present in the modeling environment as a
toolbar, modeling shapes, and connectors.
Relationships between domain notation
and constructs

22 UIPFDLDebugging - Microsoft Visual Studio

LEX

File Edit View Build Debug Data Tools Window Community Help
il -E L b Debug ~ AnyCPU - [® ":-Ej‘jk'i’jtﬂ'_i
i~ UIPFDLG.fabuipc| - X
o E
<
-
m
g
% all all all
E l Appetizer | MainCourse Salad Dessert
g
[=o
=]
= one-of one-of
all all more-of
. gibanica flanConDulceDeleche
olives tomato
all -~ more-of
one-of
DishB
all all one-of
backedPotatoes @ mashedPotatoes stewedSteak
all |all all all
< >
Item(s) Saved

Figure 4: End-user modeling environment in DSL Tools

Shapes and connectors from the toolbar need
to contain a reference to constructs, otherwise
the modeling environment will stay empty in
spite of a user selection of the toolbar con-
struct. This definitions are placed in the same
document as constructs and toolbar. They
can be found under section diagramMaps.
In the element diagramMaps shapemaps and
connectormaps definitions can be found.

3.2 Modeling Environment

Before starting with a modeling environment,
there is a need to transform metamodeling
language into source code. This procedure
transforms a metamodel into code, repre-
senting an executable end-user modeling en-
vironment. In visual mode, all constructs
(shapes and connectors) are present. The
end-user can drag-and-drop a construct from
the toolbar to the working place, where a DSL
program is then constructed. The end-user
can change the initial values of the construct
properties.

An example of FDL visual program is de-
picted in Figure 4 (whose text version ap-
peared in Figure 1). The FDL end-user vi-
sual program expresses that a Menu is com-
posed of several parts (indicated by the tree-
like structure in the diagram). Some of these
parts are optional (indicated by the grey
rounded rectangle in the diagram), and oth-
ers are mandatory (empty rounded rectangle

756

in the diagram). Some features are atomic
(indicated by ellipse leaves of the tree in the
diagram) and some others are composed of
subfeatures — this is indicated by a tree-like
structure and their names start with capital
letters. The type of tree-like structure is de-
fined by link names. The meanings of all,
one-of, and more-of were given in Section 2.

After specifying a visual program, the end-
user can start a transformation tool in order
to run a DSL program.

3.3 Generation of code
The toolkit DSL Tools for Microsoft Visual

Studio 2005 is based on transformations of
templates. In the literature, we can often
find this kind of implementation marked as
assimilation [2] or source-to-source transfor-
mation [6, 8]. In DSL tools, source code is
generated from text templates (file extension
.cstemplate), which take DSL visual program
and produce a source code in the chosen lan-
guage (in FDL case, C# has been produced).
A tool for generating source code includes:

e Text Template Transformation Engine,

e Host (interface between engine and user-
environment), and

e Directive Processors (represents a link
between directives and text templates).

Text templates are documents which includes
a mixture of text, control, and directive

IDE ToolKit

URL

Eclipse Eclipse Modeling Framework http://www.eclipse.org/emf/
NetBeans Project Ace http://research.sun.com/features/ace/
IntelliJ Meta Programming System http://www.jetbrains.com/mps/

Visual Studio.Net DSL Tools For Visual Studio

http://msdn.microsoft.com/vstudio/DSLTools/

Table 1: DSL support in integrated development environments (IDEs)

blocks. The latter two, are included in the
sorrounding marks <# and #>. All transfor-
mations occur between these two marks.

Directives give instructions to the trans-
formation engine. On the other hand, control
blocks are programming code blocks in de-
fined general-purpose language. Text blocks
are the only blocks that do not compile and
are directly written to the output.

4 Related work

In the previous section it has been shown how
to obtain a DSVL with a Microsoft’s toolkit.
DSVL opens up the possibility for language
designers to develop a system where end-users
can program using graphical representations
relevant for a specific domain. Therefore, a
DSVL can be much more expressive as DSL.
But the question might arise — how much
more development effort is needed to con-
struct a DSVL?

A rough measure of development effort
can be obtained in terms of the number of
effective lines of code (eLOC), that is, all
lines that are not blanks, standalone-braces
or parentheses. The definition of domain
constructs is written in XML code and for
FDL consists of 750 eLOC. Templates for
code generation contain an additional 200
eLOC. A DSL domain model consists of 1000
XML eLOC, but visual notation is developed
graphically. Therefore, eLOC is unsuitable
for measuring effort on building the domain
model of a DSL.

Various techniques exist for implement-
ing a DSL: preprocessing, embedding, com-
piler /interpreter, compiler generator, extensi-
ble compiler/interpreter, and commercial off-
the-shelf [8]. Omne of the most demanding,
but also very rewarding, implementation ap-
proach of DSLs is by the extensible com-
piler /interpreter approach [6]. Here, the DSL
developer requires access to the definition of
the base language notation in order to incor-
porate the DSL syntax definitions. Compil-

757

ers, that allow incorporation of new features
to the base language, are called open compil-
ers. Mono C# compiler is one of them. The
extension of Mono C# compiler with repre-
sentative domain-specific language FDL has
been carried out in [7]. Using extensible com-
piler Mono 1.0.1, it takes 136 eLOC added
to the specification of the compiler and the
hand-coded lexical analyzer in order to in-
corporate FDL into it. After extending the
compiler using FDL, we are able to write the
C# program as presented in Figure 1. Class
FDL Menu is a C# class, but it contains
domain-specific constructs to define a Menu
program. For further details on how to incor-
porate DSL constructs to Mono, we refer the
reader to the literature [6, 7].

The tool MetaBorg [2] helps to include a
particular DSL notation back into a GPL by
assimilating (not extending) it into the lan-
guage, i.e. domain-specific notation is trans-
lated into some existing APIs operations.
GPL code is obtained, as a result of assimi-
lation. Similarly, DSL tools for Visual Studio
contains a transformation step that generates
source code in the base language.

Recently, many IDEs received a support
for language construction and some authors
name these IDE tools as Language Work-
benches. Examples of these tools [3] are Jet-
Brains’s Meta Programming System, and the
tool described in this paper — Microsoft’s DSL
Tools for Visual Studio. These tools share
the same goal — the construction of a domain-
specific language. On the other hand, other
workbenches have diverse methodologies on
how to obtain domain-specific language. The
explanation of these techniques is outside the
scope of this paper. Suitable references can
be found in Table 1.

5 Conclusion

In this paper we have described the toolkit
DSL Tools for Visual Studio that enables a
developer to design a visual language. The

toolkit supports metamodeling, generation of
code, and visual programming for the end-
user. Guidelines are given to practitioners on
the construction of a visual language.

Our long-lasting interest is in DSL im-
plementation approaches. Recently, visual
construction of DSLs became highly popu-
lar. In the future we would like to extend
the comparison on DSL implementation ap-
proaches with DSVLs. This paper is the first
step towards this goal. A simple compari-
son with the traditional DSL implementation
approach has also been carried out. This
comparison must be extended with a mea-
surement model similar to previous experi-
ments [6] comparising DSL’s implementation
approaches from the perspective of implemen-
tation and end-user effort.

However, research shows that a language
designer can develop a DSL much faster than
a DSVL. Using DSL Tools for Visual Studio is
quite demanding, since managing XML doc-
ument takes a lot of development time, and
no support tools exist. On the other hand,
end-user time and perception should not be
underestimated. Visual programming allows
end-users to master the environment and us-
age of domain concepts more quickly.

Of course, developing a DSL is not a so-
lution for every computable problem. In
combination with a proper application pro-
gramming library, any general purpose lan-
guage can act as a DSL. The programmer
must decide which approach to use bearing in
mind, not only the characteristics of applica-
tion programming library or DSVLs, but the
capabilities of the languages he masters and
his knowledge and history, in order to obtain
better results in terms of efficiency, effort, de-
velopment time, and/or any other dimension
where he wants to obtain good results.

Shortcomings of application libraries such
as limited domain-specific notations and the
inability of domain-specific analysis, verifi-
cation, optimization and transformation re-
strict their usefulness. With our work we
would like to promote usage of DSLs to the
practitioners and help them find alternative
solutions for their problems. Limitations of
common solutions can be overcame with a

758

toolkit such as DSL Tools for Visual Studio.
References

[1] DSL Tools for Visual Studio, available at

http://msdn.microsoft.com/vstudio/DSLTools/.

[2] M. Bravenboer and E. Visser. Concrete
syntax for objects. Domain-specific lan-
guage embedding and assimilation with-
out restrictions. In Proceedings of OOP-
SLA’04, pages 365-383. ACM Press, Oc-
tober 2004.

[3] G. Caprio. Domain-specific languages
& dsl workbench. Dr. Dobb’s Journal,
31(5):38-41, May 2006.

[4] A. van Deursen and P. Klint. Domain-
specific language design requires fea-
ture descriptions. Journal of Computing
and Information Technology, 10(1):1-17,
2002.

[5] T. Kosar, P. E. Martinez Lopez, P. A.
Barrientos, and M. Mernik. Experienc-
ing diverse implementation approaches for
domain-specific languages. Technical re-
port, 2005, http://marvin.uni-mb.si/
technical-report/RAJ-T0501.pdf.

[6] T. Kosar, P. E. Martinez Lopez, P. A.
Barrientos, and M. Mernik. A prelimi-
nary study on various implementation ap-
proaches of domain-specific language. To
apear in Information and Software Tech-
nology, 2007.

[7] D. Krmpotié¢, T. Kosar, M. Mernik, and
V. Zumer. Extending open compilers. In
Proceedings of the 27th Internation Con-
ference on Information Technology Inter-

face (ITI 2005), pages 645650, 2005.

[8] M. Mernik, J. Heering, and A. Sloane.
When and how to develop domain-specific
languages. ACM Computing Surveys,
37(4):316-344, December 2005.

[9] J.P. Tolvanen and S. Kelly. Modelling lan-
guages for product families: A method
engineering approach. In Proceedings of
OOPSLA workshop on Domain-Specific
Visual Languages, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 /HRV ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

